1
|
Billings KR, Faramarzi S, Mertz B. Long-Time Scale Simulations Reveal Key Dynamics That Drive the Onset of the N State in the Proteorhodopsin Photocycle. J Phys Chem B 2024; 128:10427-10433. [PMID: 39387601 PMCID: PMC11514016 DOI: 10.1021/acs.jpcb.4c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Proteorhodopsin (PR) is a microbial proton pump that plays a significant role in phototrophy of bacteria in marine environments. Fundamental understanding of the structure-function relationship that drives proton pumping in PR has largely been elusive due to a lack of high-resolution structures of the photointermediates in the PR photocycle. Extending upon previous work, we used long-time scale molecular dynamics (MD) simulations to characterize the M state of the blue variant of PR, which represents the first proton transfer that takes place in the photocycle. Several notable structural changes occur in the M state that are hallmarks of subsequent steps in the PR photocycle, indicating that although this protein is often compared to the canonical microbial rhodopsins, such as bacteriorhodopsin, PR possesses characteristics that make it distinct among the rapidly increasing and widely variable catalog of microbial rhodopsins.
Collapse
Affiliation(s)
- Kyle R. Billings
- Food
and Drug Administration, Frederick, Maryland 21701, United States
| | - Sadegh Faramarzi
- Food
and Drug Administration, Frederick, Maryland 21701, United States
| | - Blake Mertz
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- Alivexis, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Sirimatayanant S, Andruniów T. Tuning Two-Photon Absorption in Rhodopsin Chromophore via Backbone Modification: The Story Told by CC2 and TD-DFT. J Chem Theory Comput 2024. [PMID: 39269133 PMCID: PMC11428129 DOI: 10.1021/acs.jctc.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
We investigate here a systematic way to tune two-photon transition strengths (δ2PA) and two-photon absorption (2PA) cross sections (σ2PA) of the rhodopsin's chromophore 11-cis-retinal protonated Schiff base (RPSB) via the modulation of the methyl groups pattern along its polyene chain. Our team employed the resolution of identity, coupled cluster approximate second order (RI-CC2) method with Dunning's aug-cc-pVDZ basis set, to determine the structural impact on δ2PA, as well as its correlation to both transition dipole moments and permanent electric dipole moments. Seven structures were probed in vacuo, including five-double-bond-conjugated model of the native chromophore, shortened by the β-ionone ring (RPSB5), and its de/methylated analogues: 9-methyl, 13-methyl, planar and twisted models of 9,10-dimethyl and 9,10,13-trimethyl. Our results demonstrate that the magnitude of δ2PA is dictated by both the position and number of methylated groups attached to its polyene chain as well as the degree of dihedral twist that is introduced due to the de/methylation. In fact, a strong correlation between δ2PA enhancement and the presence of a C13-methyl group in the planar RPSB5 species is found. Trends in δ2PA values follow the trends observed in their corresponding changes in the permanent dipole moment upon the S0-S1 excitation nearly exactly. The assessment of four DFT functionals, i.e., M11, MN15, CAM-B3LYP, and BHandHLYP, previously found most successful in predicting 2PA properties in biological chromophores, points to a long-range-corrected hybrid meta-GGA M11 as the top-performing functional, albeit still delivering underestimated δ2PA and σ2PA values by a factor of 3.3-5.3 with respect to the CC2 results. In the case of global-hybrid meta-NGA (MN15), as well as CAM-B3LYP and BHandHLYP functionals, this factor deteriorates significantly to 6.7-20.9 and is mostly related to significantly lower quality of the ground- and excited-state dipole moments.
Collapse
Affiliation(s)
- Saruti Sirimatayanant
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Tadeusz Andruniów
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław 50-370, Poland
| |
Collapse
|
3
|
Struts AV, Barmasov AV, Fried SDE, Hewage KSK, Perera SMDC, Brown MF. Osmotic stress studies of G-protein-coupled receptor rhodopsin activation. Biophys Chem 2024; 304:107112. [PMID: 37952496 DOI: 10.1016/j.bpc.2023.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 11/14/2023]
Abstract
We summarize and critically review osmotic stress studies of the G-protein-coupled receptor rhodopsin. Although small amounts of structural water are present in these receptors, the effect of bulk water on their function remains uncertain. Studies of the influences of osmotic stress on the GPCR archetype rhodopsin have given insights into the functional role of water in receptor activation. Experimental work has discovered that osmolytes shift the metarhodopsin equilibrium after photoactivation, either to the active or inactive conformations according to their molar mass. At least 80 water molecules are found to enter rhodopsin in the transition to the photoreceptor active state. We infer that this movement of water is both necessary and sufficient for receptor activation. If the water influx is prevented, e.g., by large polymer osmolytes or by dehydration, then the receptor functional transition is back shifted. These findings imply a new paradigm in which rhodopsin becomes solvent swollen in the activation mechanism. Water thus acts as an allosteric modulator of function for rhodopsin-like receptors in lipid membranes.
Collapse
Affiliation(s)
- Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Laboratory of Biomolecular NMR, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | - Alexander V Barmasov
- Department of Biophysics, St.-Petersburg State Pediatric Medical University, 194100 St.-Petersburg, Russia; Department of Physics, St.-Petersburg State University, 199034 St.-Petersburg, Russia
| | - Steven D E Fried
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kushani S K Hewage
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
4
|
Interdisciplinary biophysical studies of membrane proteins bacteriorhodopsin and rhodopsin. Biophys Rev 2023; 15:111-125. [PMID: 36909961 PMCID: PMC9995646 DOI: 10.1007/s12551-022-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/28/2022] [Indexed: 10/10/2022] Open
Abstract
The centenary of the birth of H. Gobind Khorana provides an auspicious opportunity to review the origins and evolution of parallel advances in biophysical methodology and molecular genetics technology used to study membrane proteins. Interdisciplinary work in the Khorana laboratory in the late 1970s and for the next three decades led to productive collaborations and fostered three subsequent scientific generations whose biophysical work on membrane proteins has led to detailed elucidation of the molecular mechanisms of energy transduction by the light-driven proton pump bacteriorhodopsin (bR) and signal transduction by the G protein-coupled receptor (GPCR) rhodopsin. This review will highlight the origins and advances of biophysical studies of membrane proteins made possible by the application of molecular genetics approaches to engineer site-specific alterations of membrane protein structures.
Collapse
|
5
|
Abstract
Although G-protein–coupled receptors (GPCRs) control vast physiological pathways, their activation remains chemically and physically enigmatic. Our osmotic stress studies of the visual receptor rhodopsin have redefined the standard model of GPCR signaling by revealing the essential role of bulk water. We show results consistent with a large number of water molecules flooding the rhodopsin interior during activation to stabilize the effector binding conformation. These results suggest a model of GPCR activation in which the receptor becomes solvent-swollen upon formation of the active state. We thus demonstrate the mechanism whereby water acts as a powerful allosteric modulator of a pharmacologically important membrane protein family. The Rhodopsin family of G-protein–coupled receptors (GPCRs) comprises the targets of nearly a third of all pharmaceuticals. Despite structural water present in GPCR X-ray structures, the physiological relevance of these solvent molecules to rhodopsin signaling remains unknown. Here, we show experimental results consistent with the idea that rhodopsin activation in lipid membranes is coupled to bulk water movements into the protein. To quantify hydration changes, we measured reversible shifting of the metarhodopsin equilibrium due to osmotic stress using an extensive series of polyethylene glycol (PEG) osmolytes. We discovered clear evidence that light activation entails a large influx of bulk water (∼80–100 molecules) into the protein, giving insight into GPCR activation mechanisms. Various size polymer osmolytes directly control rhodopsin activation, in which large solutes are excluded from rhodopsin and dehydrate the protein, favoring the inactive state. In contrast, small osmolytes initially forward shift the activation equilibrium until a quantifiable saturation point is reached, similar to gain-of-function protein mutations. For the limit of increasing osmolyte size, a universal response of rhodopsin to osmotic stress is observed, suggesting it adopts a dynamic, hydrated sponge-like state upon photoactivation. Our results demand a rethinking of the role of water dynamics in modulating various intermediates in the GPCR energy landscape. We propose that besides bound water, an influx of bulk water plays a necessary role in establishing the active GPCR conformation that mediates signaling.
Collapse
|
6
|
Chawla U, Perera SMDC, Fried SDE, Eitel AR, Mertz B, Weerasinghe N, Pitman MC, Struts AV, Brown MF. Activation of the G‐Protein‐Coupled Receptor Rhodopsin by Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Udeep Chawla
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | | | - Steven D. E. Fried
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Anna R. Eitel
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Blake Mertz
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Nipuna Weerasinghe
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Michael C. Pitman
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
| | - Andrey V. Struts
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russia
| | - Michael F. Brown
- Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
- Department of Physics University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
7
|
Chawla U, Perera SMDC, Fried SDE, Eitel AR, Mertz B, Weerasinghe N, Pitman MC, Struts AV, Brown MF. Activation of the G-Protein-Coupled Receptor Rhodopsin by Water. Angew Chem Int Ed Engl 2020; 60:2288-2295. [PMID: 32596956 DOI: 10.1002/anie.202003342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Indexed: 12/31/2022]
Abstract
Visual rhodopsin is an important archetype for G-protein-coupled receptors, which are membrane proteins implicated in cellular signal transduction. Herein, we show experimentally that approximately 80 water molecules flood rhodopsin upon light absorption to form a solvent-swollen active state. An influx of mobile water is necessary for activating the photoreceptor, and this finding is supported by molecular dynamics (MD) simulations. Combined force-based measurements involving osmotic and hydrostatic pressure indicate the expansion occurs by changes in cavity volumes, together with greater hydration in the active metarhodopsin-II state. Moreover, we discovered that binding and release of the C-terminal helix of transducin is coupled to hydration changes as may occur in visual signal amplification. Hydration-dehydration explains signaling by a dynamic allosteric mechanism, in which the soft membrane matter (lipids and water) has a pivotal role in the catalytic G-protein cycle.
Collapse
Affiliation(s)
- Udeep Chawla
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Steven D E Fried
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Anna R Eitel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Blake Mertz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Nipuna Weerasinghe
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael C Pitman
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Andrey V Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.,Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.,Department of Physics, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
8
|
Wingler LM, Lefkowitz RJ. Conformational Basis of G Protein-Coupled Receptor Signaling Versatility. Trends Cell Biol 2020; 30:736-747. [PMID: 32622699 PMCID: PMC7483927 DOI: 10.1016/j.tcb.2020.06.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are privileged structural scaffolds in biology that have the versatility to regulate diverse physiological processes. Interestingly, many GPCR ligands exhibit significant 'bias' - the ability to preferentially activate subsets of the many cellular pathways downstream of these receptors. Recently, complementary information from structural and spectroscopic approaches has made significant inroads into understanding the mechanisms of these biased ligands. The consistently emerging theme is that GPCRs are highly dynamic proteins, and ligands with varying pharmacological properties differentially modulate the equilibrium among multiple conformations. Biased signaling and other recently appreciated complexities of GPCR signaling thus appear to be a natural consequence of the conformational heterogeneity of GPCRs and GPCR-transducer complexes.
Collapse
Affiliation(s)
- Laura M Wingler
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | - Robert J Lefkowitz
- Howard Hughes Medical Institute and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
9
|
The Retinoid and Non-Retinoid Ligands of the Rod Visual G Protein-Coupled Receptor. Int J Mol Sci 2019; 20:ijms20246218. [PMID: 31835521 PMCID: PMC6941084 DOI: 10.3390/ijms20246218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a predominant role in the drug discovery effort. These cell surface receptors are activated by a variety of specific ligands that bind to the orthosteric binding pocket located in the extracellular part of the receptor. In addition, the potential binding sites located on the surface of the receptor enable their allosteric modulation with critical consequences for their function and pharmacology. For decades, drug discovery focused on targeting the GPCR orthosteric binding sites. However, finding that GPCRs can be modulated allosterically opened a new venue for developing novel pharmacological modulators with higher specificity. Alternatively, focus on discovering of non-retinoid small molecules beneficial in retinopathies associated with mutations in rhodopsin is currently a fast-growing pharmacological field. In this review, we summarize the accumulated knowledge on retinoid ligands and non-retinoid modulators of the light-sensing GPCR, rhodopsin and their potential in combating the specific vision-related pathologies. Also, recent findings reporting the potential of biologically active compounds derived from natural products as potent rod opsin modulators with beneficial effects against degenerative diseases related to this receptor are highlighted here.
Collapse
|
10
|
Elgeti M, Kazmin R, Rose AS, Szczepek M, Hildebrand PW, Bartl FJ, Scheerer P, Hofmann KP. The arrestin-1 finger loop interacts with two distinct conformations of active rhodopsin. J Biol Chem 2018; 293:4403-4410. [PMID: 29363577 DOI: 10.1074/jbc.m117.817890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/17/2018] [Indexed: 11/06/2022] Open
Abstract
Signaling of the prototypical G protein-coupled receptor (GPCR) rhodopsin through its cognate G protein transducin (Gt) is quenched when arrestin binds to the activated receptor. Although the overall architecture of the rhodopsin/arrestin complex is known, many questions regarding its specificity remain unresolved. Here, using FTIR difference spectroscopy and a dual pH/peptide titration assay, we show that rhodopsin maintains certain flexibility upon binding the "finger loop" of visual arrestin (prepared as synthetic peptide ArrFL-1). We found that two distinct complexes can be stabilized depending on the protonation state of E3.49 in the conserved (D)ERY motif. Both complexes exhibit different interaction modes and affinities of ArrFL-1 binding. The plasticity of the receptor within the rhodopsin/ArrFL-1 complex stands in contrast to the complex with the C terminus of the Gt α-subunit (GαCT), which stabilizes only one specific substate out of the conformational ensemble. However, Gt α-subunit binding and both ArrFL-1-binding modes involve a direct interaction to conserved R3.50, as determined by site-directed mutagenesis. Our findings highlight the importance of receptor conformational flexibility and cytoplasmic proton uptake for modulation of rhodopsin signaling and thereby extend the picture provided by crystal structures of the rhodopsin/arrestin and rhodopsin/ArrFL-1 complexes. Furthermore, the two binding modes of ArrFL-1 identified here involve motifs of conserved amino acids, which indicates that our results may have elucidated a common modulation mechanism of class A GPCR-G protein/-arrestin signaling.
Collapse
Affiliation(s)
- Matthias Elgeti
- From the Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,
| | - Roman Kazmin
- From the Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alexander S Rose
- From the Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Group ProteInformatics
| | - Michal Szczepek
- From the Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Group Protein X-ray Crystallography and Signal Transduction
| | - Peter W Hildebrand
- From the Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Franz J Bartl
- From the Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Institut für Biologie, Biophysikalische Chemie, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Patrick Scheerer
- From the Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Group Protein X-ray Crystallography and Signal Transduction
| | - Klaus Peter Hofmann
- From the Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
11
|
Coupled HOOP signature correlates with quantum yield of isorhodopsin and analog pigments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1858:118-125. [PMID: 27836700 DOI: 10.1016/j.bbabio.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/29/2016] [Accepted: 11/04/2016] [Indexed: 11/21/2022]
Abstract
With a quantum yield of 0.66±0.03 the photoisomerization efficiency of the visual pigment rhodopsin (11-cis⇒all-trans chromophore) is exceptionally high. This is currently explained by coherent coupling of the excited state electronic wavepacket with local vibrational nuclear modes, facilitating efficient cross-over at a conical intersection onto the photoproduct energy surface. The 9-cis counterpart of rhodopsin, dubbed isorhodopsin, has a much lower quantum yield (0.26±0.03), which, however, can be markedly enhanced by modification of the retinal chromophore (7,8-dihydro and 9-cyclopropyl derivatives). The coherent coupling in the excited state is promoted by torsional skeletal and coupled HOOP vibrational modes, in combination with a twisted conformation around the isomerization region. Since such torsion will strongly enhance the infrared intensity of coupled HOOP modes, we investigated FTIR difference spectra of rhodopsin, isorhodopsin and several analog pigments in the spectral range of isolated and coupled HCCH wags. As a result we propose that the coupled HOOP signature in these retinal pigments correlates with the distribution of torsion over counteracting segments in the retinylidene polyene chain. As such the HOOP signature can act as an indicator for the photoisomerization efficiency, and can explain the higher quantum yield of the 7,8-dihydro and 9-cyclopropyl-isorhodopsin analogs.
Collapse
|
12
|
Schapiro I. The Origin of Bond Selectivity and Excited-State Reactivity in Retinal Analogues. J Phys Chem A 2016; 120:3353-65. [DOI: 10.1021/acs.jpca.6b00701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Igor Schapiro
- Fritz Haber
Center for Molecular
Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
13
|
Feng J, Brown MF, Mertz B. Retinal Flip in Rhodopsin Activation? Biophys J 2016; 108:2767-70. [PMID: 26083914 DOI: 10.1016/j.bpj.2015.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022] Open
Abstract
Rhodopsin is a well-characterized structural model of a G protein-coupled receptor. Photoisomerization of the covalently bound retinal triggers activation. Surprisingly, the x-ray crystal structure of the active Meta-II state has a 180° rotation about the long-axis of the retinal polyene chain. Unbiased microsecond-timescale all-atom molecular dynamics simulations show that the retinal cofactor can flip back to the orientation observed in the inactive state of rhodopsin under conditions favoring the Meta-I state. Our results provide, to our knowledge, the first evidence from molecular dynamics simulations showing how rotation of the retinal ligand within its binding pocket can occur in the activation mechanism of rhodopsin.
Collapse
Affiliation(s)
- Jun Feng
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona
| | - Blake Mertz
- The C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
14
|
Ockenfels A, Schapiro I, Gärtner W. Rhodopsins carrying modified chromophores--the 'making of', structural modelling and their light-induced reactivity. Photochem Photobiol Sci 2016; 15:297-308. [PMID: 26860474 DOI: 10.1039/c5pp00322a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A series of vitamin-A aldehydes (retinals) with modified alkyl group substituents (9-demethyl-, 9-ethyl-, 9-isopropyl-, 10-methyl, 10-methyl-13-demethyl-, and 13-demethyl retinal) was synthesized and their 11-cis isomers were used as chromophores to reconstitute the visual pigment rhodopsin. Structural changes were selectively introduced around the photoisomerizing C11=C12 bond. The effect of these structural changes on rhodopsin formation and bleaching was determined. Global fit of assembly kinetics yielded lifetimes and spectral features of the assembly intermediates. Rhodopsin formation proceeds stepwise with prolonged lifetimes especially for 9-demethyl retinal (longest lifetime τ3 = 7500 s, cf., 3500 s for retinal), and for 10-methyl retinal (τ3 = 7850 s). These slowed-down processes are interpreted as either a loss of fixation (9dm) or an increased steric hindrance (10me) during the conformational adjustment within the protein. Combined quantum mechanics and molecular mechanics (QM/MM) simulations provided structural insight into the retinal analogues-assembled, full-length rhodopsins. Extinction coefficients, quantum yields and kinetics of the bleaching process (μs-to-ms time range) were determined. Global fit analysis yielded lifetimes and spectral features of bleaching intermediates, revealing remarkably altered kinetics: whereas the slowest process of wild-type rhodopsin and of bleached and 11-cis retinal assembled rhodopsin takes place with lifetimes of 7 and 3.8 s, respectively, this process for 10-methyl-13-demethyl retinal was nearly 10 h (34670 s), coming to completion only after ca. 50 h. The structural changes in retinal derivatives clearly identify the precise interactions between chromophore and protein during the light-induced changes that yield the outstanding efficiency of rhodopsin.
Collapse
Affiliation(s)
- Andreas Ockenfels
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany.
| | | | | |
Collapse
|
15
|
Van Eps N, Caro LN, Morizumi T, Ernst OP. Characterizing rhodopsin signaling by EPR spectroscopy: from structure to dynamics. Photochem Photobiol Sci 2015; 14:1586-97. [PMID: 26140679 DOI: 10.1039/c5pp00191a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy, together with spin labeling techniques, has played a major role in the characterization of rhodopsin, the photoreceptor protein and G protein-coupled receptor (GPCR) in rod cells. Two decades ago, these biophysical tools were the first to identify transmembrane helical movements in rhodopsin upon photo-activation, a critical step in the study of GPCR signaling. EPR methods were employed to identify functional loop dynamics within rhodopsin, to measure light-induced millisecond timescale changes in rhodopsin conformation, to characterize the effects of partial agonists on the apoprotein opsin, and to study lipid interactions with rhodopsin. With the emergence of advanced pulsed EPR techniques, the stage was set to determine the amplitude of structural changes in rhodopsin and the dynamics in the rhodopsin signaling complexes. Work in this area has yielded invaluable information about mechanistic properties of GPCRs. Using EPR techniques, receptors are studied in native-like membrane environments and the effects of lipids on conformational equilibria can be explored. This perspective addresses the impact of EPR methods on rhodopsin and GPCR structural biology, highlighting historical discoveries made with spin labeling techniques, and outlining exciting new directions in the field.
Collapse
Affiliation(s)
- Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
16
|
Walczak E, Andruniów T. Impacts of retinal polyene (de)methylation on the photoisomerization mechanism and photon energy storage of rhodopsin. Phys Chem Chem Phys 2015; 17:17169-81. [DOI: 10.1039/c5cp01939g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Similar to native rhodopsin, a two-mode space-saving isomerization mechanism drives the photoreaction in (de)methylated rhodopsin analogues.
Collapse
Affiliation(s)
- Elżbieta Walczak
- Department of Chemistry
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| | - Tadeusz Andruniów
- Department of Chemistry
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| |
Collapse
|
17
|
Araujo NA, Sanz-Rodríguez CE, Bubis J. Binding of rhodopsin and rhodopsin analogues to transducin, rhodopsin kinase and arrestin-1. World J Biol Chem 2014; 5:254-268. [PMID: 24921014 PMCID: PMC4050118 DOI: 10.4331/wjbc.v5.i2.254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/10/2014] [Accepted: 04/17/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the interaction of reconstituted rhodopsin, 9-cis-retinal-rhodopsin and 13-cis-retinal-rhodopsin with transducin, rhodopsin kinase and arrestin-1.
METHODS: Rod outer segments (ROS) were isolated from bovine retinas. Following bleaching of ROS membranes with hydroxylamine, rhodopsin and rhodopsin analogues were generated with the different retinal isomers and the concentration of the reconstituted pigments was calculated from their UV/visible absorption spectra. Transducin and arrestin-1 were purified to homogeneity by column chromatography, and an enriched-fraction of rhodopsin kinase was obtained by extracting freshly prepared ROS in the dark. The guanine nucleotide binding activity of transducin was determined by Millipore filtration using β,γ-imido-(3H)-guanosine 5’-triphosphate. Recognition of the reconstituted pigments by rhodopsin kinase was determined by autoradiography following incubation of ROS membranes containing the various regenerated pigments with partially purified rhodopsin kinase in the presence of (γ-32P) ATP. Binding of arrestin-1 to the various pigments in ROS membranes was determined by a sedimentation assay analyzed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis.
RESULTS: Reconstituted rhodopsin and rhodopsin analogues containing 9-cis-retinal and 13-cis-retinal rendered an absorption spectrum showing a maximum peak at 498 nm, 486 nm and about 467 nm, respectively, in the dark; which was shifted to 380 nm, 404 nm and about 425 nm, respectively, after illumination. The percentage of reconstitution of rhodopsin and the rhodopsin analogues containing 9-cis-retinal and 13-cis-retinal was estimated to be 88%, 81% and 24%, respectively. Although only residual activation of transducin was observed in the dark when reconstituted rhodopsin and 9-cis-retinal-rhodopsin was used, the rhodopsin analogue containing the 13-cis isomer of retinal was capable of activating transducin independently of light. Moreover, only a basal amount of the reconstituted rhodopsin and 9-cis-retinal-rhodopsin was phosphorylated by rhodopsin kinase in the dark, whereas the pigment containing the 13-cis-retinal was highly phosphorylated by rhodopsin kinase even in the dark. In addition, arrestin-1 was incubated with rhodopsin, 9-cis-retinal-rhodopsin or 13-cis-retinal-rhodopsin. Experiments were performed using both phosphorylated and non-phosphorylated regenerated pigments. Basal amounts of arrestin-1 interacted with rhodopsin, 9-cis-retinal-rhodopsin and 13-cis-retinal-rhodopsin under dark and light conditions. Residual arrestin-1 was also recognized by the phosphorylated rhodopsin and phosphorylated 9-cis-retinal-rhodopsin in the dark. However, arrestin-1 was recognized by phosphorylated 13-cis-retinal-rhodopsin in the dark. As expected, all reformed pigments were capable of activating transducin and being phosphorylated by rhodopsin kinase in a light-dependent manner. Additionally, all reconstituted photolyzed and phosphorylated pigments were capable of interacting with arrestin-1.
CONCLUSION: In the dark, the rhodopsin analogue containing the 13-cis isomer of retinal appears to fold in a pseudo-active conformation that mimics the active photointermediate of rhodopsin.
Collapse
|
18
|
The complexity of G-protein coupled receptor-ligand interactions. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Biochem J 2013; 450:443-57. [DOI: 10.1042/bj20121644] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
GPCRs (G-protein-coupled receptors) are versatile signalling molecules at the cell surface and make up the largest and most diverse family of membrane receptors in the human genome. They convert a large variety of extracellular stimuli into intracellular responses through the activation of heterotrimeric G-proteins, which make them key regulatory elements in a broad range of normal and pathological processes, and are therefore one of the most important targets for pharmaceutical drug discovery. Knowledge of a GPCR structure enables us to gain a mechanistic insight into its function and dynamics, and further aid rational drug design. Despite intensive research carried out over the last three decades, resolving the structural basis of GPCR function is still a major activity. The crystal structures obtained in the last 5 years provide the first opportunity to understand how protein structure dictates the unique functional properties of these complex signalling molecules. However, owing to the intrinsic hydrophobicity, flexibility and instability of membrane proteins, it is still a challenge to crystallize GPCRs, and, when this is possible, it is no longer in its native membrane environment and no longer without modification. Furthermore, the conformational change of the transmembrane α-helices associated with the structure activation increases the difficulty of capturing the activation state of a GPCR to a higher resolution by X-ray crystallography. On the other hand, solid-state NMR may offer a unique opportunity to study membrane protein structure, ligand binding and activation at atomic resolution in the native membrane environment, as well as described functionally significant dynamics. In the present review, we discuss some recent achievements of solid-state NMR for understanding GPCRs, the largest mammalian proteome at ~1% of the total expressed proteins. Structural information, details of determination, details of ligand conformations and the consequences of ligand binding to initiate activation can all be explored with solid-state NMR.
Collapse
|
20
|
Mertz B, Struts AV, Feller SE, Brown MF. Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:241-51. [PMID: 21851809 PMCID: PMC5270601 DOI: 10.1016/j.bbamem.2011.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Rhodopsin has served as the primary model for studying G protein-coupled receptors (GPCRs)-the largest group in the human genome, and consequently a primary target for pharmaceutical development. Understanding the functions and activation mechanisms of GPCRs has proven to be extraordinarily difficult, as they are part of a complex signaling cascade and reside within the cell membrane. Although X-ray crystallography has recently solved several GPCR structures that may resemble the activated conformation, the dynamics and mechanism of rhodopsin activation continue to remain elusive. Notably solid-state ((2))H NMR spectroscopy provides key information pertinent to how local dynamics of the retinal ligand change during rhodopsin activation. When combined with molecular mechanics simulations of proteolipid membranes, a new paradigm for the rhodopsin activation process emerges. Experiment and simulation both suggest that retinal isomerization initiates the rhodopsin photocascade to yield not a single activated structure, but rather an ensemble of activated conformational states. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Blake Mertz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Andrey V. Struts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Physics, St. Petersburg State Medical University, St. Petersburg 194100, Russia
| | - Scott E. Feller
- Department of Chemistry, Wabash College, Crawfordsville, IN 47933, USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
21
|
Mertz B, Lu M, Brown MF, Feller SE. Steric and electronic influences on the torsional energy landscape of retinal. Biophys J 2011; 101:L17-9. [PMID: 21806916 DOI: 10.1016/j.bpj.2011.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 10/17/2022] Open
Abstract
We have performed quantum mechanical calculations for retinal model compounds to establish the rotational energy barriers for the C5-, C9-, and C13-methyl groups known to play an essential role in rhodopsin activation. Intraretinal steric interactions as well as electronic effects lower the rotational barriers of both the C9- and C13-methyl groups, consistent with experimental (2)H NMR data. Each retinal methyl group has a unique rotational behavior which must be treated individually. These results are highly relevant for the parameterization of molecular mechanics force fields which form the basis of molecular dynamics simulations of retinal proteins such as rhodopsin.
Collapse
Affiliation(s)
- Blake Mertz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
22
|
Solid-state 2H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Proc Natl Acad Sci U S A 2011; 108:8263-8. [PMID: 21527723 DOI: 10.1073/pnas.1014692108] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rhodopsin is a canonical member of the family of G protein-coupled receptors, which transmit signals across cellular membranes and are linked to many drug interventions in humans. Here we show that solid-state (2)H NMR relaxation allows investigation of light-induced changes in local ps-ns time scale motions of retinal bound to rhodopsin. Site-specific (2)H labels were introduced into methyl groups of the retinal ligand that are essential to the activation process. We conducted solid-state (2)H NMR relaxation (spin-lattice, T(1Z), and quadrupolar-order, T(1Q)) experiments in the dark, Meta I, and Meta II states of the photoreceptor. Surprisingly, we find the retinylidene methyl groups exhibit site-specific differences in dynamics that change upon light excitation--even more striking, the C9-methyl group is a dynamical hotspot that corresponds to a crucial functional hotspot of rhodopsin. Following 11-cis to trans isomerization, the (2)H NMR data suggest the β-ionone ring remains in its hydrophobic binding pocket in all three states of the protein. We propose a multiscale activation mechanism with a complex energy landscape, whereby the photonic energy is directed against the E2 loop by the C13-methyl group, and toward helices H3 and H5 by the C5-methyl of the β-ionone ring. Changes in retinal structure and dynamics initiate activating fluctuations of transmembrane helices H5 and H6 in the Meta I-Meta II equilibrium of rhodopsin. Our proposals challenge the Standard Model whereby a single light-activated receptor conformation yields the visual response--rather an ensemble of substates is present, due to the entropy gain produced by photolysis of the inhibitory retinal lock.
Collapse
|
23
|
deGrip WJ, Bovee-Geurts PHM, Wang Y, Verhoeven MA, Lugtenburg J. Cyclopropyl and isopropyl derivatives of 11-cis and 9-cis retinals at C-9 and C-13: subtle steric differences with major effects on ligand efficacy in rhodopsin. JOURNAL OF NATURAL PRODUCTS 2011; 74:383-390. [PMID: 21309593 DOI: 10.1021/np100744v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Retinal is the natural ligand (chromophore) of the vertebrate rod visual pigment. It occurs in either the 11-cis (rhodopsin) or the 9-cis (isorhodopsin) configuration. In its evolution to a G protein coupled photoreceptor, rhodopsin has acquired exceptional photochemical properties. Illumination isomerizes the chromophore to the all-trans isomer, which acts as a full agonist. This process is extremely efficient, and there is abundant evidence that the C-9 and C-13 methyl groups of retinal play a pivotal role in this process. To examine the steric limits of the C-9 and C-13 methyl binding pocket of the binding site, we have prepared C-9 and C-13 cyclopropyl and isopropyl derivatives of its native ligands and of α-retinal at C-9. Most isopropyl analogues show very poor binding, except for 9-cis-13-isopropylretinal. Most cyclopropyl derivatives exhibit intermediate binding activity, except for 9-cis-13-cyclopropylretinal, which presents good binding activity. In general, the binding site shows preference for the 9-cis analogues over the 11-cis analogues. In fact, 13-isopropyl-9-cis-retinal acts as a superagonist after illumination. Another surprising finding was that 9-cyclopropylisorhodopsin is more like native rhodopsin with respect to spectral and photochemical properties, whereas 9-cyclopropylrhodopsin behaves more like native isorhodopsin in these aspects.
Collapse
Affiliation(s)
- Willem J deGrip
- Department of Biochemistry, UMCN 286, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation. Nat Struct Mol Biol 2011; 18:392-4. [PMID: 21278756 DOI: 10.1038/nsmb.1982] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/16/2010] [Indexed: 11/08/2022]
Abstract
X-ray and magnetic resonance approaches, though central to studies of G protein-coupled receptor (GPCR)-mediated signaling, cannot address GPCR protein dynamics or plasticity. Here we show that solid-state (2)H NMR relaxation elucidates picosecond-to-nanosecond-timescale motions of the retinal ligand that influence larger-scale functional dynamics of rhodopsin in membranes. We propose a multiscale activation mechanism whereby retinal initiates collective helix fluctuations in the meta I-meta II equilibrium on the microsecond-to-millisecond timescale.
Collapse
|
25
|
Light activation of rhodopsin: insights from molecular dynamics simulations guided by solid-state NMR distance restraints. J Mol Biol 2009; 396:510-27. [PMID: 20004206 DOI: 10.1016/j.jmb.2009.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 10/09/2009] [Accepted: 12/02/2009] [Indexed: 11/20/2022]
Abstract
Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize structural changes in the light activation of rhodopsin. Since the timescale for the formation of the metarhodopsin II intermediate (>1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor.
Collapse
|
26
|
Bovee-Geurts PHM, Fernández Fernández I, Liu RSH, Mathies RA, Lugtenburg J, DeGrip WJ. Fluoro Derivatives of Retinal Illuminate the Decisive Role of the C12-H Element in Photoisomerization and Rhodopsin Activation. J Am Chem Soc 2009; 131:17933-42. [DOI: 10.1021/ja907577p] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Petra H. M. Bovee-Geurts
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Isabelle Fernández Fernández
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Robert S. H. Liu
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Richard A. Mathies
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Johan Lugtenburg
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Willem J. DeGrip
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|
27
|
A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci 2009; 34:540-52. [PMID: 19836958 DOI: 10.1016/j.tibs.2009.07.005] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/17/2009] [Accepted: 07/28/2009] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are ubiquitous signal transducers in cell membranes, as well as important drug targets. Interaction with extracellular agonists turns the seven transmembrane helix (7TM) scaffold of a GPCR into a catalyst for GDP and GTP exchange in heterotrimeric Galphabetagamma proteins. Activation of the model GPCR, rhodopsin, is triggered by photoisomerization of its retinal ligand. From the augmentation of biochemical and biophysical studies by recent high-resolution 3D structures, its activation intermediates can now be interpreted as the stepwise engagement of protein domains. Rearrangement of TM5-TM6 opens a crevice at the cytoplasmic side of the receptor into which the C terminus of the Galpha subunit can bind. The Galpha C-terminal helix is used as a transmission rod to the nucleotide binding site. The mechanism relies on dynamic interactions between conserved residues and could therefore be common to other GPCRs.
Collapse
|
28
|
Brown MF, Salgado GFJ, Struts AV. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:177-93. [PMID: 19716801 DOI: 10.1016/j.bbamem.2009.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/25/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022]
Abstract
Rhodopsin is a canonical member of class A of the G protein-coupled receptors (GPCRs) that are implicated in many of the drug interventions in humans and are of great pharmaceutical interest. The molecular mechanism of rhodopsin activation remains unknown as atomistic structural information for the active metarhodopsin II state is currently lacking. Solid-state (2)H NMR constitutes a powerful approach to study atomic-level dynamics of membrane proteins. In the present application, we describe how information is obtained about interactions of the retinal cofactor with rhodopsin that change with light activation of the photoreceptor. The retinal methyl groups play an important role in rhodopsin function by directing conformational changes upon transition into the active state. Site-specific (2)H labels have been introduced into the methyl groups of retinal and solid-state (2)H NMR methods applied to obtain order parameters and correlation times that quantify the mobility of the cofactor in the inactive dark state, as well as the cryotrapped metarhodopsin I and metarhodopsin II states. Analysis of the angular-dependent (2)H NMR line shapes for selectively deuterated methyl groups of rhodopsin in aligned membranes enables determination of the average ligand conformation within the binding pocket. The relaxation data suggest that the beta-ionone ring is not expelled from its hydrophobic pocket in the transition from the pre-activated metarhodopsin I to the active metarhodopsin II state. Rather, the major structural changes of the retinal cofactor occur already at the metarhodopsin I state in the activation process. The metarhodopsin I to metarhodopsin II transition involves mainly conformational changes of the protein within the membrane lipid bilayer rather than the ligand. The dynamics of the retinylidene methyl groups upon isomerization are explained by an activation mechanism involving cooperative rearrangements of extracellular loop E2 together with transmembrane helices H5 and H6. These activating movements are triggered by steric clashes of the isomerized all-trans retinal with the beta4 strand of the E2 loop and the side chains of Glu(122) and Trp(265) within the binding pocket. The solid-state (2)H NMR data are discussed with regard to the pathway of the energy flow in the receptor activation mechanism.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA; Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
29
|
Lüdeke S, Mahalingam M, Vogel R. Rhodopsin activation switches in a native membrane environment. Photochem Photobiol 2009; 85:437-41. [PMID: 19267869 DOI: 10.1111/j.1751-1097.2008.00490.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The elucidation of structure-function relationships of membrane proteins still poses a considerable challenge due to the sometimes profound influence of the lipid bilayer on the functional properties of the protein. The visual pigment rhodopsin is a prototype of the family of G protein-coupled transmembrane receptors and a considerable part of our knowledge on its activation mechanisms has been derived from studies on detergent-solubilized proteins. This includes in particular the events associated with the conformational transitions of the receptor from the still inactive Meta I to the Meta II photoproduct states, which are involved in signaling. These events involve disruption of an internal salt bridge of the retinal protonated Schiff base, movement of helices and proton uptake from the solvent by the conserved cytoplasmic E(D)RY network around Glu134. As the equilibria associated with these events are considerably altered by the detergent environment, we set out to investigate these equilibria in the native membrane environment and to develop a coherent thermodynamic model of these activating steps using UV-visible and Fourier-transform infrared spectroscopy as complementary techniques. Particular emphasis is put on the role of protonation of Glu134 from the solvent, which is a thermodynamic prerequisite for full receptor activation in membranes, but not in detergent. In view of the conservation of this carboxylate group in family A G protein-coupled receptors, it may also play a similar role in the activation of other family members.
Collapse
Affiliation(s)
- Steffen Lüdeke
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
30
|
Sugihara M, Buss V. 9-Demethylrhodopsin: Theoretical Evidence for a Relaxed Batho Intermediate. Biochemistry 2008; 47:13733-5. [DOI: 10.1021/bi801986p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Minoru Sugihara
- Department of Physics, University of Duisburg-Essen, 47048 Duisburg, Germany, and Department of Chemistry, University of Duisburg-Essen, D45141 Essen, Germany
| | - Volker Buss
- Department of Physics, University of Duisburg-Essen, 47048 Duisburg, Germany, and Department of Chemistry, University of Duisburg-Essen, D45141 Essen, Germany
| |
Collapse
|
31
|
Two protonation switches control rhodopsin activation in membranes. Proc Natl Acad Sci U S A 2008; 105:17795-800. [PMID: 18997017 DOI: 10.1073/pnas.0804541105] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of the G protein-coupled receptor (GPCR) rhodopsin is initiated by light-induced isomerization of the retinal ligand, which triggers 2 protonation switches in the conformational transition to the active receptor state Meta II. The first switch involves disruption of an interhelical salt bridge by internal proton transfer from the retinal protonated Schiff base (PSB) to its counterion, Glu-113, in the transmembrane domain. The second switch consists of uptake of a proton from the solvent by Glu-134 of the conserved E(D)RY motif at the cytoplasmic terminus of helix 3, leading to pH-dependent receptor activation. By using a combination of UV-visible and FTIR spectroscopy, we study the activation mechanism of rhodopsin in different membrane environments and show that these 2 protonation switches become partially uncoupled at physiological temperature. This partial uncoupling leads to approximately 50% population of an entropy-stabilized Meta II state in which the interhelical PSB salt bridge is broken and activating helix movements have taken place but in which Glu-134 remains unprotonated. This partial activation is converted to full activation only by coupling to the pH-dependent protonation of Glu-134 from the solvent, which stabilizes the active receptor conformation by lowering its enthalpy. In a membrane environment, protonation of Glu-134 is therefore a thermodynamic rather than a structural prerequisite for activating helix movements. In light of the conservation of the E(D)RY motif in rhodopsin-like GPCRs, protonation of this carboxylate also may serve a similar function in signal transduction of other members of this receptor family.
Collapse
|
32
|
Wang Y, Bovee-Geurts PHM, Lugtenburg J, DeGrip WJ. Alpha-retinals as Rhodopsin ChromophoresPreference for the 9-ZConfiguration and Partial Agonist Activity. Photochem Photobiol 2008; 84:889-94. [DOI: 10.1111/j.1751-1097.2008.00321.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Knierim B, Hofmann KP, Gärtner W, Hubbell WL, Ernst OP. Rhodopsin and 9-demethyl-retinal analog: effect of a partial agonist on displacement of transmembrane helix 6 in class A G protein-coupled receptors. J Biol Chem 2007; 283:4967-74. [PMID: 18063586 DOI: 10.1074/jbc.m703059200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodopsin is the visual pigment of rod cells and a prototypical G protein-coupled receptor. It is activated by cis-->trans photoisomerization of the covalently bound chromophore 11-cis-retinal, which acts in the cis configuration as an inverse agonist. Light-induced formation of the full agonist all-trans-retinal in situ triggers conformational changes in the protein moiety. Partial agonists of rhodopsin include a retinal analog lacking the methyl group at C-9, termed 9-demethyl-retinal (9-dm-retinal). Rhodopsin reconstituted with this retinal (9-dm-rhodopsin) activates G protein poorly. Here we investigated the molecular nature of the partial agonism in 9-dm-rhodopsin using site-directed spin labeling. Earlier site-directed spin labeling studies of rhodopsin identified a rigid-body tilt of the cytoplasmic segment of [corrected] transmembrane helix 6 (TM6) by approximately 6A as a central event in rhodopsin activation. Data presented here provide additional evidence for this mechanism. Only a small fraction of photoexcited 9-dm pigments reaches the TM6-tilted conformation. This fraction can be increased by increasing proton concentration or [corrected] by anticipation of the activating protonation step by the mutation E134Q in 9-dm-rhodopsin. These results on protein conformation are in complete accord with previous findings regarding the biological activity of the 9-dm pigments. When the proton concentration is further increased, a new state arises in 9-dm pigments that is linked to direct proton uptake at the retinal Schiff base. This state apparently has a conformation distinguishable from the active state.
Collapse
Affiliation(s)
- Bernhard Knierim
- Institut für Medizinische Physik und Biophysik (CCM), Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
34
|
Brown MF, Heyn MP, Job C, Kim S, Moltke S, Nakanishi K, Nevzorov AA, Struts AV, Salgado GFJ, Wallat I. Solid-state 2H NMR spectroscopy of retinal proteins in aligned membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:2979-3000. [PMID: 18021739 PMCID: PMC5233718 DOI: 10.1016/j.bbamem.2007.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 11/21/2022]
Abstract
Solid-state 2H NMR spectroscopy gives a powerful avenue to investigating the structures of ligands and cofactors bound to integral membrane proteins. For bacteriorhodopsin (bR) and rhodopsin, retinal was site-specifically labeled by deuteration of the methyl groups followed by regeneration of the apoprotein. 2H NMR studies of aligned membrane samples were conducted under conditions where rotational and translational diffusion of the protein were absent on the NMR time scale. The theoretical lineshape treatment involved a static axial distribution of rotating C-C2H3 groups about the local membrane frame, together with the static axial distribution of the local normal relative to the average normal. Simulation of solid-state 2H NMR lineshapes gave both the methyl group orientations and the alignment disorder (mosaic spread) of the membrane stack. The methyl bond orientations provided the angular restraints for structural analysis. In the case of bR the retinal chromophore is nearly planar in the dark- and all-trans light-adapted states, as well upon isomerization to 13-cis in the M state. The C13-methyl group at the "business end" of the chromophore changes its orientation to the membrane upon photon absorption, moving towards W182 and thus driving the proton pump in energy conservation. Moreover, rhodopsin was studied as a prototype for G protein-coupled receptors (GPCRs) implicated in many biological responses in humans. In contrast to bR, the retinal chromophore of rhodopsin has an 11-cis conformation and is highly twisted in the dark state. Three sites of interaction affect the torsional deformation of retinal, viz. the protonated Schiff base with its carboxylate counterion; the C9-methyl group of the polyene; and the beta-ionone ring within its hydrophobic pocket. For rhodopsin, the strain energy and dynamics of retinal as established by 2H NMR are implicated in substituent control of activation. Retinal is locked in a conformation that is twisted in the direction of the photoisomerization, which explains the dark stability of rhodopsin and allows for ultra-fast isomerization upon absorption of a photon. Torsional strain is relaxed in the meta I state that precedes subsequent receptor activation. Comparison of the two retinal proteins using solid-state 2H NMR is thus illuminating in terms of their different biological functions.
Collapse
Affiliation(s)
- Michael F Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
DeGrip WJ, Bovee-Geurts, van der Hoef I, Lugtenburg J. 7,8-Dihydro Retinals Outperform the Native Retinals in Conferring Photosensitivity to Visual Opsin. J Am Chem Soc 2007; 129:13265-9. [DOI: 10.1021/ja074937c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Willem J. DeGrip
- Contribution from the Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, and the Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bovee-Geurts
- Contribution from the Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, and the Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Ineke van der Hoef
- Contribution from the Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, and the Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Johan Lugtenburg
- Contribution from the Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, and the Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
36
|
Lau PW, Grossfield A, Feller SE, Pitman MC, Brown MF. Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations. J Mol Biol 2007; 372:906-917. [PMID: 17719606 PMCID: PMC5233727 DOI: 10.1016/j.jmb.2007.06.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/13/2007] [Accepted: 06/18/2007] [Indexed: 11/22/2022]
Abstract
Rhodopsin is currently the only available atomic-resolution template for understanding biological functions of the G protein-coupled receptor (GPCR) family. The structural basis for the phenomenal dark state stability of 11-cis-retinal bound to rhodopsin and its ultrafast photoreaction are active topics of research. In particular, the beta-ionone ring of the retinylidene inverse agonist is crucial for the activation mechanism. We analyzed a total of 23 independent, 100 ns all-atom molecular dynamics simulations of rhodopsin embedded in a lipid bilayer in the microcanonical (N,V,E) ensemble. Analysis of intramolecular fluctuations predicts hydrogen-out-of-plane (HOOP) wagging modes of retinal consistent with those found in Raman vibrational spectroscopy. We show that sampling and ergodicity of the ensemble of simulations are crucial for determining the distribution of conformers of retinal bound to rhodopsin. The polyene chain is rigidly locked into a single, twisted conformation, consistent with the function of retinal as an inverse agonist in the dark state. Most surprisingly, the beta-ionone ring is mobile within its binding pocket; interactions are non-specific and the cavity is sufficiently large to enable structural heterogeneity. We find that retinal occupies two distinct conformations in the dark state, contrary to most previous assumptions. The beta-ionone ring can rotate relative to the polyene chain, thereby populating both positively and negatively twisted 6-s-cis enantiomers. This result, while unexpected, strongly agrees with experimental solid-state (2)H NMR spectra. Correlation analysis identifies the residues most critical to controlling mobility of retinal; we find that Trp265 moves away from the ionone ring prior to any conformational transition. Our findings reinforce how molecular dynamics simulations can challenge conventional assumptions for interpreting experimental data, especially where existing models neglect conformational fluctuations.
Collapse
Affiliation(s)
- Pick-Wei Lau
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | - Alan Grossfield
- IBM TJ Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Scott E. Feller
- Department of Chemistry, Wabash College, Crawfordsville, Indiana 47933, USA
| | - Michael C. Pitman
- IBM TJ Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Michael F. Brown
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
- Corresponding author. Present address: Pick-Wei Lau, Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
37
|
Vogel R, Sakmar TP, Sheves M, Siebert F. Coupling of Protonation Switches During Rhodopsin Activation†. Photochem Photobiol 2007; 83:286-92. [PMID: 17576345 DOI: 10.1562/2006-06-19-ir-937] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies of the activation mechanism of rhodopsin involving Fourier-transform infrared spectroscopy and a combination of chromophore modifications and site-directed mutagenesis reveal an allosteric coupling between two protonation switches. In particular, the ring and the 9-methyl group of the all-trans retinal chromophore serve to couple two proton-dependent activation steps: proton uptake by a cytoplasmic network between transmembrane (TM) helices 3 and 6 around the conserved ERY (Glu-Arg-Tyr) motif and disruption of a salt bridge between the retinal protonated Schiff base (PSB) and a protein counterion in the TM core of the receptor. Retinal analogs lacking the ring or 9-methyl group are only partial agonists--the conformational equilibrium between inactive Meta I and active Meta II photoproduct states is shifted to Meta I. An artificial pigment was engineered, in which the ring of retinal was removed and the PSB salt bridge was weakened by fluorination of C14 of the retinal polyene. These modifications abolished allosteric coupling of the proton switches and resulted in a stabilized Meta I state with a deprotonated Schiff base (Meta I(SB)). This state had a partial Meta II-like conformation due to disruption of the PSB salt bridge, but still lacked the cytoplasmic proton uptake reaction characteristic of the final transition to Meta II. As activation of native rhodopsin is known to involve deprotonation of the retinal Schiff base prior to formation of Meta II, this Meta I(SB) state may serve as a model for the structural characterization of a key transient species in the activation pathway of a prototypical G protein-coupled receptor.
Collapse
Affiliation(s)
- Reiner Vogel
- Arbeitsgruppe Biophysik, Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| | | | | | | |
Collapse
|
38
|
Struts AV, Salgado GFJ, Tanaka K, Krane S, Nakanishi K, Brown MF. Structural analysis and dynamics of retinal chromophore in dark and meta I states of rhodopsin from 2H NMR of aligned membranes. J Mol Biol 2007; 372:50-66. [PMID: 17640664 PMCID: PMC5233725 DOI: 10.1016/j.jmb.2007.03.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 03/02/2007] [Accepted: 03/19/2007] [Indexed: 11/29/2022]
Abstract
Rhodopsin is a prototype for G protein-coupled receptors (GPCRs) that are implicated in many biological responses in humans. A site-directed (2)H NMR approach was used for structural analysis of retinal within its binding cavity in the dark and pre-activated meta I states. Retinal was labeled with (2)H at the C5, C9, or C13 methyl groups by total synthesis, and was used to regenerate the opsin apoprotein. Solid-state (2)H NMR spectra were acquired for aligned membranes in the low-temperature lipid gel phase versus the tilt angle to the magnetic field. Data reduction assumed a static uniaxial distribution, and gave the retinylidene methyl bond orientations plus the alignment disorder (mosaic spread). The dark-state (2)H NMR structure of 11-cis-retinal shows torsional twisting of the polyene chain and the beta-ionone ring. The ligand undergoes restricted motion, as evinced by order parameters of approximately 0.9 for the spinning C-C(2)H(3) groups, with off-axial fluctuations of approximately 15 degrees . Retinal is accommodated within the rhodopsin binding pocket with a negative pre-twist about the C11=C12 double bond that explains its rapid photochemistry and the trajectory of 11-cis to trans isomerization. In the cryo-trapped meta I state, the (2)H NMR structure shows a reduction of the polyene strain, while torsional twisting of the beta-ionone ring is maintained. Distortion of the retinal conformation is interpreted through substituent control of receptor activation. Steric hindrance between trans retinal and Trp265 can trigger formation of the subsequent activated meta II state. Our results are pertinent to quantum and molecular mechanics simulations of ligands bound to GPCRs, and illustrate how (2)H NMR can be applied to study their biological mechanisms of action.
Collapse
Affiliation(s)
- Andrey V. Struts
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Gilmar F. J. Salgado
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | - Katsunori Tanaka
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Sonja Krane
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Koji Nakanishi
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Michael F. Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
- Department of Biochemistry & Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
- Corresponding author:
| |
Collapse
|
39
|
Domínguez M, Alvarez R, Pérez M, Palczewski K, de Lera AR. The role of the 11-cis-retinal ring methyl substituents in visual pigment formation. Chembiochem 2007; 7:1815-25. [PMID: 16941510 DOI: 10.1002/cbic.200600207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Artificial visual pigment formation from ring-demethylated retinals was studied in an effort to understand the effect that methyl groups on the chromophore cyclohexenyl ring have on the visual cycle. The stereoselective synthesis of the 11-cis-ring-demethylated analogues involves thallium-accelerated Suzuki cross-coupling reactions and highly stereocontrolled Wittig reactions to form key bonds. Only 11-cis-1,1,5-trisdemethylretinal (2) failed to form an artificial pigment, whilst variable pigment-formation yields were determined for the remaining analogues, increasing with the number (and location) of the chromophore hydrophobic ring methyl groups. Our results with the monodemethylated analogues 11-cis-5-demethylretinal (4) and 11-cis-1-demethylretinal (5) show that the C1-2-CH(3) groups are more important for pigment formation than the C5-CH(3) substituent. This is reflected in the absorption maxima of the artificial pigments, with values closer to that of native rhodopsin for 4. Docking studies based on a rhodopsin crystal structure, however, predict a lower pigment stability for 4 than for 5. Gas-phase DFT (B3LYP/6-31G*) computations of the free-ligand geometries, conformational searches about the C6--C7 bond, and docking studies revealed that, although the conformation of bound 5 is close to that of the native chromophore, the ligand needs to overcome the energy cost of shifting the unbound favored 6-s-trans conformation to the bound 6-s-cis form. In addition, the presence of an extra methyl group at C18 (11-cis-18-methylretinal, 7) is tolerated well and adds further stability to the complex, most probably due to increased hydrophobic interactions.
Collapse
Affiliation(s)
- Marta Domínguez
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | | | |
Collapse
|
40
|
Vogel R, Martell S, Mahalingam M, Engelhard M, Siebert F. Interaction of a G protein-coupled receptor with a G protein-derived peptide induces structural changes in both peptide and receptor: a Fourier-transform infrared study using isotopically labeled peptides. J Mol Biol 2006; 366:1580-8. [PMID: 17217962 DOI: 10.1016/j.jmb.2006.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/30/2006] [Accepted: 12/06/2006] [Indexed: 11/21/2022]
Abstract
G protein-coupled receptor signaling involves productive interaction between agonist-activated receptor and G protein. We have used Fourier-transform infrared difference spectroscopy to examine the interaction between the active Meta II state of the visual pigment rhodopsin with a peptide analogue corresponding to the C terminus of the alpha-subunit of the G protein transducin. Formation of the receptor-peptide complex evokes a spectral signature consisting of conformationally sensitive amide I and amide II difference bands. In order to distinguish between amide backbone contributions of the peptide and of the receptor moiety to the vibrational spectra, we employed complete (13)C,(15)N-labeling of the peptide. This isotopic labeling downshifts selectively the bands of the peptide, which can thus be extracted. Our results show that formation of the complex between the activated Meta II receptor state and the peptide is accompanied by structural changes of the peptide, and of the receptor, indicating that the conformation of the Meta II.peptide complex is different from that of Meta II. This result implies that the activated receptor state has conformational flexibility. Binding of the peptide to the activated receptor state stabilizes a substate that deviates from that stabilized only by the agonist.
Collapse
Affiliation(s)
- Reiner Vogel
- Arbeitsgruppe Biophysik, Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
41
|
Bosch L, Cordomí A, Domínguez M, Toledo D, Morillo M, Pérez JJ, Alvarez R, de Lera AR, Garriga P. A methyl group at C7 of 11-cis-retinal allows chromophore formation but affects rhodopsin activation. Vision Res 2006; 46:4472-81. [PMID: 17027899 DOI: 10.1016/j.visres.2006.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
The newly synthesized 11-cis-7-methylretinal can form an artificial visual pigment with kinetic and spectroscopic properties similar to the native pigment in the dark-state. However, its photobleaching behavior is altered, showing a Meta I-like photoproduct. This behavior reflects a steric constraint imposed by the 7-methyl group that affects the conformational change in the binding pocket as a result of retinal photoisomerization. Transducin activation is reduced, when compared to the native pigment with 11-cis-retinal. Molecular dynamics simulations suggest coupling of the C7 methyl group and the beta-ionone ring with Met207 in transmembrane helix 5 in agreement with recent experimental results.
Collapse
Affiliation(s)
- Laia Bosch
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, 08222 Terrassa, Catalonia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Estevez ME, Ala-Laurila P, Crouch RK, Cornwall MC. Turning cones off: the role of the 9-methyl group of retinal in red cones. ACTA ACUST UNITED AC 2006; 128:671-85. [PMID: 17101818 PMCID: PMC2151603 DOI: 10.1085/jgp.200609630] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Our ability to see in bright light depends critically on the rapid rate at which cone photoreceptors detect and adapt to changes in illumination. This is achieved, in part, by their rapid response termination. In this study, we investigate the hypothesis that this rapid termination of the response in red cones is dependent on interactions between the 9-methyl group of retinal and red cone opsin, which are required for timely metarhodopsin (Meta) II decay. We used single-cell electrical recordings of flash responses to assess the kinetics of response termination and to calculate guanylyl cyclase (GC) rates in salamander red cones containing native visual pigment as well as visual pigment regenerated with 11-cis 9-demethyl retinal, an analogue of retinal in which the 9-methyl group is missing. After exposure to bright light that photoactivated more than ∼0.2% of the pigment, red cones containing the analogue pigment had a slower recovery of both flash response amplitudes and GC rates (up to 10 times slower at high bleaches) than red cones containing 11-cis retinal. This finding is consistent with previously published biochemical data demonstrating that red cone opsin regenerated in vitro with 11-cis 9-demethyl retinal exhibited prolonged activation as a result of slowed Meta II decay. Our results suggest that two different mechanisms regulate the recovery of responsiveness in red cones after exposure to light. We propose a model in which the response recovery in red cones can be regulated (particularly at high light intensities) by the Meta II decay rate if that rate has been inhibited. In red cones, the interaction of the 9-methyl group of retinal with opsin promotes efficient Meta II decay and, thus, the rapid rate of recovery.
Collapse
Affiliation(s)
- Maureen E Estevez
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
43
|
Verhoeven MA, Bovee-Geurts PHM, de Groot HJM, Lugtenburg J, DeGrip WJ. Methyl Substituents at the 11 or 12 Position of Retinal Profoundly and Differentially Affect Photochemistry and Signalling Activity of Rhodopsin. J Mol Biol 2006; 363:98-113. [PMID: 16962138 DOI: 10.1016/j.jmb.2006.07.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/12/2006] [Accepted: 07/19/2006] [Indexed: 11/18/2022]
Abstract
The C-11=C-12 double bond of the retinylidene chromophore of rhodopsin holds a central position in its light-induced photoisomerization and hence the photosensory function of this visual pigment. To probe the local environment of the HC-11=C-12H element we have prepared the 11-methyl and 12-methyl derivatives of 11-Z retinal and incorporated these into opsin to generate the rhodopsin analogs 11-methyl and 12-methyl rhodopsin. These analog pigments form with much slower kinetics and lower efficiency than the native pigment. The initial photochemistry and the signaling activity of the analog pigments were investigated by UV-vis and FTIR spectroscopy, and by a G protein activation assay. Our data indicate that the ultrafast formation of the first photointermediate is strongly perturbed by the presence of an 11-methyl substituent, but much less by a 12-methyl substituent. These results support the current concept of the mechanism of the primary photoisomerization event in rhodopsin. An important stronghold of this concept is an out-of-plane movement of the C-12H element, which is facilitated by torsion as well as extended positive charge delocalization into the C-10-C-13 segment of the chromophore. We argue that this mechanism is maintained principally with a methyl substituent at C-12. In addition, we show that both an 11-methyl and a 12-methyl substitutent perturb the photointermediate cascade and finally yield a low-activity state of the receptor. The 11-methyl pigment retains about 30% of the G protein activation rate of native rhodopsin, while the 12-methyl chromophore behaves like an inverse agonist up to at least 20 degrees C, trapping the protein in a perturbed Meta-I-like conformation. We conclude that the isomerization region of the chromophore and the spatial structure of the binding site are finely tuned, in order to achieve a high photosensory potential with an efficient pathway to a high-activity state.
Collapse
|
44
|
Vogel R, Siebert F, Yan ECY, Sakmar TP, Hirshfeld A, Sheves M. Modulating Rhodopsin Receptor Activation by Altering the pKa of the Retinal Schiff Base. J Am Chem Soc 2006; 128:10503-12. [PMID: 16895417 DOI: 10.1021/ja0627848] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The visual pigment rhodopsin is a seven-transmembrane (7-TM) G protein-coupled receptor (GPCR). Activation of rhodopsin involves two pH-dependent steps: proton uptake at a conserved cytoplasmic motif between TM helices 3 and 6, and disruption of a salt bridge between a protonated Schiff base (PSB) and its carboxylate counterion in the transmembrane core of the receptor. Formation of an artificial pigment with a retinal chromophore fluorinated at C14 decreases the intrinsic pKa of the PSB and thereby destabilizes this salt bridge. Using Fourier transform infrared difference and UV-visible spectroscopy, we characterized the pH-dependent equilibrium between the active photoproduct Meta II and its inactive precursor, Meta I, in the 14-fluoro (14-F) analogue pigment. The 14-F chromophore decreases the enthalpy change of the Meta I-to-Meta II transition and shifts the Meta I/Meta II equilibrium toward Meta II. Combining C14 fluorination with deletion of the retinal beta-ionone ring to form a 14-F acyclic artificial pigment uncouples disruption of the Schiff base salt bridge from transition to Meta II and in particular from the cytoplasmic proton uptake reaction, as confirmed by combining the 14-F acyclic chromophore with the E134Q mutant. The 14-F acyclic analogue formed a stable Meta I state with a deprotonated Schiff base and an at least partially protonated protein counterion. The combination of retinal modification and site-directed mutagenesis reveals that disruption of the protonated Schiff base salt bridge is the most important step thermodynamically in the transition from Meta I to Meta II. This finding is particularly important since deprotonation of the retinal PSB is known to precede the transition to the active state in rhodopsin activation and is consistent with models of agonist-dependent activation of other GPCRs.
Collapse
Affiliation(s)
- Reiner Vogel
- Arbeitsgruppe Biophysik, Institut für Molekulare Medizin und Zellforschung, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 9, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|