1
|
Slot Christiansen L, Munch-Petersen B, Knecht W. Non-Viral Deoxyribonucleoside Kinases--Diversity and Practical Use. J Genet Genomics 2015; 42:235-48. [PMID: 26059771 DOI: 10.1016/j.jgg.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 12/30/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) phosphorylate deoxyribonucleosides to their corresponding monophosphate compounds. dNks also phosphorylate deoxyribonucleoside analogues that are used in the treatment of cancer or viral infections. The study of the mammalian dNKs has therefore always been of great medical interest. However, during the last 20 years, research on dNKs has gone into non-mammalian organisms. In this review, we focus on non-viral dNKs, in particular their diversity and their practical applications. The diversity of this enzyme family in different organisms has proven to be valuable in studying the evolution of enzymes. Some of these newly discovered enzymes have been useful in numerous practical applications in medicine and biotechnology, and have contributed to our understanding of the structural basis of nucleoside and nucleoside analogue activation.
Collapse
Affiliation(s)
| | - Birgitte Munch-Petersen
- Department of Biology, Lund University, Lund 22362, Sweden; Department of Science, Systems and Models, Roskilde University, Roskilde 4000, Denmark
| | - Wolfgang Knecht
- Department of Biology, Lund University, Lund 22362, Sweden; Lund Protein Production Platform, Lund University, Lund 22362, Sweden.
| |
Collapse
|
2
|
Nomme J, Li Z, Gipson RM, Wang J, Armijo AL, Le T, Poddar S, Smith T, Santarsiero BD, Nguyen HA, Czernin J, Alexandrova AN, Jung ME, Radu CG, Lavie A. Structure-guided development of deoxycytidine kinase inhibitors with nanomolar affinity and improved metabolic stability. J Med Chem 2014; 57:9480-94. [PMID: 25341194 PMCID: PMC4255734 DOI: 10.1021/jm501124j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Recently,
we have shown that small molecule dCK inhibitors in combination
with pharmacological perturbations of de novo dNTP biosynthetic pathways
could eliminate acute lymphoblastic leukemia cells in animal models.
However, our previous lead compound had a short half-life in vivo. Therefore, we set out to develop dCK inhibitors with favorable pharmacokinetic
properties. We delineated the sites of the inhibitor for modification,
guided by crystal structures of dCK in complex with the lead compound
and with derivatives. Crystal structure of the complex between dCK
and the racemic mixture of our new lead compound indicated that the R-isomer is responsible for kinase inhibition. This was
corroborated by kinetic analysis of the purified enantiomers, which
showed that the R-isomer has >60-fold higher affinity
than the S-isomer for dCK. This new lead compound
has significantly improved metabolic stability, making it a prime
candidate for dCK-inhibitor based therapies against hematological
malignancies and, potentially, other cancers.
Collapse
Affiliation(s)
- Julian Nomme
- Department of Biochemistry and Molecular Genetics, and ‡Center for Pharmaceutical Biotechnology, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Konrad A, Lai J, Mutahir Z, Piškur J, Liberles DA. The phylogenetic distribution and evolution of enzymes within the thymidine kinase 2-like gene family in metazoa. J Mol Evol 2014; 78:202-16. [PMID: 24500774 DOI: 10.1007/s00239-014-9611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/21/2014] [Indexed: 12/22/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) carry out the rate-determining step in the nucleoside salvage pathway within all domains of life where the pathway is present, and, hence, are an indication on whether or not a species/genus retains the ability to salvage deoxyribonucleosides. Here, a phylogenetic tree is constructed for the thymidine kinase 2-like dNK gene family in metazoa. Each enzyme class (deoxycytidine, deoxyguanosine, and deoxythymidine kinases, as well as the multisubstrate dNKs) falls into a monophyletic clade. However, in vertebrates, dCK contains an apparent duplication with one paralog lost in mammals, and a number of crustacean genomes (like Caligus rogercresseyi and Lepeophtheirus salmonis) unexpectedly contain not only the multisubstrate dNKs, related to Drosophila multisubstrate dNK, but also a TK2-like kinase. Additionally, crustaceans (Daphnia, Caligus, and Lepeophtheirus) and some insects (Tribolium, Danaus, Pediculus, and Acyrthosiphon) contain several multisubstrate dNK-like enzymes which group paraphyletically within the arthropod clade. This might suggest that the multisubstrate dNKs underwent multiple rounds of duplications with differential retention of duplicate copies between insect families and more complete retention within some crustaceans and insects. Genomes of several basal animalia contain more than one dNK-like sequence, some of which group outside the remaining eukaryotes (both plants and animals) and/or with bacterial dNKs. Within the vertebrates, the mammalian genomes do not contain the second dCK, while birds, fish, and amphibians do retain it. Phasianidae (chicken and turkey) have lost dGK, while it has been retained in other bird lineages, like zebra finch. Reconstruction of the ancestral sequence between the multisubstrate arthropod dNKs and the TK2 clade of vertebrates followed by homology modeling and discrete molecular dynamics calculations on this sequence were performed to examine the evolutionary path which led to the two different enzyme classes. The structural models showed that the carboxyl terminus of the ancestral sequence is more helical than dNK, in common with TK2, although any implications of this for enzyme specificity will require biochemical validation. Finally, rate-shift and conservation-shift analysis between clades with different specificities uncovered candidate residues outside the active site pocket which may have contributed to differentiation in substrate specificity between enzyme clades.
Collapse
Affiliation(s)
- Anke Konrad
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA,
| | | | | | | | | |
Collapse
|
4
|
Nomme J, Murphy JM, Su Y, Sansone ND, Armijo AL, Olson ST, Radu C, Lavie A. Structural characterization of new deoxycytidine kinase inhibitors rationalizes the affinity-determining moieties of the molecules. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:68-78. [PMID: 24419380 PMCID: PMC3919262 DOI: 10.1107/s1399004713025030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/09/2013] [Indexed: 01/08/2023]
Abstract
Deoxycytidine kinase (dCK) is a key enzyme in the nucleoside salvage pathway that is also required for the activation of several anticancer and antiviral nucleoside analog prodrugs. Additionally, dCK has been implicated in immune disorders and has been found to be overexpressed in several cancers. To allow the probing and modulation of dCK activity, a new class of small-molecule inhibitors of the enzyme were developed. Here, the structural characterization of four of these inhibitors in complex with human dCK is presented. The structures reveal that the compounds occupy the nucleoside-binding site and bind to the open form of dCK. Surprisingly, a slight variation in the nature of the substituent at the 5-position of the thiazole ring governs whether the active site of the enzyme is occupied by one or two inhibitor molecules. Moreover, this substituent plays a critical role in determining the affinity, improving it from >700 to 1.5 nM in the best binder. These structures lay the groundwork for future modifications that would result in even tighter binding and the correct placement of moieties that confer favorable pharmacodynamics and pharmacokinetic properties.
Collapse
Affiliation(s)
- Julian Nomme
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jennifer M. Murphy
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095, USA
| | - Ying Su
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Natasha D. Sansone
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Amanda L. Armijo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095, USA
| | - Steven T. Olson
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Caius Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Ahmanson Translational Imaging Division, University of California, Los Angeles, CA 90095, USA
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
5
|
Amsailale R, Van Den Neste E, Arts A, Starczewska E, Bontemps F, Smal C. Phosphorylation of deoxycytidine kinase on Ser-74: impact on kinetic properties and nucleoside analog activation in cancer cells. Biochem Pharmacol 2012; 84:43-51. [PMID: 22490700 DOI: 10.1016/j.bcp.2012.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
Deoxycytidine kinase (dCK) (EC 2.7.1.74) is a key enzyme in the activation of several therapeutic nucleoside analogs (NA). Its activity can be increased in vivo by Ser-74 phosphorylation, a property that could be used for enhancing NA activation and clinical efficacy. In line with this, studies with recombinant dCK showed that mimicking Ser-74 phosphorylation by a S74E mutation increases its activity toward pyrimidine analogs. However, purine analogs had not been investigated. Here, we show that the S74E mutation increased the k(cat) for cladribine (CdA) by 8- or 3-fold, depending on whether the phosphoryl donor was ATP or UTP, for clofarabine (CAFdA) by about 2-fold with both ATP and UTP, and for fludarabine (F-Ara-A) by 2-fold, but only with UTP. However, the catalytic efficiencies (k(cat)/Km) were not, or slightly, increased. The S74E mutation also sensitized dCK to feed-back inhibition by dCTP, regardless of the phosphoryl donor. Importantly, we did not observe an increase of endogenous dCK activity toward purine analogs after in vivo-induced increase of Ser-74 phosphorylation. Accordingly, treatment of CLL cells with aphidicolin, which enhances dCK activity through Ser-74 phosphorylation, did not modify the conversion of CdA or F-Ara-A into their active triphosphate form. Nevertheless, the same treatment enhanced activation of gemcitabine (dFdC) into dFdCTP in CLL as well as in HCT-116 cells and produced synergistic cytotoxicity. We conclude that increasing phosphorylation of dCK on Ser-74 might constitute a valuable strategy to enhance the clinical efficacy of some NA, like dFdC, but not of CdA or F-Ara-A.
Collapse
Affiliation(s)
- Rachid Amsailale
- Laboratory of Physiological Chemistry, de Duve Institute & Université catholique de Louvain, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
6
|
Hazra S, Szewczak A, Ort S, Konrad M, Lavie A. Post-translational phosphorylation of serine 74 of human deoxycytidine kinase favors the enzyme adopting the open conformation making it competent for nucleoside binding and release. Biochemistry 2011; 50:2870-80. [PMID: 21351740 DOI: 10.1021/bi2001032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Deoxycytidine kinase (dCK) uses either ATP or UTP as a phosphoryl donor to catalyze the phosphorylation of nucleoside acceptors. The kinetic properties of human dCK are modulated in vivo by phosphorylation of serine 74. This residue is a part of the insert region and is distant from the active site. Replacing the serine with a glutamic acid (S74E variant) can mimic phosphorylation of Ser74. To understand how phosphorylation affects the catalytic properties of dCK, we examined the S74E variant of dCK both structurally and kinetically. We observe that the presence of a glutamic acid at position 74 favors the adoption by the enzyme of the open conformation. Glu74 stabilizes the open conformation by directly interacting with the indole side chain of Trp58, a residue that is in the proximity of the base of the nucleoside substrate. The open dCK conformation is competent for the binding of nucleoside but not for phosphoryl transfer. In contrast, the closed conformation is competent for phosphoryl transfer but not for product release. Thus, dCK must make the transition between the open and closed states during the catalytic cycle. We propose a reaction scheme for dCK that incorporates the transition between the open and closed states, and this serves to rationalize the observed kinetic differences between wild-type dCK and the S74E variant.
Collapse
Affiliation(s)
- Saugata Hazra
- Department of Biochemistry and Molecular Genetics, University of Illinois, 900 South Ashland Avenue, Chicago, Illinois 60607, United States
| | | | | | | | | |
Collapse
|
7
|
Hazra S, Ort S, Konrad M, Lavie A. Structural and kinetic characterization of human deoxycytidine kinase variants able to phosphorylate 5-substituted deoxycytidine and thymidine analogues . Biochemistry 2010; 49:6784-90. [PMID: 20614893 DOI: 10.1021/bi100839e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The physiological role of human deoxycytidine kinase (dCK) is to phosphorylate deoxynucleosides required for DNA synthesis, with the exception of thymidine. Previous structural analysis of dCK implicated steric factors, specifically the thymine methyl group at the 5-position, that prevent thymidine phosphorylation by dCK. This hypothesis is supported by the observation that mutations that enlarge the active site cavity in proximity to the nucleoside 5-position endow dCK with the ability to phosphorylate thymidine. However, in conflict with this hypothesis was our discovery that the cytidine analogue 5-methyldeoxycytidine (5-Me-dC), an isostere of thymidine, can indeed be phosphorylated by wild-type (WT) dCK. To reconcile this seemingly contradicting observation, and to better understand the determinants preventing thymidine phosphorylation by WT dCK, we solved the crystal structure of dCK in complex with 5-Me-dC. The structure reveals the active site adjustments required to accommodate the methyl group at the 5-position. Combination of kinetic, mutagenesis, and structural data suggested that it is in fact residue Asp133 of dCK that is most responsible for discriminating against the thymine base. dCK variants in which Asp133 is replaced by an alanine and Arg104 by select hydrophobic residues attain significantly improved activity with 5-substituted deoxycytidine and thymidine analogues. Importantly, the ability of the designer enzymes to activate 5-substitued pyrimidines makes it possible to utilize such nucleoside analogues in suicide gene therapy or protein therapy applications that target cancer cells.
Collapse
Affiliation(s)
- Saugata Hazra
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
8
|
Sabini E, Hazra S, Konrad M, Lavie A. Elucidation of different binding modes of purine nucleosides to human deoxycytidine kinase. J Med Chem 2008; 51:4219-25. [PMID: 18570408 DOI: 10.1021/jm800134t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purine nucleoside analogues of medicinal importance, such as cladribine, require phosphorylation by deoxycytidine kinase (dCK) for pharmacological activity. Structural studies of ternary complexes of human dCK show that the enzyme conformation adjusts to the different hydrogen-bonding properties between dA and dG and to the presence of substituent at the 2-position present in dG and cladribine. Specifically, the carbonyl group in dG elicits a previously unseen conformational adjustment of the active site residues Arg104 and Asp133. In addition, dG and cladribine adopt the anti conformation, in contrast to the syn conformation observed with dA. Kinetic analysis reveals that cladribine is phosphorylated at the highest efficiency with UTP as donor. We attribute this to the ability of cladribine to combine advantageous properties from dA (favorable hydrogen-bonding pattern) and dG (propensity to bind to the enzyme in its anti conformation), suggesting that dA analogues with a substituent at the 2-position are likely to be better activated by human dCK.
Collapse
Affiliation(s)
- Elisabetta Sabini
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland (M/C 669), Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
9
|
Iyidogan P, Lutz S. Systematic exploration of active site mutations on human deoxycytidine kinase substrate specificity. Biochemistry 2008; 47:4711-20. [PMID: 18361501 DOI: 10.1021/bi800157e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human deoxycytidine kinase (dCK) is responsible for the phosphorylation of a number of clinically important nucleoside analogue prodrugs in addition to its natural substrates, 2'-deoxycytidine, 2'-deoxyguanosine, and 2'-deoxyadenosine. To improve the low catalytic activity and tailor the substrate specificity of dCK, we have constructed libraries of mutant enzymes and tested them for thymidine kinase (tk) activity. Random mutagenesis was employed to probe for amino acid positions with an impact on substrate specificity throughout the entire enzyme structure, identifying positions Arg104 and Asp133 in the active site as key residues for substrate specificity. Kinetic analysis indicates that Arg104Gln/Asp133Gly creates a "generalist" kinase with broader specificity and elevated turnover for natural and prodrug substrates. In contrast, the substitutions of Arg104Met/Asp133Thr, obtained via site-saturation mutagenesis, yielded a mutant with reversed substrate specificity, elevating the specific constant for thymidine phosphorylation by over 1000-fold while eliminating activity for dC, dA, and dG under physiological conditions. The results illuminate the key contributions of these two amino acid positions to enzyme function by demonstrating their ability to moderate substrate specificity.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | | |
Collapse
|
10
|
Structural basis for substrate promiscuity of dCK. J Mol Biol 2008; 378:607-21. [PMID: 18377927 DOI: 10.1016/j.jmb.2008.02.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 11/23/2022]
Abstract
Deoxycytidine kinase (dCK) is an essential nucleoside kinase critical for the production of nucleotide precursors for DNA synthesis. This enzyme catalyzes the initial conversion of the nucleosides deoxyadenosine (dA), deoxyguanosine (dG), and deoxycytidine (dC) into their monophosphate forms, with subsequent phosphorylation to the triphosphate forms performed by additional enzymes. Several nucleoside analog prodrugs are dependent on dCK for their pharmacological activation, and even nucleosides of the non-physiological L-chirality are phosphorylated by dCK. In addition to accepting dC and purine nucleosides (and their analogs) as phosphoryl acceptors, dCK can utilize either ATP or UTP as phosphoryl donors. To unravel the structural basis for substrate promiscuity of dCK at both the nucleoside acceptor and nucleotide donor sites, we solved the crystal structures of the enzyme as ternary complexes with the two enantiomeric forms of dA (D-dA, or L-dA), with either UDP or ADP bound to the donor site. The complexes with UDP revealed an open state of dCK in which the nucleoside, either D-dA or L-dA, is surprisingly bound in a manner not consistent with catalysis. In contrast, the complexes with ADP, with either D-dA or L-dA, adopted a closed and catalytically competent conformation. The differential states adopted by dCK in response to the nature of the nucleotide were also detected by tryptophan fluorescence experiments. Thus, we are in the unique position to observe differential effects at the acceptor site due to the nature of the nucleotide at the donor site, allowing us to rationalize the different kinetic properties observed with UTP to those with ATP.
Collapse
|
11
|
Gerth ML, Lutz S. Non-homologous recombination of deoxyribonucleoside kinases from human and Drosophila melanogaster yields human-like enzymes with novel activities. J Mol Biol 2007; 370:742-51. [PMID: 17543337 PMCID: PMC1986717 DOI: 10.1016/j.jmb.2007.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 04/29/2007] [Accepted: 05/02/2007] [Indexed: 11/26/2022]
Abstract
In antiviral and cancer therapy, deoxyribonucleoside kinases (dNKs) are often the rate-limiting step in activating nucleoside analog (NA) prodrugs into their cytotoxic, phosphorylated forms. We have constructed libraries of hybrid enzymes by non-homologous recombination of the pyrimidine-specific human thymidine kinase 2 and the broad-specificity dNK from Drosophila melanogaster; their low sequence identity has precluded engineering by conventional, homology-dependent shuffling techniques. From these libraries, we identified chimeras that phosphorylate nucleoside analogs with higher activity than either parental enzyme, and that possess new activity towards the anti-HIV prodrug 2',3'-didehydro-3'-deoxythymidine (d4T). These results demonstrate the potential of non-homologous recombination within the dNK family for creating enzymes with new and improved activities towards nucleoside analogs. In addition, our results exposed a previously unknown role for the C-terminal regions of these dNKs in determining substrate selectivity.
Collapse
|
12
|
Uga H, Kuramori C, Ohta A, Tsuboi Y, Tanaka H, Hatakeyama M, Yamaguchi Y, Takahashi T, Kizaki M, Handa H. A new mechanism of methotrexate action revealed by target screening with affinity beads. Mol Pharmacol 2006; 70:1832-9. [PMID: 16936229 DOI: 10.1124/mol.106.025866] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methotrexate (MTX) is the anticancer and antirheumatoid drug that is believed to block nucleotide synthesis and cell cycle by inhibiting dihydrofolate reductase activity. We have developed novel affinity matrices, termed SG beads, that are easy to manipulate and are compatible with surface functionalization. Using the matrices, here we present evidence that deoxycytidine kinase (dCK), an enzyme that acts in the salvage pathway of nucleotide biosynthesis, is another target of MTX. MTX modulates dCK activity differentially depending on substrate concentrations. 1-beta-D-Arabinofuranosylcytosine (ara-C), a chemotherapy agent often used in combination with MTX, is a nucleoside analog whose incorporation into chromosome requires prior phosphorylation by dCK. We show that, remarkably, MTX enhances incorporation and cytotoxicity of ara-C through regulation of dCK activity in Burkitt's lymphoma cells. Thus, this study provides new insight into the mechanisms underlying MTX actions and demonstrates the usefulness of the SG beads.
Collapse
|