1
|
Podgorski MN, Harbort JS, Lee JHZ, Nguyen GT, Bruning JB, Donald WA, Bernhardt PV, Harmer JR, Bell SG. An Altered Heme Environment in an Engineered Cytochrome P450 Enzyme Enables the Switch from Monooxygenase to Peroxygenase Activity. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matthew N. Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Joshua S. Harbort
- Center for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joel H. Z. Lee
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Giang T.H. Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John B. Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeffrey R. Harmer
- Center for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
2
|
Röhrig UF, Majjigapu SR, Reynaud A, Pojer F, Dilek N, Reichenbach P, Ascencao K, Irving M, Coukos G, Vogel P, Michielin O, Zoete V. Azole-Based Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. J Med Chem 2021; 64:2205-2227. [PMID: 33557523 DOI: 10.1021/acs.jmedchem.0c01968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The heme enzyme indoleamine 2,3-dioxygenase 1 (IDO1) plays an essential role in immunity, neuronal function, and aging through catalysis of the rate-limiting step in the kynurenine pathway of tryptophan metabolism. Many IDO1 inhibitors with different chemotypes have been developed, mainly targeted for use in anti-cancer immunotherapy. Lead optimization of direct heme iron-binding inhibitors has proven difficult due to the remarkable selectivity and sensitivity of the heme-ligand interactions. Here, we present experimental data for a set of closely related small azole compounds with more than 4 orders of magnitude differences in their inhibitory activities, ranging from millimolar to nanomolar levels. We investigate and rationalize their activities based on structural data, molecular dynamics simulations, and density functional theory calculations. Our results not only expand the presently known four confirmed chemotypes of sub-micromolar heme binding IDO1 inhibitors by two additional scaffolds but also provide a model to predict the activities of novel scaffolds.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nahzli Dilek
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Patrick Reichenbach
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - Kelly Ascencao
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland.,Department of Oncology, Ludwig Cancer Research-Lausanne Branch, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Oncology, Ludwig Cancer Research-Lausanne Branch, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
3
|
Cai X, Son CY, Mao J, Kaur D, Zhang Y, Khaniya U, Cui Q, Gunner MR. Identifying the proton loading site cluster in the ba 3 cytochrome c oxidase that loads and traps protons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148239. [PMID: 32531221 DOI: 10.1016/j.bbabio.2020.148239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Cytochrome c Oxidase (CcO) is the terminal electron acceptor in aerobic respiratory chain, reducing O2 to water. The released free energy is stored by pumping protons through the protein, maintaining the transmembrane electrochemical gradient. Protons are held transiently in a proton loading site (PLS) that binds and releases protons driven by the electron transfer reaction cycle. Multi-Conformation Continuum Electrostatics (MCCE) was applied to crystal structures and Molecular Dynamics snapshots of the B-type Thermus thermophilus CcO. Six residues are identified as the PLS, binding and releasing protons as the charges on heme b and the binuclear center are changed: the heme a3 propionic acids, Asp287, Asp372, His376 and Glu126B. The unloaded state has one proton and the loaded state two protons on these six residues. Different input structures, modifying the PLS conformation, show different proton distributions and result in different proton pumping behaviors. One loaded and one unloaded protonation states have the loaded/unloaded states close in energy so the PLS binds and releases a proton through the reaction cycle. The alternative proton distributions have state energies too far apart to be shifted by the electron transfers so are locked in loaded or unloaded states. Here the protein can use active states to load and unload protons, but has nearby trapped states, which stabilize PLS protonation state, providing new ideas about the CcO proton pumping mechanism. The distance between the PLS residues Asp287 and His376 correlates with the energy difference between loaded and unloaded states.
Collapse
Affiliation(s)
- Xiuhong Cai
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Chang Yun Son
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Junjun Mao
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Divya Kaur
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Chemistry, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Umesh Khaniya
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Qiang Cui
- Department of Chemistry & Department of Biomedical Engineering & Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - M R Gunner
- Department of Physics, City College of New York, 160 Convent Avenue, New York, NY 10031, USA; Department of Physics, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; Department of Chemistry, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
4
|
Zhang Y, Wang J, Yuan C, Liu W, Tan H, Li X, Chen G. Ruffling drives coproheme decarboxylation by facilitating PCET: a theoretical investigation of ChdC. Phys Chem Chem Phys 2020; 22:16117-16124. [DOI: 10.1039/d0cp02690e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coproheme decarboxylase (ChdC) is an essential enzyme in the coproporphyrin-dependent heme synthesis pathway, which catalyzes oxidative decarboxylation of coproheme at the positions p2 and p4 to generate heme b under the action of hydrogen peroxide.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Junkai Wang
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Chang Yuan
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wei Liu
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Hongwei Tan
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Xichen Li
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
5
|
Abstract
Photosystem II (PSII) uses water as the terminal electron donor, producing oxygen in the Mn4CaO5 oxygen evolving complex (OEC), while cytochrome c oxidase (CcO) reduces O2 to water in its heme–Cu binuclear center (BNC). Each protein is oriented in the membrane to add to the proton gradient. The OEC, which releases protons, is located near the P-side (positive, at low-pH) of the membrane. In contrast, the BNC is in the middle of CcO, so the protons needed for O2 reduction must be transferred from the N-side (negative, at high pH). In addition, CcO pumps protons from N- to P-side, coupled to the O2 reduction chemistry, to store additional energy. Thus, proton transfers are directly coupled to the OEC and BNC redox chemistry, as well as needed for CcO proton pumping. The simulations that study the changes in proton affinity of the redox active sites and the surrounding protein at different states of the reaction cycle, as well as the changes in hydration that modulate proton transfer paths, are described.
Collapse
|
6
|
Wu X, Clavaguera C, Lagardère L, Piquemal JP, de la Lande A. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms. J Chem Theory Comput 2018; 14:2705-2720. [PMID: 29630819 DOI: 10.1021/acs.jctc.7b01128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H2O molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins.
Collapse
Affiliation(s)
- Xiaojing Wu
- Laboratoire de Chimie Physique , Université Paris Sud - CNRS, Université Paris Saclay , 15 Avenue Jean Perrin , 91405 Orsay Cedex , France
| | - Carine Clavaguera
- Laboratoire de Chimie Physique , Université Paris Sud - CNRS, Université Paris Saclay , 15 Avenue Jean Perrin , 91405 Orsay Cedex , France
| | - Louis Lagardère
- Sorbonne Université, CNRS , Institut Parisien de Chimie Physique et Théorique (IP2CT) , 4 Place Jussieu , F-75005 , Paris , France.,Sorbonne Université , Institut des Sciences du Calcul et des Données (ISCD) , 4 place Jussieu , F-75005 , Paris , France
| | - Jean-Philip Piquemal
- Sorbonne Université, CNRS , Laboratoire de Chimie Théorique (LCT) , 4 Place Jussieu , F-75005 , Paris , France.,Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.,Institut Universitaire de France , 75005 , Paris , France
| | - Aurélien de la Lande
- Laboratoire de Chimie Physique , Université Paris Sud - CNRS, Université Paris Saclay , 15 Avenue Jean Perrin , 91405 Orsay Cedex , France
| |
Collapse
|
7
|
Abstract
Measurements of voltage changes in response to charge separation within membrane proteins can offer fundamental information on spectroscopically "invisible" steps. For example, results from studies of voltage changes associated with electron and proton transfer in cytochrome c oxidase could, in principle, be used to discriminate between different theoretical models describing the molecular mechanism of proton pumping. Earlier analyses of data from these measurements have been based on macroscopic considerations that may not allow for exploring the actual molecular mechanisms. Here, we have used a coarse-grained model describing the relation between observed voltage changes and specific charge-transfer reactions, which includes an explicit description of the membrane, the electrolytes, and the electrodes. The results from these calculations offer mechanistic insights at the molecular level. Our main conclusion is that previously assumed mechanistic evidence that was based on electrogenic measurements is not unique. However, the ability of our calculations to obtain reliable voltage changes means that we have a tool that can be used to describe a wide range of electrogenic charge transfers in channels and transporters, by combining voltage measurements with other experiments and simulations to analyze new mechanistic proposals.
Collapse
|
8
|
Lichtenstein BR, Bialas C, Cerda JF, Fry BA, Dutton PL, Moser CC. Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Lichtenstein BR, Bialas C, Cerda JF, Fry BA, Dutton PL, Moser CC. Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid. Angew Chem Int Ed Engl 2015; 54:13626-9. [PMID: 26366882 DOI: 10.1002/anie.201507094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 11/09/2022]
Abstract
The first principles design of manmade redox-protein maquettes is used to clarify the physical/chemical engineering supporting the mechanisms of natural enzymes with a view to recapitulate and surpass natural performance. Herein, we use intein-based protein semisynthesis to pair a synthetic naphthoquinone amino acid (Naq) with histidine-ligated photoactive metal-tetrapyrrole cofactors, creating a 100 μs photochemical charge separation unit akin to photosynthetic reaction centers. By using propargyl groups to protect the redox-active para-quinone during synthesis and assembly while permitting selective activation, we gain the ability to employ the quinone amino acid redox cofactor with the full set of natural amino acids in protein design. Direct anchoring of quinone to the protein backbone permits secure and adaptable control of intraprotein electron-tunneling distances and rates.
Collapse
Affiliation(s)
- Bruce R Lichtenstein
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059 (USA).,Present address: Max Planck Institute for Developmental Biology, Tübingen, 72076 (Germany)
| | - Chris Bialas
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059 (USA)
| | - José F Cerda
- Department of Chemistry, St. Joseph's University, Philadelphia, PA 19131 (USA)
| | - Bryan A Fry
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059 (USA)
| | - P Leslie Dutton
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059 (USA)
| | - Christopher C Moser
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059 (USA).
| |
Collapse
|
10
|
Boaz NC, Bell SR, Groves JT. Ferryl protonation in oxoiron(IV) porphyrins and its role in oxygen transfer. J Am Chem Soc 2015; 137:2875-85. [PMID: 25651467 PMCID: PMC4363944 DOI: 10.1021/ja508759t] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ferryl porphyrins, P-Fe(IV)═O, are central reactive intermediates in the catalytic cycles of numerous heme proteins and a variety of model systems. There has been considerable interest in elucidating factors, such as terminal oxo basicity, that may control ferryl reactivity. Here, the sulfonated, water-soluble ferryl porphyrin complexes tetramesitylporphyrin, oxoFe(IV)TMPS (FeTMPS-II), its 2,6-dichlorophenyl analogue, oxoFe(IV)TDClPS (FeTDClPS-II), and two other analogues are shown to be protonated under turnover conditions to produce the corresponding bis-aqua-iron(III) porphyrin cation radicals. The results reveal a novel internal electromeric equilibrium, P-Fe(IV)═O ⇆ P(+)-Fe(III)(OH2)2. Reversible pKa values in the range of 4-6.3 have been measured for this process by pH-jump, UV-vis spectroscopy. Ferryl protonation has important ramifications for C-H bond cleavage reactions mediated by oxoiron(IV) porphyrin cation radicals in protic media. Both solvent O-H and substrate C-H deuterium kinetic isotope effects are observed for these reactions, indicating that hydrocarbon oxidation by these oxoiron(IV) porphyrin cation radicals occurs via a solvent proton-coupled hydrogen atom transfer from the substrate that has not been previously described. The effective FeO-H bond dissociation energies for FeTMPS-II and FeTDClPS-II were estimated from similar kinetic reactivities of the corresponding oxoFe(IV)TMPS(+) and oxoFe(IV)TDClPS(+) species to be ∼92-94 kcal/mol. Similar values were calculated from the two-proton P(+)-Fe(III)(OH2)2 pKa(obs) and the porphyrin oxidation potentials, despite a 230 mV range for the iron porphyrins examined. Thus, the iron porphyrin with the lower ring oxidation potential has a compensating higher basicity of the ferryl oxygen. The solvent-derived proton adds significantly to the driving force for C-H bond scission.
Collapse
Affiliation(s)
- Nicholas C. Boaz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Seth R. Bell
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
12
|
|
13
|
Popović DM, Stuchebrukhov AA. Coupled electron and proton transfer reactions during the O→E transition in bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:506-17. [PMID: 22086149 DOI: 10.1016/j.bbabio.2011.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/27/2011] [Accepted: 10/29/2011] [Indexed: 11/30/2022]
Abstract
A combined DFT/electrostatic approach is employed to study the coupling of proton and electron transfer reactions in cytochrome c oxidase (CcO) and its proton pumping mechanism. The coupling of the chemical proton to the internal electron transfer within the binuclear center is examined for the O→E transition. The novel features of the His291 pumping model are proposed, which involve timely well-synchronized sequence of the proton-coupled electron transfer reactions. The obtained pK(a)s and E(m)s of the key ionizable and redox-active groups at the different stages of the O→E transition are consistent with available experimental data. The PT step from E242 to H291 is examined in detail for various redox states of the hemes and various conformations of E242 side-chain. Redox potential calculations of the successive steps in the reaction cycle during the O→E transition are able to explain a cascade of equilibria between the different intermediate states and electron redistribution between the metal centers during the course of the catalytic activity. All four electrometric phases are discussed in the light of the obtained results, providing a robust support for the His291 model of proton pumping in CcO.
Collapse
Affiliation(s)
- Dragan M Popović
- Department of Chemistry, University of California, Davis, CA, USA.
| | | |
Collapse
|
14
|
Madeo J, Mihajlovic M, Lazaridis T, Gunner MR. Slow dissociation of a charged ligand: analysis of the primary quinone Q(A) site of photosynthetic bacterial reaction centers. J Am Chem Soc 2011; 133:17375-85. [PMID: 21863833 PMCID: PMC3202297 DOI: 10.1021/ja205811f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Indexed: 12/14/2022]
Abstract
Reaction centers (RCs) are integral membrane proteins that undergo a series of electron transfer reactions during the process of photosynthesis. In the Q(A) site of RCs from Rhodobacter sphaeroides, ubiquinone-10 is reduced, by a single electron transfer, to its semiquinone. The neutral quinone and anionic semiquinone have similar affinities, which is required for correct in situ reaction thermodynamics. A previous study showed that despite similar affinities, anionic quinones associate and dissociate from the Q(A) site at rates ≈10(4) times slower than neutral quinones indicating that anionic quinones encounter larger binding barriers (Madeo, J.; Gunner, M. R. Modeling binding kinetics at the Q(A) site in bacterial reaction centers. Biochemistry 2005, 44, 10994-11004). The present study investigates these barriers computationally, using steered molecular dynamics (SMD) to model the unbinding of neutral ground state ubiquinone (UQ) and its reduced anionic semiquinone (SQ(-)) from the Q(A) site. In agreement with experiment, the SMD unbinding barrier for SQ(-) is larger than for UQ. Multi Conformational Continuum Electrostatics (MCCE), used here to calculate the binding energy, shows that SQ(-) and UQ have comparable affinities. In the Q(A) site, there are stronger binding interactions for SQ(-) compared to UQ, especially electrostatic attraction to a bound non-heme Fe(2+). These interactions compensate for the higher SQ(-) desolvation penalty, allowing both redox states to have similar affinities. These additional interactions also increase the dissociation barrier for SQ(-) relative to UQ. Thus, the slower SQ(-) dissociation rate is a direct physical consequence of the additional binding interactions required to achieve a Q(A) site affinity similar to that of UQ. By a similar mechanism, the slower association rate is caused by stronger interactions between SQ(-) and the polar solvent. Thus, stronger interactions for both the unbound and bound states of charged and highly polar ligands can slow their binding kinetics without a conformational gate. Implications of this for other systems are discussed.
Collapse
Affiliation(s)
- Jennifer Madeo
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - Maja Mihajlovic
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - Themis Lazaridis
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - M. R. Gunner
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| |
Collapse
|
15
|
Chakrabarty S, Namslauer I, Brzezinski P, Warshel A. Exploration of the cytochrome c oxidase pathway puzzle and examination of the origin of elusive mutational effects. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:413-26. [PMID: 21232525 DOI: 10.1016/j.bbabio.2011.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/22/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Gaining detailed understanding of the energetics of the proton-pumping process in cytochrome c oxidase (CcO) is a problem of great current interest. Despite promising mechanistic proposals, so far, a physically consistent model that would reproduce all the relevant barriers needed to create a working pump has not been presented. In addition, there are major problems in elucidating the origin of key mutational effects and in understanding the nature of the apparent pK(a) values associated with the pH dependencies of specific proton transfer (PT) reactions in CcO. This work takes a key step in resolving the above problems, by considering mutations, such as the Asn139Asp replacement, that blocks proton pumping without affecting PT to the catalytic site. We first introduce a formulation that makes it possible to relate the apparent pK(a) of Glu286 to different conformational states of this residue. We then use the new formulation along with the calculated pK(a) values of Glu286 at these different conformations to reproduce the experimentally observed apparent pK(a) of the residue. Next, we take the X-ray structures of the native and Asn139Asp mutant of the Paracoccus denitrificans CcO (N131D in this system) and reproduce for the first time the change in the primary PT pathways (and other key features) based on simulations that start with the observed structural changes. We also consider the competition between proton transport to the catalytic site and the pump site, as a function of the bulk pH, as well as the H/D isotope effect, and use this information to explore the relative height of the two barriers. The paper emphasizes the crucial role of energy-based considerations that include the PT process, and the delicate control of PT in CcO.
Collapse
Affiliation(s)
- Suman Chakrabarty
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Avenue, Los Angeles, CA 90089-1062, USA
| | | | | | | |
Collapse
|
16
|
Kaila VR, Sharma V, Wikström M. The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:80-4. [DOI: 10.1016/j.bbabio.2010.08.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/26/2010] [Accepted: 08/31/2010] [Indexed: 10/19/2022]
|
17
|
Zhang J, Gunner MR. Multiconformation continuum electrostatics analysis of the effects of a buried Asp introduced near heme a in Rhodobacter sphaeroides cytochrome c oxidase. Biochemistry 2010; 49:8043-52. [PMID: 20701325 DOI: 10.1021/bi100663u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c oxidase (CcO) reduces O(2) to water via a series of proton-coupled electron transfers, generating a transmembrane electrochemical gradient. Coupling electron and proton transfer requires changing the pK(a) values of buried residues at each stage in the reaction cycle. Heme a is a key cofactor in the CcO electron transfer chain. Mutation of Ser44 to Asp has been reported [Mills, D. A., et al. (2008) Biochemistry 47, 11499-11509], changing the hydrogen bond acceptor from His102, the heme a axial ligand in Rhodobactor sphaeroides CcO. This adds an acidic residue to the CcO interior. The electrochemical behavior of heme a in wild-type and S44D CcO is compared using the continuum electrostatics program MCCE. The introduced, deeply buried Asp remains ionized at physiological pH only when the nearby heme is oxidized. Heme a reduction is now calculated to be strongly coupled to Asp proton binding, while with Ser44, it is weakly coupled to small protonation shifts at multiple sites, increasing the pH dependence in the mutant. At pH 7, the partially ionized Asp 44 is calculated to lower the heme redox potential by 50 mV as expected given the thermodynamics of coupled electron and proton transfers. This highlights an curious finding in the experimental results where a low Asp pK(a) is found together with a stabilized reduced heme. The stabilization of a heme oxidation in a model complex by a hydrogen bond to the axial His ligand calculated with continuum electrostatics and with density functional theory were in good agreement.
Collapse
Affiliation(s)
- Jun Zhang
- Physics Department, J-419, City College of New York, 160 Convent Avenue, New York, New York 10031, USA
| | | |
Collapse
|
18
|
Song Y, Mao J, Gunner MR. MCCE2: improving protein pKa calculations with extensive side chain rotamer sampling. J Comput Chem 2009; 30:2231-47. [PMID: 19274707 PMCID: PMC2735604 DOI: 10.1002/jcc.21222] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiconformation continuum electrostatics (MCCE) explores different conformational degrees of freedom in Monte Carlo calculations of protein residue and ligand pK(a)s. Explicit changes in side chain conformations throughout a titration create a position dependent, heterogeneous dielectric response giving a more accurate picture of coupled ionization and position changes. The MCCE2 methods for choosing a group of input heavy atom and proton positions are described. The pK(a)s calculated with different isosteric conformers, heavy atom rotamers and proton positions, with different degrees of optimization are tested against a curated group of 305 experimental pK(a)s in 33 proteins. QUICK calculations, with rotation around Asn and Gln termini, sampling His tautomers and torsion minimum hydroxyls yield an RMSD of 1.34 with 84% of the errors being <1.5 pH units. FULL calculations adding heavy atom rotamers and side chain optimization yield an RMSD of 0.90 with 90% of the errors <1.5 pH unit. Good results are also found for pK(a)s in the membrane protein bacteriorhodopsin. The inclusion of extra side chain positions distorts the dielectric boundary and also biases the calculated pK(a)s by creating more neutral than ionized conformers. Methods for correcting these errors are introduced. Calculations are compared with multiple X-ray and NMR derived structures in 36 soluble proteins. Calculations with X-ray structures give significantly better pK(a)s. Results with the default protein dielectric constant of 4 are as good as those using a value of 8. The MCCE2 program can be downloaded from http://www.sci.ccny.cuny.edu/~mcce.
Collapse
Affiliation(s)
- Yifan Song
- Department of Physics, J-419 City College of New York, 138th Street, Convent Avenue, New York, New York 10031, USA
| | | | | |
Collapse
|
19
|
Zheng Z, Gunner MR. Analysis of the electrochemistry of hemes with E(m)s spanning 800 mV. Proteins 2009; 75:719-34. [PMID: 19003997 DOI: 10.1002/prot.22282] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The free energy of heme reduction in different proteins is found to vary over more than 18 kcal/mol. It is a challenge to determine how proteins manage to achieve this enormous range of E(m)s with a single type of redox cofactor. Proteins containing 141 unique hemes of a-, b-, and c-type, with bis-His, His-Met, and aquo-His ligation were calculated using Multi-Conformation Continuum Electrostatics (MCCE). The experimental E(m)s range over 800 mV from -350 mV in cytochrome c(3) to 450 mV in cytochrome c peroxidase (vs. SHE). The quantitative analysis of the factors that modulate heme electrochemistry includes the interactions of the heme with its ligands, the solvent, the protein backbone, and sidechains. MCCE calculated E(m)s are in good agreement with measured values. Using no free parameters the slope of the line comparing calculated and experimental E(m)s is 0.73 (R(2) = 0.90), showing the method accounts for 73% of the observed E(m) range. Adding a +160 mV correction to the His-Met c-type hemes yields a slope of 0.97 (R(2) = 0.93). With the correction 65% of the hemes have an absolute error smaller than 60 mV and 92% are within 120 mV. The overview of heme proteins with known structures and E(m)s shows both the lowest and highest potential hemes are c-type, whereas the b-type hemes are found in the middle E(m) range. In solution, bis-His ligation lowers the E(m) by approximately 205 mV relative to hemes with His-Met ligands. The bis-His, aquo-His, and His-Met ligated b-type hemes all cluster about E(m)s which are approximately 200 mV more positive in protein than in water. In contrast, the low potential bis-His c-type hemes are shifted little from in solution, whereas the high potential His-Met c-type hemes are raised by approximately 300 mV from solution. The analysis shows that no single type of interaction can be identified as the most important in setting heme electrochemistry in proteins. For example, the loss of solvation (reaction field) energy, which raises the E(m), has been suggested to be a major factor in tuning in situ E(m)s. However, the calculated solvation energy vs. experimental E(m) shows a slope of 0.2 and R(2) of 0.5 thus correlates weakly with E(m)s. All other individual interactions show even less correlation with E(m). However the sum of these terms does reproduce the range of observed E(m)s. Therefore, different proteins use different aspects of their structures to modulate the in situ heme electrochemistry. This study also shows that the calculated E(m)s are relatively insensitive to different heme partial charges and to the protein dielectric constant used in the simulation.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Physics, The City College of New York, New York, NY, USA
| | | |
Collapse
|
20
|
Tejero J, Biswas A, Wang ZQ, Page RC, Haque MM, Hemann C, Zweier JL, Misra S, Stuehr DJ. Stabilization and characterization of a heme-oxy reaction intermediate in inducible nitric-oxide synthase. J Biol Chem 2008; 283:33498-507. [PMID: 18815130 PMCID: PMC2586280 DOI: 10.1074/jbc.m806122200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/24/2008] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthases (NOS) are heme-thiolate enzymes that N-hydroxylate L-arginine (L-Arg) to make NO. NOS contain a unique Trp residue whose side chain stacks with the heme and hydrogen bonds with the heme thiolate. To understand its importance we substituted His for Trp188 in the inducible NOS oxygenase domain (iNOSoxy) and characterized enzyme spectral, thermodynamic, structural, kinetic, and catalytic properties. The W188H mutation had relatively small effects on l-Arg binding and on enzyme heme-CO and heme-NO absorbance spectra, but increased the heme midpoint potential by 88 mV relative to wild-type iNOSoxy, indicating it decreased heme-thiolate electronegativity. The protein crystal structure showed that the His188 imidazole still stacked with the heme and was positioned to hydrogen bond with the heme thiolate. Analysis of a single turnover L-Arg hydroxylation reaction revealed that a new heme species formed during the reaction. Its build up coincided kinetically with the disappearance of the enzyme heme-dioxy species and with the formation of a tetrahydrobiopterin (H4B) radical in the enzyme, whereas its subsequent disappearance coincided with the rate of l-Arg hydroxylation and formation of ferric enzyme. We conclude: (i) W188H iNOSoxy stabilizes a heme-oxy species that forms upon reduction of the heme-dioxy species by H4B. (ii) The W188H mutation hinders either the processing or reactivity of the heme-oxy species and makes these steps become rate-limiting for l-Arg hydroxylation. Thus, the conserved Trp residue in NOS may facilitate formation and/or reactivity of the ultimate hydroxylating species by tuning heme-thiolate electronegativity.
Collapse
Affiliation(s)
- Jesús Tejero
- Department of Pathobiology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Electrostatic basis for the unidirectionality of the primary proton transfer in cytochrome c oxidase. Proc Natl Acad Sci U S A 2008; 105:7726-31. [PMID: 18509049 DOI: 10.1073/pnas.0800580105] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gaining detailed understanding of the energetics of the proton-pumping process in cytochrome c oxidase (CcO) is one of the challenges of modern biophysics. Despite promising mechanistic proposals, most works have not related the activation barriers of the different assumed steps to the protein structure, and there has not been a physically consistent model that reproduced the barriers needed to create a working pump. This work reevaluates the activation barriers for the primary proton transfer (PT) steps by calculations that reflect all relevant free energy contributions, including the electrostatic energies of the generated charges, the energies of water insertion, and large structural rearrangements of the donor and acceptor. The calculations have reproduced barriers that account for the directionality and sequence of events in the primary PT in CcO. It has also been found that the PT from Glu-286 (E) to the propionate of heme a(3) (Prd) provides a gate for an initial back leakage from the high pH side of the membrane. Interestingly, the rotation of E that brings it closer to Prd appears to provide a way for blocking competing pathways in the primary PT. Our study elucidates and quantifies the nature of the control of the directionality in the primary PT in CcO and provides instructive insight into the role of the water molecules in biological PT, showing that "bridges" of several water molecules in hydrophobic regions present a problem (rather than a solution) that is minimized in the primary PT.
Collapse
|
22
|
Side-chain protonation and mobility in the sarcoplasmic reticulum Ca2+-ATPase: implications for proton countertransport and Ca2+ release. Biophys J 2007; 93:3259-70. [PMID: 17938423 DOI: 10.1529/biophysj.107.109363] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protonation of acidic residues in the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA 1a) was studied by multiconformation continuum electrostatic calculations in the Ca(2+)-bound state Ca(2)E1, in the Ca(2+)-free state E2(TG) with bound thapsigargin, and in the E2P (ADP-insensitive phosphoenzyme) analog state with MgF(4)(2-) E2(TG+MgF(4)(2-)). Around physiological pH, all acidic Ca(2+) ligands (Glu(309), Glu(771), Asp(800), and Glu(908)) were unprotonated in Ca(2)E1; in E2(TG) and E2(TG+MgF(4)(2-)) Glu(771), Asp(800), and Glu(908) were protonated. Glu(771) and Glu(908) had calculated pK(a) values larger than 14 in E2(TG) and E2(TG+MgF(4)(2-)), whereas Asp(800) titrated with calculated pK(a) values near 7.5. Glu(309) had very different pK(a) values in the Ca(2+)-free states: 8.4 in E2(TG+MgF(4)(2-)) and 4.7 in E2(TG) because of a different local backbone conformation. This indicates that Glu(309) can switch between a high and a low pK(a) mode, depending on the local backbone conformation. Protonated Glu(309) occupied predominantly two main, very differently orientated side-chain conformations in E2(TG+MgF(4)(2-)): one oriented inward toward the other Ca(2+) ligands and one oriented outward toward a protein channel that seems to be in contact with the cytoplasm. Upon deprotonation, Glu(309) adopted completely the outwardly orientated side-chain conformation. The contact of Glu(309) with the cytoplasm in E2(TG+MgF(4)(2-)) makes this residue unlikely to bind lumenal protons. Instead it might serve as a proton shuttle between Ca(2+)-binding site I and the cytoplasm. Glu(771), Asp(800), and Glu(908) are proposed to take part in proton countertransport.
Collapse
|
23
|
Andersson J, Hauser K, Karjalainen EL, Barth A. Protonation and hydrogen bonding of Ca2+ site residues in the E2P phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase studied by a combination of infrared spectroscopy and electrostatic calculations. Biophys J 2007; 94:600-11. [PMID: 17890386 PMCID: PMC2157260 DOI: 10.1529/biophysj.107.114033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protonation of the Ca(2+) ligands of the SR Ca(2+)-ATPase (SERCA1a) was studied by a combination of rapid scan FTIR spectroscopy and electrostatic calculations. With FTIR spectroscopy, we investigated the pH dependence of C=O bands of the Ca(2+)-free phosphoenzyme (E2P) and obtained direct experimental evidence for the protonation of carboxyl groups upon Ca(2+) release. At least three of the infrared signals from protonated carboxyl groups of E2P are pH dependent with pK(a) values near 8.3: a band at 1758 cm(-1) characteristic of nonhydrogen-bonded carbonyl groups, a shoulder at 1720 cm(-1), and part of a band at 1710 cm(-1), both characteristic of hydrogen-bonded carbonyl groups. The bands are thus assigned to H(+) binding residues, some of which are involved in H(+) countertransport. At pH 9, bands at 1743 and 1710 cm(-1) remain which we do not attribute to Ca(2+)/H(+) exchange. We also obtained evidence for a pH-dependent conformational change in beta-sheet or turn structures of the ATPase. With MCCE on the E2P analog E2(TG+MgF(4)(2-)), we assigned infrared bands to specific residues and analyzed whether or not the carbonyl groups of the acidic Ca(2+) ligands are hydrogen bonded. The carbonyl groups of Glu(771), Asp(800), and Glu(908) were found to be hydrogen bonded and will thus contribute to the lower wave number bands. The carbonyl group of some side-chain conformations of Asp(800) is left without a hydrogen-bonding partner; they will therefore contribute to the higher wave number band.
Collapse
Affiliation(s)
- Julia Andersson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
24
|
Stojanović SD, Medaković VB, Predović G, Beljanski M, Zarić SD. XH/pi interactions with the pi system of porphyrin ring in porphyrin-containing proteins. J Biol Inorg Chem 2007; 12:1063-71. [PMID: 17659366 DOI: 10.1007/s00775-007-0276-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 06/28/2007] [Indexed: 11/29/2022]
Abstract
Searching structures of porphyrin-containing proteins from the Protein Data Bank revealed that the pi system of every porphyrin ring is involved in XH/pi interactions, with most of the porphyrins having several interactions. Both five-membered pyrrole rings and six-membered chelate rings are involved in XH/pi interactions; the number of interactions with five-membered rings is larger than the number of interactions with six-membered rings. We found interactions with C-H and N-H groups as hydrogen-atom donors; however, the number of CH/pi interactions is much larger than the number of NH/pi interactions. The amino acids involved in the interactions show a high conservation score. Our results that every porphyrin is involved in XH/pi interactions and that amino acids involved in these interactions are highly conserved demonstrate that XH/pi interactions play an important role in porphyrin-protein stability.
Collapse
Affiliation(s)
- Srdan D Stojanović
- Department of Chemistry, University of Belgrade, Studentski trg 16, 11001 Belgrade, Serbia
| | | | | | | | | |
Collapse
|
25
|
Olsson MHM, Siegbahn PEM, Blomberg MRA, Warshel A. Exploring pathways and barriers for coupled ET/PT in cytochrome c oxidase: a general framework for examining energetics and mechanistic alternatives. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1767:244-60. [PMID: 17350588 PMCID: PMC2025695 DOI: 10.1016/j.bbabio.2007.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 01/19/2007] [Accepted: 01/24/2007] [Indexed: 11/28/2022]
Abstract
Gaining a detailed understanding of the energetics of the proton pumping process in cytochrome c oxidase (CcO) is one of the challenges of modern biophysics. Although there are several current mechanistic proposals, most of these ideas have not been subjected to consistent structure-function considerations. In particular most works have not related the activation barriers for different mechanistic proposals to the protein structure. The present work describes a general approach for exploring the energetics of different feasible models of the action of CcO, using the observed protein structure, established simulation methods and a modified Marcus' formulation. We start by reviewing our methods for evaluation of the energy diagrams for different proton translocation paths and then present a systematic analysis of various constraints that should be imposed on any energy diagram for the pumping process. After the general analysis we turn to the actual computational study, where we construct energy diagrams for forward and backward paths, using the estimated calculated reduction potentials and pK(a) values of all the relevant sites (including internal water molecules). We then explore the relationship between the calculated energy diagrams and key experimental constraints. This comparison allows us to identify some barriers that are not fully consistent with the overall requirement for an efficient pumping. In particular we identify back leakage channels, which are hard to block without stopping the forward channels. This helps to identify open problems that will require further experimental and theoretical studies. We also consider reasonable adjustments of the calculated barriers that may lead to a working pump. Although the present analysis does not establish a unique and workable model for the mechanism of CcO, it presents what is probably the most consistent current analysis of the barriers for different feasible pathways. Perhaps more importantly, the framework developed here should provide a general way for examining any proposal for the action of CcO as well as for the analysis of further experimental findings about the action of this fascinating system.
Collapse
Affiliation(s)
- Mats H M Olsson
- University of Southern California, 3620 McClintock Avenue, Department of Chemistry, SGM 418, Los Angeles, CA 90089-1062, USA.
| | | | | | | |
Collapse
|
26
|
Song Y, Michonova-Alexova E, Gunner MR. Calculated proton uptake on anaerobic reduction of cytochrome C oxidase: is the reaction electroneutral? Biochemistry 2006; 45:7959-75. [PMID: 16800622 PMCID: PMC2727075 DOI: 10.1021/bi052183d] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase is a transmembrane proton pump that builds an electrochemical gradient using chemical energy from the reduction of O(2). Ionization states of all residues were calculated with Multi-Conformation Continuum Electrostatics (MCCE) in seven anaerobic oxidase redox states ranging from fully oxidized to fully reduced. One long-standing problem is how proton uptake is coupled to the reduction of the active site binuclear center (BNC). The BNC has two cofactors: heme a(3) and Cu(B). If the protein needs to maintain electroneutrality, then 2 protons will be bound when the BNC is reduced by 2 electrons in the reductive half of the reaction cycle. The effective pK(a)s of ionizable residues around the BNC are evaluated in Rhodobacter sphaeroides cytochrome c oxidase. At pH 7, only a hydroxide coordinated to Cu(B) shifts its pK(a) from below 7 to above 7 and so picks up a proton when heme a(3) and Cu(B) are reduced. Glu I-286, Tyr I-288, His I-334, and a second hydroxide on heme a(3) all have pK(a)s above 7 in all redox states, although they have only 1.6-3.5 DeltapK units energy cost for deprotonation. Thus, at equilibrium, they are protonated and cannot serve as proton acceptors. The propionic acids near the BNC are deprotonated with pK(a)s well below 7. They are well stabilized in their anionic state and do not bind a proton upon BNC reduction. This suggests that electroneutrality in the BNC is not maintained during the anaerobic reduction. Proton uptake on reduction of Cu(A), heme a, heme a(3), and Cu(B) shows approximately 2.5 protons bound per 4 electrons, in agreement with prior experiments. One proton is bound by a hydroxyl group in the BNC and the rest to groups far from the BNC. The electrochemical midpoint potential (E(m)) of heme a is calculated in the fully oxidized protein and with 1 or 2 electrons in the BNC. The E(m) of heme a shifts down when the BNC is reduced, which agrees with prior experiments. If the BNC reduction is electroneutral, then the heme a E(m) is independent of the BNC redox state.
Collapse
Affiliation(s)
| | | | - M. R. Gunner
- To whom correspondence should be addressed. Telephone: 212-650-5557. Fax: 212-650-6940. E-mail:
| |
Collapse
|
27
|
Gunner MR, Mao J, Song Y, Kim J. Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:942-68. [PMID: 16905113 PMCID: PMC2760439 DOI: 10.1016/j.bbabio.2006.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 06/07/2006] [Accepted: 06/13/2006] [Indexed: 11/15/2022]
Abstract
A protein structure should provide the information needed to understand its observed properties. Significant progress has been made in developing accurate calculations of acid/base and oxidation/reduction reactions in proteins. Current methods and their strengths and weaknesses are discussed. The distribution and calculated ionization states in a survey of proteins is described, showing that a significant minority of acidic and basic residues are buried in the protein and that most of these remain ionized. The electrochemistry of heme and quinones are considered. Proton transfers in bacteriorhodopsin and coupled electron and proton transfers in photosynthetic reaction centers, 5-coordinate heme binding proteins and cytochrome c oxidase are highlighted as systems where calculations have provided insight into the reaction mechanism.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|