1
|
Hasan R, Bhuia MS, Chowdhury R, Saha S, Khan MA, Afroz M, Ansari SA, Ansari IA, Melo Coutinho HD, Islam MT. Abietic acid antagonizes the anti-inflammatory effects of celecoxib and ketoprofen: Preclinical assessment and molecular dynamic simulations. Comput Biol Med 2024; 183:109298. [PMID: 39454522 DOI: 10.1016/j.compbiomed.2024.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The present work is designed to explore the anti-inflammatory properties of AA and its modulatory effects on celecoxib (CEL) and ketoprofen (KET) through in vitro, ex vivo, in vivo, and in silico approaches. Different concentrations of AA were utilized to evaluate the membrane-stabilizing potential via egg albumin and the Human Red Blood Cell (HRBC) denaturation model. In the animal model, formalin (50 μL) was injected into the right hind paw of young chicks to induce inflammation. AA was administered at 20 and 40 mg/kg (p.o.) to the experimental animals. We used CEL and KET as positive controls. The vehicle was provided as a control group. Two combinations of AA with CEL and KET were also investigated in all tests to assess the modulatory activity of AA. In addition, in silico investigation was used for predictions about drug-likeness, pharmacokinetics, and toxicity of the selected chemical compounds, and the study also evaluated the binding affinity, visualization, and stability of ligand-receptor interactions through molecular dynamic (MD) simulation. Results manifested that AA concentration-dependently significantly inhibited the egg albumin denaturation (IC50: 27.53 ± 0.88 μg/ml) and breakdown of HRBC (IC50: 15.69 ± 0.75 μg/ml), indicating the membrane stabilizing potential compared to the control group. AA also significantly (p < 0.05) lessened the frequency of licking and alleviated the paw edema in a dose-dependent manner in an in vivo test. However, AA reduced the activity of CEL and KET in combination treatment. AA showed good pharmacokinetic characteristics to be considered as a therapeutic candidate. Additionally, the in silico study displayed that AA demonstrated a relatively higher docking score of -9.1 kcal/mol with the cyclooxygenase-2 (COX-2) enzyme and stable binding in MD simulation. Whereas the standard ligand (CEL) expressed the highest binding value of -9.2 kcal/mol to the COX-2.
Collapse
Affiliation(s)
- Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Sajib Saha
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Muhammad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, 10124, Italy.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; BioLuster Research Center Ltd., Gopalgaj (Dhaka), 8100, Bangladesh.
| |
Collapse
|
2
|
Bettadj FZY, Benchouk W, Guendouzi A. Computational exploration of novel ketoprofen derivatives: Molecular dynamics simulations and MM-PBSA calculations for COX-2 inhibition as promising anti-inflammatory drugs. Comput Biol Med 2024; 183:109203. [PMID: 39395347 DOI: 10.1016/j.compbiomed.2024.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/01/2024] [Accepted: 09/22/2024] [Indexed: 10/14/2024]
Abstract
Computer-aided drug design is widely employed to identify novel compounds for therapeutic applications. Ketoprofen (KTP), a commonly used and marketed nonsteroidal anti-inflammatory drug (NSAID), is effective in treating pain, fever, inflammation, and some cancers. In this research, we explored the behavior of six analogues designed by structurally modifying the KTP molecule. Specifically, KTP-A and KTP-B contain a -CN group at the ortho position, KTP-C and KTP-D have a -CN group at the meta position, and KTP-E and KTP-F feature a -CF3 group at the meta position. To assess these analogues, we conducted molecular dynamics simulations (MD) to study their inhibitory effects on human cyclooxygenase 2 (COX-2), providing detailed insights into the structure and dynamics of the protein both with and without ligands. MD simulation, enhanced by technological advances, has proven to be a powerful tool for new drug discovery. We further quantified the binding affinity of these drug molecules toward COX-2 using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations. The dynamic properties were evaluated through analyses of root mean square deviations (RMSD), root mean square fluctuations (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), covariance matrix, principal component analysis (PCA), and Gibbs free energy landscapes (FEL). Ultimately, this study confirms that the six KTP derivatives are promising candidates for the treatment of inflammation, with KTP-B standing out as particularly effective.
Collapse
Affiliation(s)
- Fatima Zohra Yasmine Bettadj
- Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Wafaa Benchouk
- Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria.
| | - Abdelmadjid Guendouzi
- Pharmaceutical Sciences Research Center (CRSP), Constantine, Algeria; Laboratory of Chemistry, Synthesis, Properties and Applications. (LCSPA), University of Saïda, Saïda, Algeria
| |
Collapse
|
3
|
Karagiannis TC, Ververis K, Liang JJ, Pitsillou E, Kagarakis EA, Yi DTZ, Xu V, Hung A, El-Osta A. Investigation of the Anti-Inflammatory Properties of Bioactive Compounds from Olea europaea: In Silico Evaluation of Cyclooxygenase Enzyme Inhibition and Pharmacokinetic Profiling. Molecules 2024; 29:3502. [PMID: 39124908 PMCID: PMC11314539 DOI: 10.3390/molecules29153502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In a landmark study, oleocanthal (OLC), a major phenolic in extra virgin olive oil (EVOO), was found to possess anti-inflammatory activity similar to ibuprofen, involving inhibition of cyclooxygenase (COX) enzymes. EVOO is a rich source of bioactive compounds including fatty acids and phenolics; however, the biological activities of only a small subset of compounds associated with Olea europaea have been explored. Here, the OliveNetTM library (consisting of over 600 compounds) was utilized to investigate olive-derived compounds as potential modulators of the arachidonic acid pathway. Our first aim was to perform enzymatic assays to evaluate the inhibitory activity of a selection of phenolic compounds and fatty acids against COX isoforms (COX-1 and COX-2) and 15-lipoxygenase (15-LOX). Olive compounds were found to inhibit COX isoforms, with minimal activity against 15-LOX. Subsequent molecular docking indicated that the olive compounds possess strong binding affinities for the active site of COX isoforms, and molecular dynamics (MD) simulations confirmed the stability of binding. Moreover, olive compounds were predicted to have favorable pharmacokinetic properties, including a readiness to cross biological membranes as highlighted by steered MD simulations and umbrella sampling. Importantly, olive compounds including OLC were identified as non-inhibitors of the human ether-à-go-go-related gene (hERG) channel based on patch clamp assays. Overall, this study extends our understanding of the bioactivity of Olea-europaea-derived compounds, many of which are now known to be, at least in part, accountable for the beneficial health effects of the Mediterranean diet.
Collapse
Affiliation(s)
- Tom C. Karagiannis
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Katherine Ververis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Julia J. Liang
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Evan A. Kagarakis
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
| | - Debbie T. Z. Yi
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
| | - Vivian Xu
- Epigenomic Medicine Laboratory at prospED Polytechnic, Carlton, VIC 3053, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC 3004, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30–32 Ngan Shing Street, Sha Tin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
- Biomedical Laboratory Science, Department of Technology, Faculty of Health, University College Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Yıldız MT, Osmaniye D, Saglik BN, Levent S, Kurnaz R, Ozkay Y, Kaplancıklı ZA. Synthesis, molecular dynamics simulation, and evaluation of biological activity of novel flurbiprofen and ibuprofen-like compounds. J Mol Recognit 2024:e3089. [PMID: 38894531 DOI: 10.1002/jmr.3089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
The frequent use of anti-inflammatory drugs and the side effects of existing drugs keep the need for new compounds constant. For this purpose, flurbiprofen and ibuprofen-like compounds, which are frequently used anti-inflammatory compounds in this study, were synthesized and their structures were elucidated. Like ibuprofen and flurbiprofen, the compounds contain a residue of phenylacetic acid. On the other hand, it contains a secondary amine residue. Thus, it is planned to reduce the acidity, which is the biggest side effect of NSAI drugs, even a little bit. The estimated ADME parameters of the compounds were evaluated. Apart from internal use, local use of anti-inflammatory compounds is also very important. For this reason, the skin permeability values of the compounds were also calculated. And it has been found to be compatible with reference drugs. The COX enzyme inhibitory effects of the obtained compounds were tested by in vitro experiments. Compound 2a showed significant activity against COX-1 enzyme with an IC50 = 0.123 + 0.005 μM. The interaction of the compound with the enzyme active site was clarified by molecular dynamics studies.
Collapse
Affiliation(s)
- Mehmet Taha Yıldız
- Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Begum Nurpelin Saglik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Recep Kurnaz
- Acıbadem Hospital, Orthopedics and Traumatology Clinic, Eskişehir, Turkey
| | - Yusuf Ozkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Analysis Laboratory, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
5
|
Korbecki J, Bosiacki M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Biosynthesis and Significance of Fatty Acids, Glycerophospholipids, and Triacylglycerol in the Processes of Glioblastoma Tumorigenesis. Cancers (Basel) 2023; 15:cancers15072183. [PMID: 37046844 PMCID: PMC10093493 DOI: 10.3390/cancers15072183] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
One area of glioblastoma research is the metabolism of tumor cells and detecting differences between tumor and healthy brain tissue metabolism. Here, we review differences in fatty acid metabolism, with a particular focus on the biosynthesis of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) by fatty acid synthase (FASN), elongases, and desaturases. We also describe the significance of individual fatty acids in glioblastoma tumorigenesis, as well as the importance of glycerophospholipid and triacylglycerol synthesis in this process. Specifically, we show the significance and function of various isoforms of glycerol-3-phosphate acyltransferases (GPAT), 1-acylglycerol-3-phosphate O-acyltransferases (AGPAT), lipins, as well as enzymes involved in the synthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). This review also highlights the involvement of diacylglycerol O-acyltransferase (DGAT) in triacylglycerol biosynthesis. Due to significant gaps in knowledge, the GEPIA database was utilized to demonstrate the significance of individual enzymes in glioblastoma tumorigenesis. Finally, we also describe the significance of lipid droplets in glioblastoma and the impact of fatty acid synthesis, particularly docosahexaenoic acid (DHA), on cell membrane fluidity and signal transduction from the epidermal growth factor receptor (EGFR).
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Mahboubi-Rabbani M, Abbasi M, Zarghi A. Natural-Derived COX-2 Inhibitors as Anticancer Drugs: A Review of their Structural Diversity and Mechanism of Action. Anticancer Agents Med Chem 2023; 23:15-36. [PMID: 35638275 DOI: 10.2174/1389450123666220516153915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a key-type enzyme playing a crucial role in cancer development, making it a target of high interest for drug designers. In the last two decades, numerous selective COX-2 inhibitors have been approved for various clinical conditions. However, data from clinical trials propose that the prolonged use of COX-2 inhibitors is associated with life-threatening cardiovascular side effects. The data indicate that a slight structural modification can help develop COX-2 selective inhibitors with comparative efficacy and limited side effects. In this regard, secondary metabolites from natural sources offer great hope for developing novel COX-2 inhibitors with potential anticancer activity. In recent years, various nature-derived organic scaffolds are being explored as leads for developing new COX-2 inhibitors. The current review attempts to highlight the COX-2 inhibition activity of some naturally occurring secondary metabolites, concerning their capacity to inhibit COX-1 and COX-2 enzymes and inhibit cancer development, aiming to establish a structure-activity relationship.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Evaluation of Selective COX-2 Inhibition and In Silico Study of Kuwanon Derivatives Isolated from Morus alba. Int J Mol Sci 2021; 22:ijms22073659. [PMID: 33915826 PMCID: PMC8036738 DOI: 10.3390/ijms22073659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Six kuwanon derivatives (A/B/C/E/H/J) extracted from the roots of Morus alba L. were evaluated to determine their cyclooxygenase (COX)-1 and 2 inhibitory effects. Cyclooxygenase (COX) is known as the target enzyme of nonsteroidal anti-inflammatory drugs (NSAIDs), which are the most widely used therapeutic agents for pain and inflammation. Among six kuwanon derivatives, kuwanon A showed selective COX-2 inhibitory activity, almost equivalent to that of celecoxib, a known COX inhibitor. Kuwanon A showed high COX-2 inhibitory activity (IC50 = 14 μM) and a selectivity index (SI) range of >7.1, comparable to celecoxib (SI > 6.3). To understand the mechanisms underlying this effect, we performed docking simulations, fragment molecular orbital (FMO) calculations, and pair interaction energy decomposition analysis (PIEDA) at the quantum-mechanical level. As a result, kuwanon A had the strongest interaction with Arg120 and Tyr355 at the gate of the COX active site (−7.044 kcal/mol) and with Val89 in the membrane-binding domain (−6.599 kcal/mol). In addition, kuwanon A closely bound to Val89, His90, and Ser119, which are residues at the entrance and exit routes of the COX active site (4.329 Å). FMO calculations and PIEDA well supported the COX-2 selective inhibitory action of kuwanon A. It showed that the simulation and modeling results and experimental evidence were consistent.
Collapse
|
8
|
Taidi L, Maurady A, Britel MR. Molecular docking study and molecular dynamic simulation of human cyclooxygenase-2 (COX-2) with selected eutypoids. J Biomol Struct Dyn 2020; 40:1189-1204. [PMID: 32990169 DOI: 10.1080/07391102.2020.1823884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Inflammation is a key factor linked to almost all chronic and degenerative diseases implicit with certain levels of pain. In studies, over the past few years, it has been discovered that prostaglandins are the main cause of this inflammation and therefore could be blocked. Although no steroidal medications can be effective, natural compounds may offer a safer and often an effective alternative treatment for pain relief, especially for long-term use. Hence to find out natural anti-inflammatory compounds, we have highlighted five important butenolides that are eutypoid A, B, C, D and E with structure similar to that of rofecoxib, by ADMET and druglikeness analysis, followed by molecular docking with human COX-2 enzyme. Molecular docking studies revealed the importance of hydrophobic and hydrophilic amino acid residues for the stability of the ligands and that eutypoids C and E are the best candidates for the synthetic drugs with binding energy of -10.39 kcal/mol and -9.87 kcal/mol, respectively. The resulting complexes were then subject to 50 ns molecular dynamics (MD) simulation studies with the GROMACS package to analyze the stability of docked protein-ligand complexes and to assess the fluctuation and conformational changes during protein-ligand interaction. From the RMSD, RMSF, number of hydrogen bonds, SASA, PCA and MM/PBSA binding free energy analysis, we have found that out of five selected compounds eutypoid E showed good binding free energy of -174.45 kJ/mol, which is also good in other structural analyses. This compound displayed excellent pharmacological and structural properties to be drug candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Loubna Taidi
- Laboratory of Innovative Technology, University Abdelmalek Essaadi, Tangier, Morocco
| | - Amal Maurady
- Laboratory of Innovative Technology, University Abdelmalek Essaadi, Tangier, Morocco.,Faculty of Sciences and Technologies of Tangier, University Abdelmalek Essaadi, Tangier, Morocco
| | - Mohammed Reda Britel
- Laboratory of Innovative Technology, University Abdelmalek Essaadi, Tangier, Morocco
| |
Collapse
|
9
|
Rouzer CA, Marnett LJ. Structural and Chemical Biology of the Interaction of Cyclooxygenase with Substrates and Non-Steroidal Anti-Inflammatory Drugs. Chem Rev 2020; 120:7592-7641. [PMID: 32609495 PMCID: PMC8253488 DOI: 10.1021/acs.chemrev.0c00215] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclooxgenases are key enzymes of lipid signaling. They carry out the first step in the production of prostaglandins, important mediators of inflammation, pain, cardiovascular disease, and cancer, and they are the molecular targets for nonsteroidal anti-inflammatory drugs, which are among the oldest and most chemically diverse set of drugs known. Homodimeric proteins that behave as allosterically modulated, functional heterodimers, the cyclooxygenases exhibit complex kinetic behavior, requiring peroxide-dependent activation and undergoing suicide inactivation. Due to their important physiological and pathophysiological roles and keen interest on the part of the pharmaceutical industry, the cyclooxygenases have been the focus of a vast array of structural studies, leading to the publication of over 80 crystal structures of the enzymes in complex with substrates or inhibitors supported by a wealth of functional data generated by site-directed mutation experiments. In this review, we explore the chemical biology of the cyclooxygenases through the lens of this wealth of structural and functional information. We identify key structural features of the cyclooxygenases, break down their active site into regional binding pockets to facilitate comparisons between structures, and explore similarities and differences in the binding modes of the wide variety of ligands (both substrates and inhibitors) that have been characterized in complex with the enzymes. Throughout, we correlate structure with function whenever possible. Finally, we summarize what can and cannot be learned from the currently available structural data and discuss the critical intriguing questions that remain despite the wealth of information that has been amassed in this field.
Collapse
Affiliation(s)
- Carol A Rouzer
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Lawrence J Marnett
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry, and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
10
|
Priya D, Kathiravan MK. Molecular insights into benzene sulphonamide substituted diarylpyrazoles as cyclooxygenase-2 inhibitor and its structural modifications. J Biomol Struct Dyn 2020; 39:5093-5104. [DOI: 10.1080/07391102.2020.1785329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- D. Priya
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, India
| | - M. K. Kathiravan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, India
- Dr APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRMIST, Kattankulathur, India
| |
Collapse
|
11
|
Yadav AK, Reinhardt CJ, Arango AS, Huff HC, Dong L, Malkowski MG, Das A, Tajkhorshid E, Chan J. An Activity-Based Sensing Approach for the Detection of Cyclooxygenase-2 in Live Cells. Angew Chem Int Ed Engl 2020; 59:3307-3314. [PMID: 31854058 PMCID: PMC7416425 DOI: 10.1002/anie.201914845] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 01/05/2023]
Abstract
Cyclooxygenase-2 (COX-2) overexpression is prominent in inflammatory diseases, neurodegenerative disorders, and cancer. Directly monitoring COX-2 activity within its native environment poses an exciting approach to account for and illuminate the effect of the local environments on protein activity. Herein, we report the development of CoxFluor, the first activity-based sensing approach for monitoring COX-2 within live cells with confocal microscopy and flow cytometry. CoxFluor strategically links a natural substrate with a dye precursor to engage both the cyclooxygenase and peroxidase activities of COX-2. This catalyzes the release of resorufin and the natural product, as supported by molecular dynamics and ensemble docking. CoxFluor enabled the detection of oxygen-dependent changes in COX-2 activity that are independent of protein expression within live macrophage cells.
Collapse
Affiliation(s)
- Anuj K Yadav
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher J Reinhardt
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andres S Arango
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hannah C Huff
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Liang Dong
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Michael G Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Aditi Das
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emad Tajkhorshid
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
12
|
Yadav AK, Reinhardt CJ, Arango AS, Huff HC, Dong L, Malkowski MG, Das A, Tajkhorshid E, Chan J. An Activity‐Based Sensing Approach for the Detection of Cyclooxygenase‐2 in Live Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Anuj K. Yadav
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Christopher J. Reinhardt
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Andres S. Arango
- Center for Biophysics and Quantitative Biology Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Hannah C. Huff
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Liang Dong
- Department of Structural Biology Jacobs School of Medicine and Biomedical Sciences University at Buffalo Buffalo NY 14203 USA
| | - Michael G. Malkowski
- Department of Structural Biology Jacobs School of Medicine and Biomedical Sciences University at Buffalo Buffalo NY 14203 USA
| | - Aditi Das
- Center for Biophysics and Quantitative Biology Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Comparative Biosciences University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Center for Biophysics and Quantitative Biology Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jefferson Chan
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
13
|
Mishra VK, Mishra S. Flipped regiospecificity in L434F mutant of 8-lipoxygenase. Phys Chem Chem Phys 2020; 22:16013-16022. [DOI: 10.1039/d0cp02351e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Conformational change of Phe434 controls regio- and stereospecificity of L434F lipoxygenase catalysis.
Collapse
Affiliation(s)
- Vipin Kumar Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Sabyashachi Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
14
|
Amala R, Sujatha S. Presence of pyrroloquinazoline alkaloid in Adhatoda vasica attenuates inflammatory response through the downregulation of pro-inflammatory mediators in LPS stimulated RAW 264.7 macrophages. ACTA ACUST UNITED AC 2019; 11:15-22. [PMID: 33469504 PMCID: PMC7803918 DOI: 10.34172/bi.2021.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/28/2019] [Accepted: 11/24/2019] [Indexed: 01/22/2023]
Abstract
![]()
Introduction: Inflammation is the primary response caused due to harmful stimuli which are followed by the increased draining of plasma and immune cells from the body into the site of the injured tissue. A signaling cascade of growth factors and cytokines propagates and eventually matures in the inflammatory site involving the blood vessels and immune markers within the injured tissue in order to promote the renewal of the degenerated tissue. During a chronic disorder like diabetic foot ulcer, there is an obstinate inflammation which may act as a prime factor for limb amputation and upon persistent prevalence may even lead to death.
Methods: This study focuses on the mode of action of ALK-F (alkaloid fraction) isolated from Adhatoda vasica in attenuating the nitric oxide production which was estimated by Griess assay, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) expression was analyzed by ELISA and expression of COX-2 and iNOS by RT-PCR and western blotting in LPS stimulated RAW 264.7 macrophages. Total intracellular ROS was analyzed by DCFH-DA probing and the presence of quinazoline alkaloid (vasicine) in the ALK-F was evidenced by high performance liquid chromatography (HPLC).
Results: The ALK-F of A. vasica exhibited a significant inhibitory effect on LPS elicited nitrite production (13.2 ± 1.06 µM), iNOS, and COX-2 (2.6 and 3.3 fold) in a dose-dependent manner. There was a significant decrease in the generation of these pro-inflammatory cytokines TNF-α (1102 ± 1.02 pg/mL) and IL-6 (18 ± 0.87 ng/mL) and total intracellular ROS in the highest tested concentrations (1 µg and 10 µg) of ALK-F of A. vasica. HPLC analysis by the gradient elution method revealed the presence of 12% of quinazoline alkaloid vasicine in the crude alkaloid fraction.
Conclusion: Thus this study communally suggests that attenuation of nitric oxide and the dysregulation of genes responsible for inflammation which deliberates A. vasica to conflict against inflammation and provide remedial benefits in diabetic wound care.
Collapse
Affiliation(s)
- Reddy Amala
- Animal Cell Culture Laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamilnadu, India
| | - Sundaresan Sujatha
- Animal Cell Culture Laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamilnadu, India
| |
Collapse
|
15
|
Mishra VK, Mishra S. Origin of Regio- and Stereospecific Catalysis by 8-Lipoxygenase. J Phys Chem B 2019; 123:10605-10621. [PMID: 31775504 DOI: 10.1021/acs.jpcb.9b07917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Vipin Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
16
|
Puratchikody A, Umamaheswari A, Irfan N, Sriram D. Molecular Dynamics Studies on COX-2 Protein-tyrosine Analogue Complex and Ligand-based Computational Analysis of Halo-substituted Tyrosine Analogues. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180627123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The quest for new drug entities and novel structural fragments with
applications in therapeutic areas is always at the core of medicinal chemistry.
Methods:
As part of our efforts to develop novel selective cyclooxygenase-2 (COX-2) inhibitors
containing tyrosine scaffold. The objective of this study was to identify potent COX-2 inhibitors by
dynamic simulation, pharmacophore and 3D-QSAR methodologies. Dynamics simulation was performed
for COX-2/tyrosine derivatives complex to characterise structure validation and binding
stability. Certainly, Arg120 and Tyr355 residue of COX-2 protein formed a constant interaction
with tyrosine inhibitor throughout the dynamic simulation phase. A four-point pharmacophore with
one hydrogen bond acceptor, two hydrophobic and one aromatic ring was developed using the
HypoGen algorithm. The generated, statistically significant pharmacophore model, Hypo 1 with a
correlation coefficient of r2, 0.941, root mean square deviation, 1.15 and total cost value of 96.85.
Results:
The QSAR results exhibited good internal (r2, 0.992) and external predictions (r2pred,
0.814). The results of this study concluded the COX-2 docked complex was stable and interactive
like experimental protein structure. Also, it offered vital chemical features with geometric constraints
responsible for the inhibition of the selective COX-2 enzyme by tyrosine derivatives.
Conclusion:
In principle, this work offers significant structural understandings to design and develop
novel COX-2 inhibitors.
Collapse
Affiliation(s)
- Ayarivan Puratchikody
- Drug Discovery and Development Research Group, Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli 620024, Tamilnadu, India
| | - Appavoo Umamaheswari
- Drug Discovery and Development Research Group, Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli 620024, Tamilnadu, India
| | - Navabshan Irfan
- Drug Discovery and Development Research Group, Department of Pharmaceutical Technology, Bharathidasan Institute of Technology, Anna University, Tiruchirappalli 620024, Tamilnadu, India
| | - Dharmarajan Sriram
- Pharmacy Group, Birla Institute of Technology and Sciences-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 560078, India
| |
Collapse
|
17
|
Schumann-Gillett A, Blyth MT, O’Mara ML. Is protein structure enough? A review of the role of lipids in SLC6 transporter function. Neurosci Lett 2019; 700:64-69. [DOI: 10.1016/j.neulet.2018.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
|
18
|
Sárosi MB, Lybrand TP. Molecular Dynamics Simulation of Cyclooxygenase-2 Complexes with Indomethacin closo-Carborane Analogs. J Chem Inf Model 2018; 58:1990-1999. [PMID: 30067351 DOI: 10.1021/acs.jcim.8b00275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular dynamics simulation of carborane-containing ligands in complex with target enzymes is a challenging task due to the unique structure and properties of the carborane substituents and relative lack of appropriate experimental data to help assess the quality of carborane force field parameters. Here, we report results from energy minimization calculations for a series of carborane-amino acid complexes using carborane force field parameters published previously in the literature and adapted for use with the AMBER ff99SB and ff14SB potential functions. These molecular mechanics results agree well with quantum mechanical geometry optimization calculations obtained using dispersion-corrected density functional theory methods, suggesting that the carborane force field parameters should be suitable for more detailed calculations. We then performed molecular dynamics simulations for the 1,2-, 1,7-, and 1,12-dicarba- closo-dodecaborane(12) derivatives of indomethacin methyl ester bound with cyclooxygenase-2. The simulation results suggest that only the ortho-carborane derivative forms a stable complex, in agreement with experimental findings, and provide insight into the possible molecular basis for isomer binding selectivity.
Collapse
Affiliation(s)
- Menyhárt-Botond Sárosi
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy , Leipzig University , Johannisallee 29 , D-04103 Leipzig , Germany
| | - Terry P Lybrand
- Departments of Chemistry and Pharmacology, Center for Structural Biology , Vanderbilt University , Nashville , Tennessee 37235-1822 , United States
| |
Collapse
|
19
|
Sárosi MB. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study. J Mol Model 2018; 24:150. [PMID: 29869728 DOI: 10.1007/s00894-018-3686-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/21/2018] [Indexed: 01/24/2023]
Abstract
Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.
Collapse
Affiliation(s)
- Menyhárt-Botond Sárosi
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany.
| |
Collapse
|
20
|
Raharjo SJ, Kikuchi T. Molecular Dynamic Screening Sesquiterpenoid Pogostemon Herba as Suggested Cyclooxygenase Inhibitor. Acta Inform Med 2016; 24:332-337. [PMID: 28077888 PMCID: PMC5203741 DOI: 10.5455/aim.2016.24.332-337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/30/2016] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Virtual molecular dynamic sesquiterpenoid Pogostemon Herba (CID56928117, CID94275, CID107152, and CID519743) have screening as cyclooxygenase (COX-1/COX-2) selective inhibitor. METHODS Molecular interaction studies sesquiterpenoid compounds with COX-1 and COX-2 were using the molecular docking tools by Hex 8.0 and interactions were further visualized using by Discovery Studio Client 3.5 software tool and Virtual Molecular Dynamic 1.9.1 software. The binding energy calculation of molecular dynamic interaction was calculated by AMBER12 software. RESULT The analysis of the sesquiterpenoid compounds showed that CID56928117, CID94275, CID107152, and CID519743 have suggested as inhibitor of COX-1 and COX-2. CONCLUSION Collectively, the scoring binding energy calculation (with PBSA Model Solvent) sesquiterpenoid compounds: CID519743 had suggested as candidate for non-selective inhibitor; CID56928117 and CID94275 had suggested as candidate for a selective COX-1 inhibitor; and CID107152 had suggested as candidate for a selective COX-2 inhibitor.
Collapse
Affiliation(s)
- Sentot Joko Raharjo
- Academic of Pharmacy and Food Analysis. Graduate Life Science School, Ritsumeikan University, Biwako Kutsasu Campus, Shiga Prefecture, Japan
| | - Takeshi Kikuchi
- Academic of Pharmacy and Food Analysis. Graduate Life Science School, Ritsumeikan University, Biwako Kutsasu Campus, Shiga Prefecture, Japan
| |
Collapse
|
21
|
Konkle ME, Blobaum AL, Moth CW, Prusakiewicz JJ, Xu S, Ghebreselasie K, Akingbade D, Jacobs AT, Rouzer CA, Lybrand TP, Marnett LJ. Conservative Secondary Shell Substitution In Cyclooxygenase-2 Reduces Inhibition by Indomethacin Amides and Esters via Altered Enzyme Dynamics. Biochemistry 2015; 55:348-59. [PMID: 26704937 PMCID: PMC4721528 DOI: 10.1021/acs.biochem.5b01222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings.
Collapse
Affiliation(s)
- Mary E Konkle
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Anna L Blobaum
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Christopher W Moth
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Jeffery J Prusakiewicz
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Shu Xu
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Kebreab Ghebreselasie
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Dapo Akingbade
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Aaron T Jacobs
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Carol A Rouzer
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Terry P Lybrand
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Lawrence J Marnett
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| |
Collapse
|
22
|
Audran G, Brémond P, Marque SR, Siri D, Santelli M. Energetics of the biosynthesis of prostanes from arachidonate. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Lourenço AL, Saito MS, Dorneles LEG, Viana GM, Sathler PC, Aguiar LCDS, de Pádula M, Domingos TFS, Fraga AGM, Rodrigues CR, de Sousa VP, Castro HC, Cabral LM. Synthesis and antiplatelet activity of antithrombotic thiourea compounds: biological and structure-activity relationship studies. Molecules 2015; 20:7174-200. [PMID: 25903367 PMCID: PMC6272548 DOI: 10.3390/molecules20047174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 12/31/2022] Open
Abstract
The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p) displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations.
Collapse
Affiliation(s)
- André Luiz Lourenço
- Programa de Pós-graduação em Patologia, Departamento de Patologia, Hospital Universitário Antônio Pedro (HUAP), Universidade Federal Fluminense (UFF), Niterói CEP 24033-900, RJ, Brazil.
| | - Max Seidy Saito
- Programa de Pós-graduação em Patologia, Departamento de Patologia, Hospital Universitário Antônio Pedro (HUAP), Universidade Federal Fluminense (UFF), Niterói CEP 24033-900, RJ, Brazil.
| | - Luís Eduardo Gomes Dorneles
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Gil Mendes Viana
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Plínio Cunha Sathler
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | | | - Marcelo de Pádula
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | | | - Aline Guerra Manssour Fraga
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Carlos Rangel Rodrigues
- ModMolQSAR, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Valeria Pereira de Sousa
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Helena Carla Castro
- LABiEMOL, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense (UFF), Niterói CEP 24033-900, RJ, Brazil.
| | - Lucio Mendes Cabral
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| |
Collapse
|
24
|
Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem 2015; 407:4995-5007. [PMID: 25893801 DOI: 10.1007/s00216-015-8664-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 12/28/2022]
Abstract
The high chemical complexity of the lipidome is one of the major challenges in lipidomics research. Ion-mobility spectrometry (IMS), a gas-phase electrophoretic technique, makes possible the separation of ions in the gas phase according to their charge, shape, and size. IMS can be combined with mass spectrometry (MS), adding three major benefits to traditional lipidomic approaches. First, IMS-MS allows the determination of the collision cross section (CCS), a physicochemical measure related to the conformational structure of lipid ions. The CCS is used to improve the confidence of lipid identification. Second, IMS-MS provides a new set of hybrid fragmentation experiments. These experiments, which combine collision-induced dissociation with ion-mobility separation, improve the specificity of MS/MS-based approaches. Third, IMS-MS improves the peak capacity and signal-to-noise ratio of traditional analytical approaches. In doing so, it allows the separation of complex lipid extracts from interfering isobaric species. Developing in parallel with advances in instrumentation, informatics solutions enable analysts to process and exploit IMS-MS data for qualitative and quantitative applications. Here we review the current approaches for lipidomics research based on IMS-MS, including liquid chromatography-MS and direct-MS analyses of "shotgun" lipidomics and MS imaging.
Collapse
|
25
|
Binding Energy Calculation of Patchouli Alcohol Isomer Cyclooxygenase Complexes Suggested as COX-1/COX-2 Selective Inhibitor. Adv Bioinformatics 2014; 2014:850628. [PMID: 25484897 PMCID: PMC4251649 DOI: 10.1155/2014/850628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/23/2022] Open
Abstract
To understand the structural features that dictate the selectivity of the two isoforms of the prostaglandin H2 synthase (PGHS/COX), the three-dimensional (3D) structure of COX-1/COX-2 was assessed by means of binding energy calculation of virtual molecular dynamic with using ligand alpha-Patchouli alcohol isomers. Molecular interaction studies with COX-1 and COX-2 were done using the molecular docking tools by Hex 8.0. Interactions were further visualized by using Discovery Studio Client 3.5 software tool. The binding energy of molecular interaction was calculated by AMBER12 and Virtual Molecular Dynamic 1.9.1 software. The analysis of the alpha-Patchouli alcohol isomer compounds showed that all alpha-Patchouli alcohol isomers were suggested as inhibitor of COX-1 and COX-2. Collectively, the scoring binding energy calculation (with PBSA Model Solvent) of alpha-Patchouli alcohol isomer compounds (CID442384, CID6432585, CID3080622, CID10955174, and CID56928117) was suggested as candidate for a selective COX-1 inhibitor and CID521903 as nonselective COX-1/COX-2.
Collapse
|
26
|
Lopez DH, Fiol-deRoque MA, Noguera-Salvà MA, Terés S, Campana F, Piotto S, Castro JA, Mohaibes RJ, Escribá PV, Busquets X. 2-hydroxy arachidonic acid: a new non-steroidal anti-inflammatory drug. PLoS One 2013; 8:e72052. [PMID: 24015204 PMCID: PMC3754997 DOI: 10.1371/journal.pone.0072052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/07/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) are a family of COX1 and COX2 inhibitors used to reduce the synthesis of pro-inflammatory mediators. In addition, inflammation often leads to a harmful generation of nitric oxide. Efforts are being done in discovering safer NSAIDs molecules capable of inhibiting the synthesis of pro-inflammatory lipid mediators and nitric oxide to reduce the side effects associated with long term therapies. METHODOLOGY/PRINCIPAL FINDINGS The analogue of arachidonic acid (AA), 2-hydroxy-arachidonic acid (2OAA), was designed to inhibit the activities of COX1 and COX2 and it was predicted to have similar binding energies as AA for the catalytic sites of COX1 and COX2. The interaction of AA and 2OAA with COX1 and COX2 was investigated calculating the free energy of binding and the Fukui function. Toxicity was determined in mouse microglial BV-2 cells. COX1 and COX2 (PGH2 production) activities were measured in vitro. COX1 and COX2 expression in human macrophage-like U937 cells were carried out by Western blot, immunocytochemistry and RT-PCR analysis. NO production (Griess method) and iNOS (Western blot) were determined in mouse microglial BV-2 cells. The comparative efficacy of 2OAA, ibuprofen and cortisone in lowering TNF-α serum levels was determined in C57BL6/J mice challenged with LPS. We show that the presence of the -OH group reduces the likelihood of 2OAA being subjected to H* abstraction in COX, without altering significantly the free energy of binding. The 2OAA inhibited COX1 and COX2 activities and the expression of COX2 in human U937 derived macrophages challenged with LPS. In addition, 2OAA inhibited iNOS expression and the production of NO in BV-2 microglial cells. Finally, oral administration of 2OAA decreased the plasma TNF-α levels in vivo. CONCLUSION/SIGNIFICANCE These findings demonstrate the potential of 2OAA as a NSAID.
Collapse
Affiliation(s)
- Daniel H. Lopez
- Lipopharma Therapeutics, Palma de Mallorca, Balearic Islands, Spain
| | - Maria A. Fiol-deRoque
- Laboratory of Cell Biology, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Maria A. Noguera-Salvà
- Laboratory of Cell Biology, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Terés
- Lipopharma Therapeutics, Palma de Mallorca, Balearic Islands, Spain
| | - Federica Campana
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fischiano, Salerno, Italy
| | - Stefano Piotto
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fischiano, Salerno, Italy
| | - José A. Castro
- Laboratory of Genetics, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Raheem J. Mohaibes
- Laboratory of Cell Biology, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Pablo V. Escribá
- Laboratory of Molecular and Cellular Biomedicine, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
- * E-mail:
| | - Xavier Busquets
- Laboratory of Cell Biology, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
27
|
Mechanism of the irreversible inhibition of human cyclooxygenase-1 by aspirin as predicted by QM/MM calculations. J Mol Graph Model 2013; 40:99-109. [DOI: 10.1016/j.jmgm.2012.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 12/21/2022]
|
28
|
Schildknecht S, Karreman C, Daiber A, Zhao C, Hamacher J, Perlman D, Jung B, van der Loo B, O'Connor P, Leist M, Ullrich V, Bachschmid MM. Autocatalytic nitration of prostaglandin endoperoxide synthase-2 by nitrite inhibits prostanoid formation in rat alveolar macrophages. Antioxid Redox Signal 2012; 17:1393-406. [PMID: 22578329 PMCID: PMC3437048 DOI: 10.1089/ars.2011.4485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Prostaglandin endoperoxide H(2) synthase (PGHS) is a well-known target for peroxynitrite-mediated nitration. In several experimental macrophage models, however, the relatively late onset of nitration failed to coincide with the early peak of endogenous peroxynitrite formation. In the present work, we aimed to identify an alternative, peroxynitrite-independent mechanism, responsible for the observed nitration and inactivation of PGHS-2 in an inflammatory cell model. RESULTS In primary rat alveolar macrophages stimulated with lipopolysaccharide (LPS), PGHS-2 activity was suppressed after 12 h, although the prostaglandin endoperoxide H(2) synthase (PGHS-2) protein was still present. This coincided with a nitration of the enzyme. Coincubation with a nitric oxide synthase-2 (NOS-2) inhibitor preserved PGHS-2 nitration and at the same time restored thromboxane A(2) (TxA(2)) synthesis in the cells. Formation of reactive oxygen species (ROS) was maximal at 4 h and then returned to baseline levels. Nitrite (NO(2)(-)) production occurred later than ROS generation. This rendered generation of peroxynitrite and the nitration of PGHS-2 unlikely. We found that the nitrating agent was formed from NO(2)(-), independent from superoxide ((•)O(2)(-)). Purified PGHS-2 treated with NO(2)(-) was selectively nitrated on the active site Tyr(371), as identified by mass spectrometry (MS). Exposure to peroxynitrite resulted in the nitration not only of Tyr(371), but also of other tyrosines (Tyr). INNOVATION AND CONCLUSION The data presented here point to an autocatalytic nitration of PGHS-2 by NO(2)(-), catalyzed by the enzyme's endogenous peroxidase activity and indicate a potential involvement of this mechanism in the termination of prostanoid formation under inflammatory conditions.
Collapse
|
29
|
Sachett LG, Verli H. Dynamics of different arachidonic acid orientations bound to prostaglandin endoperoxide synthases. Eur J Med Chem 2011; 46:5212-7. [PMID: 21864948 DOI: 10.1016/j.ejmech.2011.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/11/2011] [Accepted: 08/09/2011] [Indexed: 11/19/2022]
Abstract
Prostaglandin endoperoxide synthases (PGHSs) catalyze the conversion of arachidonic acid (AA) into prostaglandin endoperoxide H(2). This reaction requires a specific orientation of AA within the active site, but an alternative crystallographic binding orientation for AA also exists. Since the origin of this alternative complex, and its potential relevance, have been neglected so far, we have characterized the dynamics of both orientations of AA, bound to PGHS-1 and -2, in order to obtain new insights for designing PGHSs inhibitors. Our results indicate that AA in the alternative orientation seems to be less stable, moving toward Arg120. Such potentially minor orientation of AA can be related to crystallographic complexes of anti-inflammatory agents, pointing to an alternate SAR on PGHSs inhibitors.
Collapse
Affiliation(s)
- Liana Guimarães Sachett
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15005, Porto Alegre 91500-970, RS, Brazil
| | | |
Collapse
|
30
|
Maldonado-Rojas W, Olivero-Verbel J. Potential interaction of natural dietary bioactive compounds with COX-2. J Mol Graph Model 2011; 30:157-66. [PMID: 21803623 DOI: 10.1016/j.jmgm.2011.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 07/03/2011] [Accepted: 07/05/2011] [Indexed: 02/02/2023]
Abstract
Bioactive natural products present in the diet play an important role in several biological processes, and many have been involved in the alleviation and control of inflammation-related diseases. These actions have been linked to both gene expression modulation of pro-inflammatory enzymes, such as cyclooxygenase 2 (COX-2), and to an action involving a direct inhibitory binding on this protein. In this study, several food-related compounds with known gene regulatory action on inflammation have been examined in silico as COX-2 ligands, utilizing AutoDock Vina, GOLD and Surflex-Dock (SYBYL) as docking protocols. Curcumin and all-trans retinoic acid presented the maximum absolute AutoDock Vina-derived binding affinities (9.3 kcal/mol), but genistein, apigenin, cyanidin, kaempferol, and docosahexaenoic acid, were close to this value. AutoDock Vina affinities and GOLD scores for several known COX-2 inhibitors significatively correlated with reported median inhibitory concentrations (R² = 0.462, P < 0.001 and R² = 0.238, P = 0.029, respectively), supporting the computational reliability of the predictions made by our docking simulations. Moreover, docking analysis insinuate the synergistic action of curcumin on celecoxib-induced inhibition of COX-2 may occur allosterically, as this natural compound docks to a place different from the inhibitor binding site. These results suggest that the anti-inflammatory properties of some food-derived molecules could be the result of their direct binding capabilities to COX-2, and this process can be modeled using protein-ligand docking methodologies.
Collapse
Affiliation(s)
- Wilson Maldonado-Rojas
- Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, Colombia
| | | |
Collapse
|
31
|
Vecchio AJ, Simmons DM, Malkowski MG. Structural basis of fatty acid substrate binding to cyclooxygenase-2. J Biol Chem 2010; 285:22152-63. [PMID: 20463020 DOI: 10.1074/jbc.m110.119867] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cyclooxygenases (COX-1 and COX-2) are membrane-associated heme-containing homodimers that generate prostaglandin H(2) from arachidonic acid (AA). Although AA is the preferred substrate, other fatty acids are oxygenated by these enzymes with varying efficiencies. We determined the crystal structures of AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) bound to Co(3+)-protoporphyrin IX-reconstituted murine COX-2 to 2.1, 2.4, and 2.65 A, respectively. AA, EPA, and docosahexaenoic acid bind in different conformations in each monomer constituting the homodimer in their respective structures such that one monomer exhibits nonproductive binding and the other productive binding of the substrate in the cyclooxygenase channel. The interactions identified between protein and substrate when bound to COX-1 are conserved in our COX-2 structures, with the only notable difference being the lack of interaction of the carboxylate of AA and EPA with the side chain of Arg-120. Leu-531 exhibits a different side chain conformation when the nonproductive and productive binding modes of AA are compared. Unlike COX-1, mutating this residue to Ala, Phe, Pro, or Thr did not result in a significant loss of activity or substrate binding affinity. Determination of the L531F:AA crystal structure resulted in AA binding in the same global conformation in each monomer. We speculate that the mobility of the Leu-531 side chain increases the volume available at the opening of the cyclooxygenase channel and contributes to the observed ability of COX-2 to oxygenate a broad spectrum of fatty acid and fatty ester substrates.
Collapse
Affiliation(s)
- Alex J Vecchio
- Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, USA
| | | | | |
Collapse
|
32
|
Fernandes CL, Sachett LG, Pol-Fachin L, Verli H. GROMOS96 43a1 performance in predicting oligosaccharide conformational ensembles within glycoproteins. Carbohydr Res 2009; 345:663-71. [PMID: 20106471 DOI: 10.1016/j.carres.2009.12.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 11/29/2022]
Abstract
In previous work [Pol-Fachin, L.; Fernandes, C. L.; Verli, H.; Carbohydr. Res.2009, 344, 491-500], we had demonstrated that GROMOS96 43a1 force field and Löwdin HF/6-31G * *-derived atomic charges, adequately represent a glycoprotein's conformational ensemble in aqueous solutions, taking as the starting geometries NMR-determined structures. Based on such data, the present work intends to evaluate the use of the main solution conformations of isolated disaccharides, to build the carbohydrate moiety of glycoproteins, for which no previous experimental information is available. The observed results suggested that the entire glycoprotein scaffold appears unable to promote major modifications in the conformational behavior of glycosidic linkages. Additionally, when compared to energy contour plots, the results support the use of solution ensembles, to refine vacuum conformations of carbohydrate databases in the assembling of glycoproteins 3D structures. Finally, such approach is applied to build a full glycosylated model for COX-1 and COX-2 enzymes.
Collapse
Affiliation(s)
- C L Fernandes
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, CP 15005, Porto Alegre 91500-970, RS, Brazil
| | | | | | | |
Collapse
|
33
|
Roche VF. A receptor-grounded approach to teaching nonsteroidal antiinflammatory drug chemistry and structure-activity relationships. AMERICAN JOURNAL OF PHARMACEUTICAL EDUCATION 2009; 73:143. [PMID: 20221336 PMCID: PMC2828304 DOI: 10.5688/aj7308143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 06/01/2009] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To describe a receptor-based approach to promote learning about nonsteroidal anti-inflammatory drug (NSAID) chemistry, structure-activity relationships, and therapeutic decision-making. DESIGN Three lessons on cyclooxygenase (COX) and NSAID chemistry, and NSAID therapeutic utility, were developed using text-based resources and primary medicinal chemistry and pharmacy practice literature. Learning tools were developed to assist students in content mastery. ASSESSMENT Student learning was evaluated via performance on quizzes and examinations that measured understanding of COX and NSAID chemistry, and the application of that knowledge to therapeutic problem solving. CONCLUSION Student performance on NSAID-focused quizzes and examinations documented the success of this approach.
Collapse
Affiliation(s)
- Victoria F Roche
- School of Pharmacy and Health Professions, Creighton University Medical Center, Omaha, NE 68178, USA.
| |
Collapse
|
34
|
Prostaglandin H synthase: resolved and unresolved mechanistic issues. Arch Biochem Biophys 2009; 493:103-24. [PMID: 19728984 DOI: 10.1016/j.abb.2009.08.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 11/20/2022]
Abstract
The cyclooxygenase and peroxidase activities of prostaglandin H synthase (PGHS)-1 and -2 have complex kinetics, with the cyclooxygenase exhibiting feedback activation by product peroxide and irreversible self-inactivation, and the peroxidase undergoing an independent self-inactivation process. The mechanistic bases for these complex, non-linear steady-state kinetics have been gradually elucidated by a combination of structure/function, spectroscopic and transient kinetic analyses. It is now apparent that most aspects of PGHS-1 and -2 catalysis can be accounted for by a branched chain radical mechanism involving a classic heme-based peroxidase cycle and a radical-based cyclooxygenase cycle. The two cycles are linked by the Tyr385 radical, which originates from an oxidized peroxidase intermediate and begins the cyclooxygenase cycle by abstracting a hydrogen atom from the fatty acid substrate. Peroxidase cycle intermediates have been well characterized, and peroxidase self-inactivation has been kinetically linked to a damaging side reaction involving the oxyferryl heme oxidant in an intermediate that also contains the Tyr385 radical. The cyclooxygenase cycle intermediates are poorly characterized, with the exception of the Tyr385 radical and the initial arachidonate radical, which has a pentadiene structure involving C11-C15 of the fatty acid. Oxygen isotope effect studies suggest that formation of the arachidonate radical is reversible, a conclusion consistent with electron paramagnetic resonance spectroscopic observations, radical trapping by NO, and thermodynamic calculations, although moderate isotope selectivity was found for the H-abstraction step as well. Reaction with peroxide also produces an alternate radical at Tyr504 that is linked to cyclooxygenase activation efficiency and may serve as a reservoir of oxidizing equivalent. The interconversions among radicals on Tyr385, on Tyr504, and on arachidonate, and their relationships to regulation and inactivation of the cyclooxygenase, are still under active investigation for both PGHS isozymes.
Collapse
|
35
|
Wan S, Coveney PV. A comparative study of the COX-1 and COX-2 isozymes bound to lipid membranes. J Comput Chem 2009; 30:1038-50. [PMID: 18942723 DOI: 10.1002/jcc.21130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The monotopic proteins COX-1 and -2 in dimeric form bound to lipid bilayer membranes are studied using molecular dynamics simulations within an aqueous environment. The 25-ns simulations are performed for both isozymes with arachidonic acid bound in the cyclooxygenase sites. The interactions between the enzymes and the lipids are analyzed, providing insight into the attachment mechanism of monotopic proteins to membranes. Our study reveals some key differences between the two isozymes that include the orientations at which they sit on the surface of the membranes and the depths to which they embed within the membranes. The differences in membrane association of the isozymes indicate that they may integrate distinctively with the same membrane, and/or with different membranes or their lipid components. Our results indicate that arachidonic acid can be bound in the cyclooxygenase active site in distinct catalytically competent conformations that lead to certain hydroperoxy acids; and the arachidonic acid and/or cyclooxygenase sites undergo a conformational change which makes only one subunit of each homodimer catalytically active.
Collapse
Affiliation(s)
- Shunzhou Wan
- Centre for Computational Science, Department of Chemistry, University College London, London WC1A 0HE, United Kingdom
| | | |
Collapse
|
36
|
Schildknecht S, Ullrich V. Peroxynitrite as regulator of vascular prostanoid synthesis. Arch Biochem Biophys 2009; 484:183-9. [DOI: 10.1016/j.abb.2008.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/20/2008] [Indexed: 01/17/2023]
|
37
|
Garscha U, Oliw EH. Critical amino acids for the 8(R)-dioxygenase activity of linoleate diol synthase. A comparison with cyclooxygenases. FEBS Lett 2008; 582:3547-51. [DOI: 10.1016/j.febslet.2008.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/10/2008] [Accepted: 09/12/2008] [Indexed: 11/30/2022]
|
38
|
Schneider C, Pratt DA, Porter NA, Brash AR. Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. ACTA ACUST UNITED AC 2007; 14:473-88. [PMID: 17524979 PMCID: PMC2692746 DOI: 10.1016/j.chembiol.2007.04.007] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/03/2007] [Accepted: 04/10/2007] [Indexed: 12/16/2022]
Abstract
Lipoxygenases (LOX) and cyclooxygenases (COX) react an achiral polyunsaturated fatty acid with oxygen to form a chiral peroxide product of high regio- and stereochemical purity. Both enzymes employ free radical chemistry reminiscent of hydrocarbon autoxidation but execute efficient control during catalysis to form a specific product over the multitude of isomers found in the nonenzymatic reaction. Exactly how both dioxygenases achieve this positional and stereo control is far from clear. We present four mechanistic models, not mutually exclusive, that could account for the specific reactions of molecular oxygen with a fatty acid in the LOX or COX active site.
Collapse
Affiliation(s)
- Claus Schneider
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, U.S.A
| | - Derek A. Pratt
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, U.S.A
- Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, U.S.A
| | - Alan R. Brash
- Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, U.S.A
| |
Collapse
|
39
|
Soliman W, Bhattacharjee S, Kaur K. Molecular dynamics simulation study of interaction between a class IIa bacteriocin and its immunity protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1002-13. [PMID: 17586105 DOI: 10.1016/j.bbapap.2007.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/18/2007] [Accepted: 05/15/2007] [Indexed: 11/17/2022]
Abstract
Molecular dynamics (MD) simulations of carnobacteriocin B2 (CbnB2), a structurally well-characterized class IIa bacteriocin, and its immunity protein (ImB2) in lipid bilayer environment have been conducted to explore the interaction between them. Six 30-ns simulations were conducted in DPPC or POPG bilayer systems. In these simulations, ImB2 was placed in the aqueous layer with different orientations facing CbnB2 to sample all the faces of ImB2. The MD results indicate that (i) while CbnB2 remained embedded in the bilayer, it tends to move toward the interface, and (ii) the presence of CbnB2 in the DPPC bilayer attracts ImB2 toward the bilayer. In one of the orientations in DPPC bilayer system (simulation 1), ImB2 penetrates the bilayer and interacts with CbnB2 by ion-pair interaction. At several instances toward the later half of the simulation (15-30 ns), ImB2 and CbnB2 were found to form salt-bridge between Arg95 of ImB2 and Glu24 of CbnB2. Simulation in POPG bilayer displayed strong interaction between the positively charged ImB2 and the negatively charged polar head groups of the POPG molecules at the lipid-water interface. However, ImB2 was not able to penetrate the bilayer thereby preventing any interaction between ImB2 and CbnB2.
Collapse
Affiliation(s)
- Wael Soliman
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2N8
| | | | | |
Collapse
|
40
|
Di Bari L, Pescitelli G, Salvadori P, Rovini M, Anzini M, Cappelli A, Vomero S. Synthesis, resolution, and absolute configuration of two novel and selective cyclooxygenase-2 inhibitors based on the 1,5-diarylpyrrole structure. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.tetasy.2006.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|