1
|
Endsley CE, Moore KA, Townsley TD, Durston KK, Deweese JE. Bioinformatic Analysis of Topoisomerase IIα Reveals Interdomain Interdependencies and Critical C-Terminal Domain Residues. Int J Mol Sci 2024; 25:5674. [PMID: 38891861 PMCID: PMC11172036 DOI: 10.3390/ijms25115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
DNA Topoisomerase IIα (Top2A) is a nuclear enzyme that is a cancer drug target, and there is interest in identifying novel sites on the enzyme to inhibit cancer cells more selectively and to reduce off-target toxicity. The C-terminal domain (CTD) is one potential target, but it is an intrinsically disordered domain, which prevents structural analysis. Therefore, we set out to analyze the sequence of Top2A from 105 species using bioinformatic analysis, including the PSICalc algorithm, Shannon entropy analysis, and other approaches. Our results demonstrate that large (10th-order) interdependent clusters are found including non-proximal positions across the major domains of Top2A. Further, CTD-specific clusters of the third, fourth, and fifth order, including positions that had been previously analyzed via mutation and biochemical assays, were identified. Some of these clusters coincided with positions that, when mutated, either increased or decreased relaxation activity. Finally, sites of low Shannon entropy (i.e., low variation in amino acids at a given site) were identified and mapped as key positions in the CTD. Included in the low-entropy sites are phosphorylation sites and charged positions. Together, these results help to build a clearer picture of the critical positions in the CTD and provide potential sites/regions for further analysis.
Collapse
Affiliation(s)
- Clark E. Endsley
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | - Kori A. Moore
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
| | | | - Kirk K. Durston
- Department of Research and Publications, Digital Strategies, Langley, BC V2Y 1N5, Canada
| | - Joseph E. Deweese
- Biological, Physical, and Human Sciences Department, Freed-Hardeman University, Henderson, TN 38340, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Jian JY, Osheroff N. Telling Your Right Hand from Your Left: The Effects of DNA Supercoil Handedness on the Actions of Type II Topoisomerases. Int J Mol Sci 2023; 24:11199. [PMID: 37446377 PMCID: PMC10342825 DOI: 10.3390/ijms241311199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Type II topoisomerases are essential enzymes that modulate the topological state of DNA supercoiling in all living organisms. These enzymes alter DNA topology by performing double-stranded passage reactions on over- or underwound DNA substrates. This strand passage reaction generates a transient covalent enzyme-cleaved DNA structure known as the cleavage complex. Al-though the cleavage complex is a requisite catalytic intermediate, it is also intrinsically dangerous to genomic stability in biological systems. The potential threat of type II topoisomerase function can also vary based on the nature of the supercoiled DNA substrate. During essential processes such as DNA replication and transcription, cleavage complex formation can be inherently more dangerous on overwound versus underwound DNA substrates. As such, it is important to understand the profound effects that DNA topology can have on the cellular functions of type II topoisomerases. This review will provide a broad assessment of how human and bacterial type II topoisomerases recognize and act on their substrates of various topological states.
Collapse
Affiliation(s)
- Jeffrey Y. Jian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Jian JY, McCarty KD, Byl J, Guengerich FP, Neuman K, Osheroff N. Basis for the discrimination of supercoil handedness during DNA cleavage by human and bacterial type II topoisomerases. Nucleic Acids Res 2023; 51:3888-3902. [PMID: 36999602 PMCID: PMC10164583 DOI: 10.1093/nar/gkad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
To perform double-stranded DNA passage, type II topoisomerases generate a covalent enzyme-cleaved DNA complex (i.e. cleavage complex). Although this complex is a requisite enzyme intermediate, it is also intrinsically dangerous to genomic stability. Consequently, cleavage complexes are the targets for several clinically relevant anticancer and antibacterial drugs. Human topoisomerase IIα and IIβ and bacterial gyrase maintain higher levels of cleavage complexes with negatively supercoiled over positively supercoiled DNA substrates. Conversely, bacterial topoisomerase IV is less able to distinguish DNA supercoil handedness. Despite the importance of supercoil geometry to the activities of type II topoisomerases, the basis for supercoil handedness recognition during DNA cleavage has not been characterized. Based on the results of benchtop and rapid-quench flow kinetics experiments, the forward rate of cleavage is the determining factor of how topoisomerase IIα/IIβ, gyrase and topoisomerase IV distinguish supercoil handedness in the absence or presence of anticancer/antibacterial drugs. In the presence of drugs, this ability can be enhanced by the formation of more stable cleavage complexes with negatively supercoiled DNA. Finally, rates of enzyme-mediated DNA ligation do not contribute to the recognition of DNA supercoil geometry during cleavage. Our results provide greater insight into how type II topoisomerases recognize their DNA substrates.
Collapse
Affiliation(s)
- Jeffrey Y Jian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20982, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
4
|
Structural and Biochemical Basis of Etoposide-Resistant Mutations in Topoisomerase IIα. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Etoposide is a widely used anticancer drug that targets type II topoisomerases, including topoisomerase IIα (TOP2A). TOP2A is a nuclear enzyme involved in regulating DNA topology through a double-strand passage mechanism. TOP2A is a homodimeric enzyme with two symmetrical active sites formed by residues from either half of the dimer. Both active sites cleave DNA, forming an enzyme-bound, double-stranded DNA break. Etoposide acts by binding in the active site between the ends of cleaved DNA, preventing the enzyme from ligating the DNA. In the present study, biochemical and structural data are used to examine the mechanism of etoposide resistance found with specific point mutations in TOP2A. Mutations near the active site (D463A, G534R, R487K), along with some outside of the active site (ΔA429 and P716L), are examined. We hypothesize that changes in the coordination of DNA cleavage results from mutations that impact symmetrical relationships in the active site and surrounding regions. In some cases, we report the first data on purified versions of these enzymes. Based upon our results, both local and long-distance factors can impact etoposide action and may indicate interdependent relationships in structure and function.
Collapse
|
5
|
Fogg JM, Judge AK, Stricker E, Chan HL, Zechiedrich L. Supercoiling and looping promote DNA base accessibility and coordination among distant sites. Nat Commun 2021; 12:5683. [PMID: 34584096 PMCID: PMC8478907 DOI: 10.1038/s41467-021-25936-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
DNA in cells is supercoiled and constrained into loops and this supercoiling and looping influence every aspect of DNA activity. We show here that negative supercoiling transmits mechanical stress along the DNA backbone to disrupt base pairing at specific distant sites. Cooperativity among distant sites localizes certain sequences to superhelical apices. Base pair disruption allows sharp bending at superhelical apices, which facilitates DNA writhing to relieve torsional strain. The coupling of these processes may help prevent extensive denaturation associated with genomic instability. Our results provide a model for how DNA can form short loops, which are required for many essential processes, and how cells may use DNA loops to position nicks to facilitate repair. Furthermore, our results reveal a complex interplay between site-specific disruptions to base pairing and the 3-D conformation of DNA, which influences how genomes are stored, replicated, transcribed, repaired, and many other aspects of DNA activity.
Collapse
Affiliation(s)
- Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Houston, TX, USA
| | - Allison K Judge
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA
| | - Erik Stricker
- Department of Molecular Virology and Microbiology, Houston, TX, USA
| | - Hilda L Chan
- Graduate Program in Immunology and Microbiology, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Houston, TX, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA.
- Department of Pharmacology and Chemical Biology, Houston, TX, USA.
- Graduate Program in Immunology and Microbiology, Houston, TX, USA.
| |
Collapse
|
6
|
Cristini A, Géraud M, Sordet O. Transcription-associated DNA breaks and cancer: A matter of DNA topology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:195-240. [PMID: 34507784 DOI: 10.1016/bs.ircmb.2021.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription is an essential cellular process but also a major threat to genome integrity. Transcription-associated DNA breaks are particularly detrimental as their defective repair can induce gene mutations and oncogenic chromosomal translocations, which are hallmarks of cancer. The past few years have revealed that transcriptional breaks mainly originate from DNA topological problems generated by the transcribing RNA polymerases. Defective removal of transcription-induced DNA torsional stress impacts on transcription itself and promotes secondary DNA structures, such as R-loops, which can induce DNA breaks and genome instability. Paradoxically, as they relax DNA during transcription, topoisomerase enzymes introduce DNA breaks that can also endanger genome integrity. Stabilization of topoisomerases on chromatin by various anticancer drugs or by DNA alterations, can interfere with transcription machinery and cause permanent DNA breaks and R-loops. Here, we review the role of transcription in mediating DNA breaks, and discuss how deregulation of topoisomerase activity can impact on transcription and DNA break formation, and its connection with cancer.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| | - Mathéa Géraud
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, Toulouse, France.
| |
Collapse
|
7
|
Marzi L, Sun Y, Huang SYN, James A, Difilippantonio S, Pommier Y. The Indenoisoquinoline LMP517: A Novel Antitumor Agent Targeting both TOP1 and TOP2. Mol Cancer Ther 2020; 19:1589-1597. [PMID: 32430490 PMCID: PMC7415565 DOI: 10.1158/1535-7163.mct-19-1064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/28/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
The camptothecin derivatives topoisomerase I (TOP1) inhibitors, irinotecan and topotecan, are FDA approved for the treatment of colorectal, ovarian, lung and breast cancers. Because of the chemical instability of camptothecins, short plasma half-life, drug efflux by the multidrug-resistance ABC transporters, and the severe diarrhea produced by irinotecan, indenoisoquinoline TOP1 inhibitors (LMP400, LMP776, and LMP744), which overcome these limitations, have been developed and are in clinical development. Further modifications of the indenoisoquinolines led to the fluoroindenoisoquinolines, one of which, LMP517, is the focus of this study. LMP517 showed better antitumor activity than its parent compound LMP744 against H82 (small cell lung cancer) xenografts. Genetic analyses in DT40 cells showed a dual TOP1 and TOP2 signature with selectivity of LMP517 for DNA repair-deficient tyrosyl DNA phosphodiesterase 2 (TDP2)- and Ku70-knockout cells. RADAR assays revealed that LMP517, and to a lesser extent LMP744, induce TOP2 cleavage complexes (TOP2cc) in addition to TOP1ccs. Histone γH2AX detection showed that, unlike classical TOP1 inhibitors, LMP517 targets cells independently of their position in the cell cycle. Our study establishes LMP517 as a dual TOP1 and TOP2 inhibitor with therapeutic potential.
Collapse
Affiliation(s)
- Laetitia Marzi
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Amy James
- Laboratory of Animal Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Simone Difilippantonio
- Laboratory of Animal Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
8
|
Antoniou-Kourounioti M, Mimmack ML, Porter ACG, Farr CJ. The Impact of the C-Terminal Region on the Interaction of Topoisomerase II Alpha with Mitotic Chromatin. Int J Mol Sci 2019; 20:ijms20051238. [PMID: 30871006 PMCID: PMC6429393 DOI: 10.3390/ijms20051238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Type II topoisomerase enzymes are essential for resolving DNA topology problems arising through various aspects of DNA metabolism. In vertebrates two isoforms are present, one of which (TOP2A) accumulates on chromatin during mitosis. Moreover, TOP2A targets the mitotic centromere during prophase, persisting there until anaphase onset. It is the catalytically-dispensable C-terminal domain of TOP2 that is crucial in determining this isoform-specific behaviour. In this study we show that, in addition to the recently identified chromatin tether domain, several other features of the alpha-C-Terminal Domain (CTD). influence the mitotic localisation of TOP2A. Lysine 1240 is a major SUMOylation target in cycling human cells and the efficiency of this modification appears to be influenced by T1244 and S1247 phosphorylation. Replacement of K1240 by arginine results in fewer cells displaying centromeric TOP2A accumulation during prometaphase-metaphase. The same phenotype is displayed by cells expressing TOP2A in which either of the mitotic phosphorylation sites S1213 or S1247 has been substituted by alanine. Conversely, constitutive modification of TOP2A by fusion to SUMO2 exerts the opposite effect. FRAP analysis of protein mobility indicates that post-translational modification of TOP2A can influence the enzyme's residence time on mitotic chromatin, as well as its subcellular localisation.
Collapse
Affiliation(s)
- Melissa Antoniou-Kourounioti
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Michael L Mimmack
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Andrew C G Porter
- Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Rd, London W12 0NN, UK.
| | - Christine J Farr
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| |
Collapse
|
9
|
Gibson EG, Blower TR, Cacho M, Bax B, Berger JM, Osheroff N. Mechanism of Action of Mycobacterium tuberculosis Gyrase Inhibitors: A Novel Class of Gyrase Poisons. ACS Infect Dis 2018; 4:1211-1222. [PMID: 29746087 DOI: 10.1021/acsinfecdis.8b00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tuberculosis is one of the leading causes of morbidity worldwide, and the incidences of drug resistance and intolerance are prevalent. Thus, there is a desperate need for the development of new antitubercular drugs. Mycobacterium tuberculosis gyrase inhibitors (MGIs) are napthyridone/aminopiperidine-based drugs that display activity against M. tuberculosis cells and tuberculosis in mouse models [Blanco, D., et al. (2015) Antimicrob. Agents Chemother. 59, 1868-1875]. Genetic and mutagenesis studies suggest that gyrase, which is the target for fluoroquinolone antibacterials, is also the target for MGIs. However, little is known regarding the interaction of these drugs with the bacterial type II enzyme. Therefore, we examined the effects of two MGIs, GSK000 and GSK325, on M. tuberculosis gyrase. MGIs greatly enhanced DNA cleavage mediated by the bacterial enzyme. In contrast to fluoroquinolones (which induce primarily double-stranded breaks), MGIs induced only single-stranded DNA breaks under a variety of conditions. MGIs work by stabilizing covalent gyrase-cleaved DNA complexes and appear to suppress the ability of the enzyme to induce double-stranded breaks. The drugs displayed little activity against type II topoisomerases from several other bacterial species, suggesting that these drugs display specificity for M. tuberculosis gyrase. Furthermore, MGIs maintained activity against M. tuberuclosis gyrase enzymes that contained the three most common fluoroquinolone resistance mutations seen in the clinic and displayed no activity against human topoisomerase IIα. These findings suggest that MGIs have potential as antitubercular drugs, especially in the case of fluoroquinolone-resistant disease.
Collapse
Affiliation(s)
| | - Tim R. Blower
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, United States
| | - Monica Cacho
- Department of Diseases of the Developing World, GlaxoSmithKline, Parque Tecnológico de Madrid, Calle de Severo Ochoa, 2, 28760 Tres Cantos, Madrid, Spain
| | - Ben Bax
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, United States
| | - Neil Osheroff
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
10
|
Design, synthesis and biological evaluation of new β-carboline-bisindole compounds as DNA binding, photocleavage agents and topoisomerase I inhibitors. Eur J Med Chem 2018; 143:1563-1577. [DOI: 10.1016/j.ejmech.2017.10.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/11/2023]
|
11
|
Ashley RE, Dittmore A, McPherson SA, Turnbough CL, Neuman KC, Osheroff N. Activities of gyrase and topoisomerase IV on positively supercoiled DNA. Nucleic Acids Res 2017; 45:9611-9624. [PMID: 28934496 PMCID: PMC5766186 DOI: 10.1093/nar/gkx649] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/14/2017] [Indexed: 11/12/2022] Open
Abstract
Although bacterial gyrase and topoisomerase IV have critical interactions with positively supercoiled DNA, little is known about the actions of these enzymes on overwound substrates. Therefore, the abilities of Bacillus anthracis and Escherichia coli gyrase and topoisomerase IV to relax and cleave positively supercoiled DNA were analyzed. Gyrase removed positive supercoils ∼10-fold more rapidly and more processively than it introduced negative supercoils into relaxed DNA. In time-resolved single-molecule measurements, gyrase relaxed overwound DNA with burst rates of ∼100 supercoils per second (average burst size was 6.2 supercoils). Efficient positive supercoil removal required the GyrA-box, which is necessary for DNA wrapping. Topoisomerase IV also was able to distinguish DNA geometry during strand passage and relaxed positively supercoiled substrates ∼3-fold faster than negatively supercoiled molecules. Gyrase maintained lower levels of cleavage complexes with positively supercoiled (compared with negatively supercoiled) DNA, whereas topoisomerase IV generated similar levels with both substrates. Results indicate that gyrase is better suited than topoisomerase IV to safely remove positive supercoils that accumulate ahead of replication forks. They also suggest that the wrapping mechanism of gyrase may have evolved to promote rapid removal of positive supercoils, rather than induction of negative supercoils.
Collapse
Affiliation(s)
- Rachel E Ashley
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Andrew Dittmore
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20982, USA
| | - Sylvia A McPherson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Charles L Turnbough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20982, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.,VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA.,Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232-6307, USA
| |
Collapse
|
12
|
Seol Y, Neuman KC. The dynamic interplay between DNA topoisomerases and DNA topology. Biophys Rev 2016; 8:101-111. [PMID: 28510219 DOI: 10.1007/s12551-016-0240-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/07/2016] [Indexed: 01/03/2023] Open
Abstract
Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.
Collapse
Affiliation(s)
- Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, 50 South Dr., Room 3517, Bethesda, MD, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, 50 South Dr., Room 3517, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Abstract
Topological properties of DNA influence its structure and biochemical interactions. Within the cell DNA topology is constantly in flux. Transcription and other essential processes including DNA replication and repair, alter the topology of the genome, while introducing additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases, is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that established the fundamental mechanistic basis of topoisomerase activity, the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases have begun to be explored. In this review we survey established and emerging DNA topology dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.
Collapse
Affiliation(s)
- Yeonee Seol
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, MD, 20892, U.S.A
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, MD, 20892, U.S.A
| |
Collapse
|
14
|
Seol Y, Zhang H, Agama K, Lorence N, Pommier Y, Neuman KC. Single-Molecule Supercoil Relaxation Assay as a Screening Tool to Determine the Mechanism and Efficacy of Human Topoisomerase IB Inhibitors. Mol Cancer Ther 2015; 14:2552-9. [PMID: 26351326 PMCID: PMC4636450 DOI: 10.1158/1535-7163.mct-15-0454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/27/2015] [Indexed: 11/16/2022]
Abstract
Human nuclear type IB topoisomerase (Top1) inhibitors are widely used and powerful anticancer agents. In this study, we introduce and validate a single-molecule supercoil relaxation assay as a molecular pharmacology tool for characterizing therapeutically relevant Top1 inhibitors. Using this assay, we determined the effects on Top1 supercoil relaxation activity of four Top1 inhibitors; three clinically relevant: camptothecin, LMP-400, LMP-776 (both indenoisoquinoline derivatives), and one natural product in preclinical development, lamellarin-D. Our results demonstrate that Top1 inhibitors have two distinct effects on Top1 activity: a decrease in supercoil relaxation rate and an increase in religation inhibition. The type and magnitude of the inhibition mode depend both on the specific inhibitor and on the topology of the DNA substrate. In general, the efficacy of inhibition is significantly higher with supercoiled than with relaxed DNA substrates. Comparing single-molecule inhibition with cell growth inhibition (IC50) measurements showed a correlation between the binding time of the Top1 inhibitors and their cytotoxic efficacy, independent of the mode of inhibition. This study demonstrates that the single-molecule supercoil relaxation assay is a sensitive method to elucidate the detailed mechanisms of Top1 inhibitors and is relevant for the cellular efficacy of Top1 inhibitors.
Collapse
Affiliation(s)
- Yeonee Seol
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, Maryland
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nicholas Lorence
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
15
|
Lindsey RH, Pendleton M, Ashley RE, Mercer SL, Deweese JE, Osheroff N. Catalytic core of human topoisomerase IIα: insights into enzyme-DNA interactions and drug mechanism. Biochemistry 2014; 53:6595-602. [PMID: 25280269 PMCID: PMC4204876 DOI: 10.1021/bi5010816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coordination between the N-terminal gate and the catalytic core of topoisomerase II allows the proper capture, cleavage, and transport of DNA during the catalytic cycle. Because the activities of these domains are tightly linked, it has been difficult to discern their individual contributions to enzyme-DNA interactions and drug mechanism. To further address the roles of these domains, we analyzed the activity of the catalytic core of human topoisomerase IIα. The catalytic core and the wild-type enzyme both maintained higher levels of cleavage with negatively (as compared to positively) supercoiled plasmid, indicating that the ability to distinguish supercoil handedness is embedded within the catalytic core. However, the catalytic core alone displayed little ability to cleave DNA substrates that did not intrinsically provide the enzyme with a transport segment (i.e., substrates that did not contain crossovers). Finally, in contrast to interfacial topoisomerase II poisons, covalent poisons did not enhance DNA cleavage mediated by the catalytic core. This distinction allowed us to further characterize the mechanism of etoposide quinone, a drug metabolite that functions primarily as a covalent poison. Etoposide quinone retained some ability to enhance DNA cleavage mediated by the catalytic core, indicating that it still can function as an interfacial poison. These results further define the distinct contributions of the N-terminal gate and the catalytic core to topoisomerase II function. The catalytic core senses the handedness of DNA supercoils during cleavage, while the N-terminal gate is critical for capturing the transport segment and for the activity of covalent poisons.
Collapse
Affiliation(s)
- R Hunter Lindsey
- Department of Biochemistry, ‡Department of Pharmacology, and §Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | |
Collapse
|
16
|
Zhang H, Zhang YW, Yasukawa T, Dalla Rosa I, Khiati S, Pommier Y. Increased negative supercoiling of mtDNA in TOP1mt knockout mice and presence of topoisomerases IIα and IIβ in vertebrate mitochondria. Nucleic Acids Res 2014; 42:7259-67. [PMID: 24803675 PMCID: PMC4066791 DOI: 10.1093/nar/gku384] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Topoisomerases are critical for replication, DNA packing and repair, as well as for transcription by allowing changes in DNA topology. Cellular DNA is present both in nuclei and mitochondria, and mitochondrial topoisomerase I (Top1mt) is the only DNA topoisomerase specific for mitochondria in vertebrates. Here, we report in detail the generation of TOP1mt knockout mice, and demonstrate that mitochondrial DNA (mtDNA) displays increased negative supercoiling in TOP1mt knockout cells and murine tissues. This finding suggested imbalanced topoisomerase activity in the absence of Top1mt and the activity of other topoisomerases in mitochondria. Accordingly, we found that both Top2α and Top2β are present and active in mouse and human mitochondria. The presence of Top2α-DNA complexes in the mtDNA D-loop region, at the sites where both ends of 7S DNA are positioned, suggests a structural role for Top2 in addition to its classical topoisomerase activities.
Collapse
Affiliation(s)
- Hongliang Zhang
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Yong-Wei Zhang
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Takehiro Yasukawa
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Ilaria Dalla Rosa
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Salim Khiati
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| |
Collapse
|
17
|
Godbole AA, Ahmed W, Bhat RS, Bradley EK, Ekins S, Nagaraja V. Inhibition of Mycobacterium tuberculosis topoisomerase I by m-AMSA, a eukaryotic type II topoisomerase poison. Biochem Biophys Res Commun 2014; 446:916-20. [PMID: 24642256 DOI: 10.1016/j.bbrc.2014.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/09/2014] [Indexed: 11/26/2022]
Abstract
m-AMSA, an established inhibitor of eukaryotic type II topoisomerases, exerts its cidal effect by binding to the enzyme-DNA complex thus inhibiting the DNA religation step. The molecule and its analogues have been successfully used as chemotherapeutic agents against different forms of cancer. After virtual screening using a homology model of the Mycobacterium tuberculosis topoisomerase I, we identified m-AMSA as a high scoring hit. We demonstrate that m-AMSA can inhibit the DNA relaxation activity of topoisomerase I from M. tuberculosis and Mycobacterium smegmatis. In a whole cell assay, m-AMSA inhibited the growth of both the mycobacteria.
Collapse
Affiliation(s)
- Adwait Anand Godbole
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Wareed Ahmed
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Rajeshwari Subray Bhat
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94403, USA
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
| |
Collapse
|
18
|
Ketron AC, Denny WA, Graves DE, Osheroff N. Amsacrine as a topoisomerase II poison: importance of drug-DNA interactions. Biochemistry 2012; 51:1730-9. [PMID: 22304499 DOI: 10.1021/bi201159b] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amsacrine (m-AMSA) is an anticancer agent that displays activity against refractory acute leukemias as well as Hodgkin's and non-Hodgkin's lymphomas. The drug is comprised of an intercalative acridine moiety coupled to a 4'-amino-methanesulfon-m-anisidide headgroup. m-AMSA is historically significant in that it was the first drug demonstrated to function as a topoisomerase II poison. Although m-AMSA was designed as a DNA binding agent, the ability to intercalate does not appear to be the sole determinant of drug activity. Therefore, to more fully analyze structure-function relationships and the role of DNA binding in the action of m-AMSA, we analyzed a series of derivatives for the ability to enhance DNA cleavage mediated by human topoisomerase IIα and topoisomerase IIβ and to intercalate DNA. Results indicate that the 3'-methoxy (m-AMSA) positively affects drug function, potentially by restricting the rotation of the headgroup in a favorable orientation. Shifting the methoxy to the 2'-position (o-AMSA), which abrogates drug function, appears to increase the degree of rotational freedom of the headgroup and may impair interactions of the 1'-substituent or other portions of the headgroup within the ternary complex. Finally, the nonintercalative m-AMSA headgroup enhanced enzyme-mediated DNA cleavage when it was detached from the acridine moiety, albeit with 100-fold lower affinity. Taken together, our results suggest that much of the activity and specificity of m-AMSA as a topoisomerase II poison is embodied in the headgroup, while DNA intercalation is used primarily to increase the affinity of m-AMSA for the topoisomerase II-DNA cleavage complex.
Collapse
Affiliation(s)
- Adam C Ketron
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | | | | | | |
Collapse
|
19
|
Zali H, Zamanian-Azodi M, Shokrgozar MA, Rezaei-Tavirani M. Cytotoxic effects of human calprotectin on gastric cancer cell line is attenuated by etoposide. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2012; 5:132-8. [PMID: 24834214 PMCID: PMC4017472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/09/2012] [Indexed: 12/02/2022]
Abstract
AIM In this paper effect of combinational usage of calprotectin and etoposide on AGS cell line is studied. BACKGROUND Application of combined toxic agents such as etoposide and cicplatin are commonly used for chemotherapy purposes. As a matter of fact, calprotectin and etoposide were both applied on human gastric adenocarcinoma cell line (AGS) as antitumor agents. Both calprotectin and etoposide are topo II inhibitor. Etoposide is a lipophilic agent that can easily transport from membrane while calprotectin active intracellular pathway, probably by membrane surface receptor. PATIENTS AND METHODS Calprotectin was purified from human neutrophil by chromatography methods. The human gastric adenocarcinoma cell line was exposed to different concentrations and combinations of calprotectin and etoposide. MTT assay was applied for evaluation of cytotoxicity assay. RESULTS Viability of AGS cell line was reduced in high dosages of calprotectin and etposide. In fact, overnight incubation of these two agents together has been shown less effective than individual usage. CONCLUSION The result indicates that, the combination of both calprotectin and etoposide is considerably less cytotoxic on gastric cancer cells (AGS) than applying individually.
Collapse
Affiliation(s)
- Hakimeh Zali
- Students’ Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian-Azodi
- Students’ Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Gentry AC, Pitts SL, Jablonsky MJ, Bailly C, Graves DE, Osheroff N. Interactions between the etoposide derivative F14512 and human type II topoisomerases: implications for the C4 spermine moiety in promoting enzyme-mediated DNA cleavage. Biochemistry 2011; 50:3240-9. [PMID: 21413765 DOI: 10.1021/bi200094z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
F14512 is a novel etoposide derivative that contains a spermine in place of the C4 glycosidic moiety. The drug was designed to exploit the polyamine transport system that is upregulated in some cancers. However, a preliminary study suggests that it is also a more efficacious topoisomerase II poison than etoposide [Barret et al. (2008) Cancer Res. 68, 9845-9853]. Therefore, we undertook a more complete study of the actions of F14512 against human type II topoisomerases. As determined by saturation transfer difference (1)H NMR spectroscopy, contacts between F14512 and human topoisomerase IIα in the binary enzyme-drug complex are similar to those of etoposide. Although the spermine of F14512 does not interact with the enzyme, it converts the drug to a DNA binder [Barret et al. (2008)]. Consequently, the influence of the C4 spermine on drug activity was assessed. F14512 is a highly active topoisomerase II poison and stimulates DNA cleavage mediated by human topoisomerase IIα or topoisomerase IIβ. The drug is more potent and efficacious than etoposide or TOP-53, an etoposide derivative that contains a C4 aminoalkyl group that strengthens drug-enzyme binding. Unlike the other drugs, F14512 maintains robust activity in the absence of ATP. The enhanced activity of F14512 correlates with a tighter binding and an increased stability of the ternary topoisomerase II-drug-DNA complex. The spermine-drug core linkage is critical for these attributes. These findings demonstrate the utility of a C4 DNA binding group and provide a rational basis for the development of novel and more active etoposide-based topoisomerase II poisons.
Collapse
Affiliation(s)
- Amanda C Gentry
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | |
Collapse
|
21
|
Gentry AC, Juul S, Veigaard C, Knudsen BR, Osheroff N. The geometry of DNA supercoils modulates the DNA cleavage activity of human topoisomerase I. Nucleic Acids Res 2010; 39:1014-22. [PMID: 20855291 PMCID: PMC3035449 DOI: 10.1093/nar/gkq822] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human topoisomerase I plays an important role in removing positive DNA supercoils that accumulate ahead of replication forks. It also is the target for camptothecin-based anticancer drugs that act by increasing levels of topoisomerase I-mediated DNA scission. Evidence suggests that cleavage events most likely to generate permanent genomic damage are those that occur ahead of DNA tracking systems. Therefore, it is important to characterize the ability of topoisomerase I to cleave positively supercoiled DNA. Results confirm that the human enzyme maintains higher levels of cleavage with positively as opposed to negatively supercoiled substrates in the absence or presence of anticancer drugs. Enhanced drug efficacy on positively supercoiled DNA is due primarily to an increase in baseline levels of cleavage. Sites of topoisomerase I-mediated DNA cleavage do not appear to be affected by supercoil geometry. However, rates of ligation are slower with positively supercoiled substrates. Finally, intercalators enhance topoisomerase I-mediated cleavage of negatively supercoiled substrates but not positively supercoiled or linear DNA. We suggest that these compounds act by altering the perceived topological state of the double helix, making underwound DNA appear to be overwound to the enzyme, and propose that these compounds be referred to as ‘topological poisons of topoisomerase I’.
Collapse
Affiliation(s)
- Amanda C Gentry
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
The observation made twenty years ago that type IB topoisomerases bound DNA helix-helix juxtapositions was unexpected, given the controlled helical rotation mechanism of the enzyme. In this issue, Patel et al. (2010) provide an elegant structural explanation for this interaction.
Collapse
Affiliation(s)
- Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Verna and Marrs McClean, Department of Biochemistry and Molecular Biology, Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030-3411, USA
| | - Neil Osheroff
- Departments of Biochemistry and Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| |
Collapse
|
23
|
Hawtin RE, Stockett DE, Byl JAW, McDowell RS, Nguyen T, Arkin MR, Conroy A, Yang W, Osheroff N, Fox JA. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS One 2010; 5:e10186. [PMID: 20419121 PMCID: PMC2855444 DOI: 10.1371/journal.pone.0010186] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 03/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Topoisomerase II is critical for DNA replication, transcription and chromosome segregation and is a well validated target of anti-neoplastic drugs including the anthracyclines and epipodophyllotoxins. However, these drugs are limited by common tumor resistance mechanisms and side-effect profiles. Novel topoisomerase II-targeting agents may benefit patients who prove resistant to currently available topoisomerase II-targeting drugs or encounter unacceptable toxicities. Voreloxin is an anticancer quinolone derivative, a chemical scaffold not used previously for cancer treatment. Voreloxin is completing Phase 2 clinical trials in acute myeloid leukemia and platinum-resistant ovarian cancer. This study defined voreloxin's anticancer mechanism of action as a critical component of rational clinical development informed by translational research. METHODS/PRINCIPAL FINDINGS Biochemical and cell-based studies established that voreloxin intercalates DNA and poisons topoisomerase II, causing DNA double-strand breaks, G2 arrest, and apoptosis. Voreloxin is differentiated both structurally and mechanistically from other topoisomerase II poisons currently in use as chemotherapeutics. In cell-based studies, voreloxin poisoned topoisomerase II and caused dose-dependent, site-selective DNA fragmentation analogous to that of quinolone antibacterials in prokaryotes; in contrast etoposide, the nonintercalating epipodophyllotoxin topoisomerase II poison, caused extensive DNA fragmentation. Etoposide's activity was highly dependent on topoisomerase II while voreloxin and the intercalating anthracycline topoisomerase II poison, doxorubicin, had comparable dependence on this enzyme for inducing G2 arrest. Mechanistic interrogation with voreloxin analogs revealed that intercalation is required for voreloxin's activity; a nonintercalating analog did not inhibit proliferation or induce G2 arrest, while an analog with enhanced intercalation was 9.5-fold more potent. CONCLUSIONS/SIGNIFICANCE As a first-in-class anticancer quinolone derivative, voreloxin is a toposiomerase II-targeting agent with a unique mechanistic signature. A detailed understanding of voreloxin's molecular mechanism, in combination with its evolving clinical profile, may advance our understanding of structure-activity relationships to develop safer and more effective topoisomerase II-targeted therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Rachael E Hawtin
- Sunesis Pharmaceuticals, Inc., South San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
25
|
Abstract
Topoisomerase II is an essential enzyme that is required for a number of critical nuclear processes. All of the catalytic functions of topoisomerase II require the enzyme to generate a transient double-stranded break in the backbone of the double helix. To maintain genomic integrity during the cleavage event, topoisomerase II forms covalent bonds between active site tyrosyl residues and the newly generated 5'-DNA termini. In addition to the critical cellular functions of the type II enzyme, several important anticancer drugs kill cells by increasing levels of covalent topoisomerase II-DNA cleavage complexes. Due to the physiological importance of topoisomerase II and its role in cancer chemotherapy, several methods have been developed to monitor the in vitro DNA cleavage activity of the type II enzyme. The plasmid-based system described in this chapter quantifies enzyme-mediated double-stranded DNA cleavage by monitoring the conversion of covalently closed supercoiled DNA to linear molecules. The assay is simple, straightforward, and does not require the use of radiolabeled substrates.
Collapse
Affiliation(s)
- Omari J Bandele
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
26
|
McClendon AK, Gentry AC, Dickey JS, Brinch M, Bendsen S, Andersen AH, Osheroff N. Bimodal recognition of DNA geometry by human topoisomerase II alpha: preferential relaxation of positively supercoiled DNA requires elements in the C-terminal domain. Biochemistry 2008; 47:13169-78. [PMID: 19053267 PMCID: PMC2629653 DOI: 10.1021/bi800453h] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human topoisomerase IIalpha, but not topoisomerase IIbeta, can sense the geometry of DNA during relaxation and removes positive supercoils >10-fold faster than it does negative superhelical twists. In contrast, both isoforms maintain lower levels of DNA cleavage intermediates with positively supercoiled substrates. Since topoisomerase IIalpha and IIbeta differ primarily in their C-terminal domains (CTD), this portion of the protein may play a role in sensing DNA geometry. Therefore, to more fully assess the importance of the topoisomerase IIalpha CTD in the recognition of DNA topology, hTop2alphaDelta1175, a mutant human enzyme that lacks its CTD, was examined. The mutant enzyme relaxed negative and positive supercoils at similar rates but still maintained lower levels of cleavage complexes with positively supercoiled DNA. Furthermore, when the CTD of topoisomerase IIbeta was replaced with that of the alpha isoform, the resulting enzyme preferentially relaxed positively supercoiled substrates. In contrast, a chimeric topoisomerase IIalpha that carried the CTD of the beta isoform lost its ability to recognize the geometry of DNA supercoils during relaxation. These findings demonstrate that human topoisomerase IIalpha recognizes DNA geometry in a bimodal fashion, with the ability to preferentially relax positive DNA supercoils residing in the CTD. Finally, results with a series of human topoisomerase IIalpha mutants suggest that clusters of positively charged amino acid residues in the CTD are required for the enzyme to distinguish supercoil geometry during DNA relaxation and that deletion of even the most C-terminal cluster abrogates this recognition.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Binding Sites/genetics
- DNA Cleavage
- DNA Topoisomerases, Type II/chemistry
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Humans
- Molecular Sequence Data
- Protein Structure, Tertiary/genetics
- Sequence Deletion
- Topoisomerase II Inhibitors
Collapse
Affiliation(s)
- A Kathleen McClendon
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
DNA topoisomerases are a diverse set of essential enzymes responsible for maintaining chromosomes in an appropriate topological state. Although they vary considerably in structure and mechanism, the partnership between topoisomerases and DNA has engendered commonalities in how these enzymes engage nucleic acid substrates and control DNA strand manipulations. All topoisomerases can harness the free energy stored in supercoiled DNA to drive their reactions; some further use the energy of ATP to alter the topology of DNA away from an enzyme-free equilibrium ground state. In the cell, topoisomerases regulate DNA supercoiling and unlink tangled nucleic acid strands to actively maintain chromosomes in a topological state commensurate with particular replicative and transcriptional needs. To carry out these reactions, topoisomerases rely on dynamic macromolecular contacts that alternate between associated and dissociated states throughout the catalytic cycle. In this review, we describe how structural and biochemical studies have furthered our understanding of DNA topoisomerases, with an emphasis on how these complex molecular machines use interfacial interactions to harness and constrain the energy required to manage DNA topology.
Collapse
|
28
|
Dexheimer TS, Antony S, Marchand C, Pommier Y. Tyrosyl-DNA phosphodiesterase as a target for anticancer therapy. Anticancer Agents Med Chem 2008; 8:381-9. [PMID: 18473723 DOI: 10.2174/187152008784220357] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a recently discovered enzyme that catalyzes the hydrolysis of 3'-phosphotyrosyl bonds. Such linkages form in vivo following the DNA processing activity of topoisomerase I (Top1). For this reason, Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes, which can be generated by either exogenous or endogenous factors. Tdp1 has been regarded as a potential therapeutic co-target of Top1 in that it seemingly counteracts the effects of Top1 inhibitors, such as camptothecin and its clinically used derivatives. Thus, by reducing the repair of Top1-DNA lesions, Tdp1 inhibitors have the potential to augment the anticancer activity of Top1 inhibitors provided there is a presence of genetic abnormalities related to DNA checkpoint and repair pathways. Human Tdp1 can also hydrolyze other 3'-end DNA alterations including 3'-phosphoglycolates and 3'-abasic sites indicating it may function as a general 3'-DNA phosphodiesterase and repair enzyme. The importance of Tdp1 in humans is highlighted by the observation that a recessive mutation in the human TDP1 gene is responsible for the inherited disorder, spinocerebellar ataxia with axonal neuropathy (SCAN1). This review provides a summary of the biochemical and cellular processes performed by Tdp1 as well as the rationale behind the development of Tdp1 inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | | | | | | |
Collapse
|
29
|
Sordet O, Larochelle S, Nicolas E, Stevens EV, Zhang C, Shokat KM, Fisher RP, Pommier Y. Hyperphosphorylation of RNA polymerase II in response to topoisomerase I cleavage complexes and its association with transcription- and BRCA1-dependent degradation of topoisomerase I. J Mol Biol 2008; 381:540-9. [PMID: 18588899 DOI: 10.1016/j.jmb.2008.06.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/05/2008] [Accepted: 06/11/2008] [Indexed: 02/06/2023]
Abstract
The progression of RNA polymerase II can be blocked by lesions on the DNA template. In this study, we focused on the modifications of the largest subunit of RNA polymerase II, Rpb1, in response to stabilized topoisomerase I (Top1)-DNA cleavage complexes. In addition to DNA modifications (base damages and strand breaks), Top1 cleavage complexes can be trapped by camptothecin (CPT) and its derivatives used in cancer treatment. We found that, within a few minutes, CPT produces the complete hyperphosphorylation of Rpb1 in both primary and transformed cancer cells. Hyperphosphorylation is rapidly reversible following CPT removal. Hyperphosphorylation occurs selectively on the serine 5 residue of the conserved heptapeptide repeats in the Rpb1 carboxy-terminal domain and is mediated principally by the transcription factor IIH-associated cyclin-dependent kinase Cdk7. Hyperphosphorylated Rpb1 is not primarily targeted for proteosomal degradation and instead is subjected to cycles of phosphorylation and dephosphorylation as long as Top1 cleavage complexes are trapped by CPT. Finally, we show that transcription-induced degradation of Top1 is Brca1 dependent, suggesting a role for Brca1 in the repair or removal of transcription-blocking Top1-DNA cleavage complexes.
Collapse
Affiliation(s)
- Olivier Sordet
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The inhibition of DNA topoisomerase I (Top1) has proven to be a successful approach in the design of anticancer agents. However, despite the clinical successes of the camptothecin derivatives, a significant need for less toxic and more chemically stable Top1 inhibitors still persists. Here, we describe one of the most frequently used protocols to identify novel Top1 inhibitors. These methods use uniquely 3'-radiolabeled DNA substrates and denaturing polyacrylamide gel electrophoresis to provide evidence for the Top1-mediated DNA cleaving activity of potential Top1 inhibitors. These assays allow comparison of the effectiveness of different drugs in stabilizing the Top1-DNA intermediate or cleavage (cleavable) complex. A variation on these assays is also presented, which provides a suitable system for determining whether the inhibitor blocks the forward cleavage or religation reactions by measuring the reversibility of the drug-induced Top1-DNA cleavage complexes. This entire protocol can be completed in approximately 2 d.
Collapse
Affiliation(s)
- Thomas S Dexheimer
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
31
|
Frøhlich RF, Veigaard C, Andersen FF, McClendon AK, Gentry AC, Andersen AH, Osheroff N, Stevnsner T, Knudsen BR. Tryptophane-205 of human topoisomerase I is essential for camptothecin inhibition of negative but not positive supercoil removal. Nucleic Acids Res 2007; 35:6170-80. [PMID: 17827209 PMCID: PMC2094083 DOI: 10.1093/nar/gkm669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive supercoils are introduced in cellular DNA in front of and negative supercoils behind tracking polymerases. Since DNA purified from cells is normally under-wound, most studies addressing the relaxation activity of topoisomerase I have utilized negatively supercoiled plasmids. The present report compares the relaxation activity of human topoisomerase I variants on plasmids containing equal numbers of superhelical twists with opposite handedness. We demonstrate that the wild-type enzyme and mutants lacking amino acids 1–206 or 191–206, or having tryptophane-205 replaced with a glycine relax positive supercoils faster than negative supercoils under both processive and distributive conditions. In contrast to wild-type topoisomerase I, which exhibited camptothecin sensitivity during relaxation of both negative and positive supercoils, the investigated N-terminally mutated variants were sensitive to camptothecin only during removal of positive supercoils. These data suggest different mechanisms of action during removal of supercoils of opposite handedness and are consistent with a recently published simulation study [Sari and Andricioaei (2005) Nucleic Acids Res., 33, 6621–6634] suggesting flexibility in distinct parts of the enzyme during clockwise or counterclockwise strand rotation.
Collapse
Affiliation(s)
- Rikke From Frøhlich
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Christopher Veigaard
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Félicie Faucon Andersen
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - A. Kathleen McClendon
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Amanda C. Gentry
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Anni Hangaard Andersen
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Neil Osheroff
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Tinna Stevnsner
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Birgitta Ruth Knudsen
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
- *To whom correspondence should be addressed. +4589422703+4589422612
| |
Collapse
|
32
|
McClendon AK, Osheroff N. DNA topoisomerase II, genotoxicity, and cancer. Mutat Res 2007; 623:83-97. [PMID: 17681352 PMCID: PMC2679583 DOI: 10.1016/j.mrfmmm.2007.06.009] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 06/06/2007] [Accepted: 06/16/2007] [Indexed: 12/23/2022]
Abstract
Type II topoisomerases are ubiquitous enzymes that play essential roles in a number of fundamental DNA processes. They regulate DNA under- and overwinding, and resolve knots and tangles in the genetic material by passing an intact double helix through a transient double-stranded break that they generate in a separate segment of DNA. Because type II topoisomerases generate DNA strand breaks as a requisite intermediate in their catalytic cycle, they have the potential to fragment the genome every time they function. Thus, while these enzymes are essential to the survival of proliferating cells, they also have significant genotoxic effects. This latter aspect of type II topoisomerase has been exploited for the development of several classes of anticancer drugs that are widely employed for the clinical treatment of human malignancies. However, considerable evidence indicates that these enzymes also trigger specific leukemic chromosomal translocations. In light of the impact, both positive and negative, of type II topoisomerases on human cells, it is important to understand how these enzymes function and how their actions can destabilize the genome. This article discusses both aspects of human type II topoisomerases.
Collapse
Affiliation(s)
- A. Kathleen McClendon
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
- Corresponding author. Tel: +1 615 3224338; fax: +1 615 3431166, E-mail address: (N. Osheroff)
| |
Collapse
|
33
|
René B, Fermandjian S, Mauffret O. Does topoisomerase II specifically recognize and cleave hairpins, cruciforms and crossovers of DNA? Biochimie 2007; 89:508-15. [PMID: 17397986 DOI: 10.1016/j.biochi.2007.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 02/16/2007] [Indexed: 01/05/2023]
Abstract
DNA topoisomerase II is an enzyme that specializes in DNA disentanglement. It catalyzes the interconversion of DNA between different topological states. This event requires the passage of one duplex through another one via a transient double-strand break. Topoisomerase II is able to process any type of DNA, including structures such as DNA juxtapositions (crossovers), DNA hairpins or cruciforms, which are recognized with high specificity. In this review, we focused our attention on topoisomerase II recognizing DNA substrates that possess particular geometries. A strong cleavage site, as we identified in pBR322 DNA in the presence of ellipticine (site 22), appears to be characterized by a cruciform structure formed from two stable hairpins. The same sequence could also constitute a four-way junction structure stabilized by interactions involving ATC sequences. The latter have been shown to be able to promote Holliday junctions. We reviewed the recent literature that deals with the preferential recognition of crossovers by various topoisomerases. The single molecule relaxation experiments have demonstrated the differential abilities of the topoisomerases to recognize crossovers. It appears that enzymes, which distinguish the chirality of the crossovers, possess specialized domains dedicated to this function. We also stress that the formation of crossovers is dependent on the presence of adequate stabilizing sequences. Investigation of the impact of such structures on enzyme activity is important in order to both improve our knowledge of the mechanism of action of the topoisomerase II and to develop new inhibitors of this enzyme.
Collapse
Affiliation(s)
- Brigitte René
- Département de Biologie et Pharmacologie Structurales, UMR 8113 CNRS LBPA (ENS Cachan), Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | | | |
Collapse
|
34
|
Cheng B, Liu IF, Tse-Dinh YC. Compounds with antibacterial activity that enhance DNA cleavage by bacterial DNA topoisomerase I. J Antimicrob Chemother 2007; 59:640-5. [PMID: 17317696 DOI: 10.1093/jac/dkl556] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES DNA topoisomerases utilize a covalent complex formed after DNA cleavage as an intermediate in the interconversion of topological forms via DNA cleavage and religation. Many anticancer and antibacterial therapeutic agents are effective because they stabilize or increase the level of the covalent topoisomerase-DNA complex formed by type IIA or type IB topoisomerases. Our goal is to identify small molecules that can enhance DNA cleavage by type IA DNA topoisomerase. Compounds that act in this mechanism against type IA topoisomerase have not been identified previously and could be leads for development of a new class of antibacterial agents. METHODS High throughput screening was carried out to select small molecules that induce the SOS response of Escherichia coli, overexpressing recombinant Yersinia pestis topoisomerase I. The initial hit compounds were further tested for inhibition of bacterial growth and bacterial topoisomerase I activity. RESULTS Three compounds with antibacterial activity that enhance the cleavage activity of bacterial topoisomerase I were identified. CONCLUSIONS Small molecules that can enhance the DNA cleavage activity of type IA DNA topoisomerase can be identified and may provide leads for development of novel antibacterial compounds.
Collapse
Affiliation(s)
- Bokun Cheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
35
|
McClendon AK, Dickey JS, Osheroff N. Ability of viral topoisomerase II to discern the handedness of supercoiled DNA: bimodal recognition of DNA geometry by type II enzymes. Biochemistry 2006; 45:11674-80. [PMID: 16981727 PMCID: PMC2517260 DOI: 10.1021/bi0520838] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies with human and bacterial topoisomerases suggest that the type II enzyme utilizes two distinct mechanisms to recognize the handedness of DNA supercoils. It has been proposed that the ability of some type II enzymes, such as human topoisomerase IIalpha and Escherichia coli topoisomerase IV, to distinguish supercoil geometry during DNA relaxation is mediated by elements in the variable C-terminal domain of the protein. In contrast, the ability of human topoisomerase IIalpha and topoisomerase IIbeta to discern the handedness of supercoils during DNA cleavage suggests that residues in the conserved N-terminal or central domain of the protein are involved in this process. To test this hypothesis, the ability of Paramecium bursaria chlorella virus-1 (PBCV-1) and chlorella virus Marburg-1 (CVM-1) topoisomerase II to relax and cleave negatively and positively supercoiled plasmids was assessed. These enzymes display a high degree of sequence identity with the N-terminal and central domains of eukaryotic topoisomerase II but naturally lack the C-terminal domain. While PBCV-1 and CVM-1 topoisomerase II relaxed under- and overwound substrates at similar rates, they were able to discern the handedness of supercoils during the cleavage reaction and preferentially cut negatively supercoiled DNA. Preferential cleavage was not due to a change in site specificity, DNA binding, or religation. These findings are consistent with a bimodal recognition of DNA geometry in which topoisomerase II uses elements in the C-terminal domain to sense the handedness of supercoils during DNA relaxation and elements in the conserved N-terminal or central domain during DNA cleavage.
Collapse
Affiliation(s)
| | | | - Neil Osheroff
- To whom correspondence should be addressed. Tel: 615−322−4338. Fax: 615−343−1166. E-mail:
| |
Collapse
|