1
|
Hboub H, Ben Mrid R, Bouchmaa N, Oukkache N, El Fatimy R. An in-depth exploration of snake venom-derived molecules for drug discovery in advancing antiviral therapeutics. Heliyon 2024; 10:e37321. [PMID: 39323826 PMCID: PMC11422003 DOI: 10.1016/j.heliyon.2024.e37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/20/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Snake venom is a cocktail and rich source of various bioactive compounds that have been extensively studied for their potential as pharmaceutical agents due to their diverse chemical structures and wide range of biological activities. In light of the emergency and the re-emergence of viral infectious diseases that threaten human health and economic systems, exploring new fertile and rich fields such as snake venom is an attractive path for anti-viral drug discovery, especially in the lack of effective vaccines. Although 85 % of reported antiviral molecules belong to the phospholipase A2 (PLA2) family, other protein families including L-amino acid oxidases (LAAO), disintegrins, metalloproteases (SVMPs), and cathelicidins have also shown antiviral activity. Thus, in this review, we have highlighted the antiviral properties of compounds derived from snake venom and their mechanisms of action against virus classes like HIV, Coronaviridae, Flaviviridae, and Paramyxoviridae. Although the initial research emphasis has been on Retroviridae (HIV) and Flaviviridae viruses, it is crucial to extend the exploration of the potential of these compounds to other viruses. The utilization of snake venom-derived compounds as antivirals shows significant promise for the development of novel therapeutics to address viral infections. However, a more in-depth investigation is necessary to fully assess the potential of these compounds against other viruses and unveil the mechanisms underlying their action.
Collapse
Affiliation(s)
- Hicham Hboub
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, 20360, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| |
Collapse
|
2
|
Bezerra P, Motti EF. 3-NAntC: A Potent Crotoxin B-Derived Peptide against the Triple-Negative MDA-MB-231 Breast Cancer Cell Line. Molecules 2024; 29:1646. [PMID: 38611925 PMCID: PMC11013444 DOI: 10.3390/molecules29071646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer stands as the most prevalent type of tumor and a significant contributor to cancer-related deaths. Among its various subtypes, triple-negative breast cancer (TNBC) presents the worst prognosis due to its aggressive nature and the absence of effective treatments. Crotoxin, a protein found in the venom of Crotalus genus snakes, has demonstrated notable antitumor activity against aggressive solid tumors. However, its application has been hindered by substantial toxicity in humans. In efforts to address this challenge, Crotoxin B-derived peptides were synthesized and evaluated in vitro for their antitumor potential, leading to the discovery of 3-NAntC. Treatment with 3-NAntC at 1 µg/mL for 72 h notably reduced the viability of MDA-MB-231 cells to 49.0 ± 17.5% (p < 0.0001), while exhibiting minimal impact on the viability of HMEC cells (98.2 ± 13.8%) under the same conditions. Notably, 3-NAntC displayed superior antitumoral activity in vitro compared to cisplatin and exhibited a similar effect to doxorubicin. Further investigation revealed that 3-NAntC decreased the proliferation of MDA-MB-231 cells and induced G2/M phase arrest. It primarily prompted optimal cell death by apoptosis, with a lower incidence of the less desirable cell death by necrosis in comparison to doxorubicin. Additionally, 3-NAntC demonstrated low LDH release, and its cytotoxicity remained unaffected by the autophagy inhibitor 3-MA. In an in vivo zebrafish model, 3-NAntC exhibited excellent tolerability, showing no lethal effects and a low rate of malformations at high doses of up to 75 mg/mL. Overall, 3-NAntC emerges as a novel synthetic peptide with promising antitumor effects in vitro against TNBC cells and low toxicity in vivo.
Collapse
|
3
|
Cao R, He J, Yu Z, Chen Y, Zhu L. Moderately severe acute pancreatitis after snake bite: a case report from Southern China. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:508-511. [PMID: 37729941 DOI: 10.1055/a-2150-2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Venomous snakebites are not rare worldwide, and this is also the situation in the mountainous regions of southern China, where they pose a serious health risk to the local population. Snake venom usually causes a variety of clinical symptoms, such as local pain and swelling, systemic coagulation system abnormalities, and shock, but rarely leads to acute pancreatitis. In this report, we presented a rare case of moderately severe acute pancreatitis caused by snake venom even after prompt antivenom treatment. The patient was relieved, obviously, with effective treatment of acute pancreatitis and was discharged without severe complications. Although acute pancreatitis after snake bite is a rarity, its serious complications and lethality still deserve our utmost attention, and timely and standardized treatment of acute pancreatitis is needed in addition to antivenom treatment.
Collapse
Affiliation(s)
- Ronglai Cao
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinli He
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengping Yu
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youxiang Chen
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| | - Liang Zhu
- Department of Gastroenterology, First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, China
| |
Collapse
|
4
|
Hoepner CM, Stewart ZK, Qiao R, Fobert EK, Prentis PJ, Colella A, Chataway T, Burke da Silva K, Abbott CA. Proteotransciptomics of the Most Popular Host Sea Anemone Entacmaea quadricolor Reveals Not All Toxin Genes Expressed by Tentacles Are Recruited into Its Venom Arsenal. Toxins (Basel) 2024; 16:85. [PMID: 38393163 PMCID: PMC10893224 DOI: 10.3390/toxins16020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
While the unique symbiotic relationship between anemonefishes and sea anemones is iconic, it is still not fully understood how anemonefishes can withstand and thrive within the venomous environment of their host sea anemone. In this study, we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most common host sea anemone, Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E. quadricolor tentacles (0.05% of gene clusters, 1.8% of expression) and 5375 proteins were detected in milked venom, only 4% of proteins detected in venom were putative toxins (230), and they only represent on average 14% of the normalised protein expression in the milked venom samples. Thus, most proteins in milked venom do not appear to have a toxin function. This work raises the perils of defining a dominant venom phenotype based on transcriptomics data alone in sea anemones, as we found that the dominant venom phenotype differs between the transcriptome and proteome abundance data. E. quadricolor venom contains a mixture of toxin-like proteins of unknown and known function. A newly identified toxin protein family, Z3, rich in conserved cysteines of unknown function, was the most abundant at the RNA transcript and protein levels. The venom was also rich in toxins from the Protease S1, Kunitz-type and PLA2 toxin protein families and contains toxins from eight venom categories. Exploring the intricate venom toxin components in other host sea anemones will be crucial for improving our understanding of how anemonefish adapt to the venomous environment.
Collapse
Affiliation(s)
- Cassie M. Hoepner
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Zachary K. Stewart
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Robert Qiao
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Emily K. Fobert
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peter J. Prentis
- Centre for Agriculture and Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Alex Colella
- Flinders Proteomics Facility, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Tim Chataway
- Flinders Proteomics Facility, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Catherine A. Abbott
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
5
|
Avella I, Damm M, Freitas I, Wüster W, Lucchini N, Zuazo Ó, Süssmuth RD, Martínez-Freiría F. One Size Fits All-Venomics of the Iberian Adder ( Vipera seoanei, Lataste 1878) Reveals Low Levels of Venom Variation across Its Distributional Range. Toxins (Basel) 2023; 15:371. [PMID: 37368672 PMCID: PMC10301717 DOI: 10.3390/toxins15060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
European vipers (genus Vipera) are medically important snakes displaying considerable venom variation, occurring at different levels in this group. The presence of intraspecific venom variation, however, remains understudied in several Vipera species. Vipera seoanei is a venomous snake endemic to the northern Iberian Peninsula and south-western France, presenting notable phenotypic variation and inhabiting several diverse habitats across its range. We analysed the venoms of 49 adult specimens of V. seoanei from 20 localities across the species' Iberian distribution. We used a pool of all individual venoms to generate a V. seoanei venom reference proteome, produced SDS-PAGE profiles of all venom samples, and visualised patterns of variation using NMDS. By applying linear regression, we then assessed presence and nature of venom variation between localities, and investigated the effect of 14 predictors (biological, eco-geographic, genetic) on its occurrence. The venom comprised at least 12 different toxin families, of which five (i.e., PLA2, svSP, DI, snaclec, svMP) accounted for about 75% of the whole proteome. The comparative analyses of the SDS-PAGE venom profiles showed them to be remarkably similar across the sampled localities, suggesting low geographic variability. The regression analyses suggested significant effects of biological and habitat predictors on the little variation we detected across the analysed V. seoanei venoms. Other factors were also significantly associated with the presence/absence of individual bands in the SDS-PAGE profiles. The low levels of venom variability we detected within V. seoanei might be the result of a recent population expansion, or of processes other than directional positive selection.
Collapse
Affiliation(s)
- Ignazio Avella
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Maik Damm
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; (M.D.)
| | - Inês Freitas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Wolfgang Wüster
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK;
| | - Nahla Lucchini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Óscar Zuazo
- Calle La Puebla 1, 26250 Santo Domingo de la Calzada, Spain
| | - Roderich D. Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; (M.D.)
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
6
|
Castro-Amorim J, Novo de Oliveira A, Da Silva SL, Soares AM, Mukherjee AK, Ramos MJ, Fernandes PA. Catalytically Active Snake Venom PLA 2 Enzymes: An Overview of Its Elusive Mechanisms of Reaction. J Med Chem 2023; 66:5364-5376. [PMID: 37018514 PMCID: PMC10150362 DOI: 10.1021/acs.jmedchem.3c00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Snake venom-secreted phospholipase A2 (svPLA2) enzymes, both catalytically active and inactive, are a central component in envenoming. These are responsible for disrupting the cell membrane's integrity, inducing a wide range of pharmacological effects, such as the necrosis of the bitten limb, cardiorespiratory arrest, edema, and anticoagulation. Although extensively characterized, the reaction mechanisms of enzymatic svPLA2 are still to be thoroughly understood. This review presents and analyses the most plausible reaction mechanisms for svPLA2, such as the "single-water mechanism" or the "assisted-water mechanism" initially proposed for the homologous human PLA2. All of the mechanistic possibilities are characterized by a highly conserved Asp/His/water triad and a Ca2+ cofactor. The extraordinary increase in activity induced by binding to a lipid-water interface, known as "interfacial activation," critical for the PLA2s activity, is also discussed. Finally, a potential catalytic mechanism for the postulated noncatalytic PLA2-like proteins is anticipated.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Novo de Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Saulo Luís Da Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Andreimar M Soares
- Laboratory of Biotechnology of Proteins and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Rondônia 76812-245, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Rondônia 76805-846, Brazil
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
- Division of Life Sciences, Institute of Advanced Studies in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India
| | - Maria João Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Nguyen GTT, O'Brien C, Wouters Y, Seneci L, Gallissà-Calzado A, Campos-Pinto I, Ahmadi S, Laustsen AH, Ljungars A. High-throughput proteomics and in vitro functional characterization of the 26 medically most important elapids and vipers from sub-Saharan Africa. Gigascience 2022; 11:giac121. [PMID: 36509548 PMCID: PMC9744630 DOI: 10.1093/gigascience/giac121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Venomous snakes are important parts of the ecosystem, and their behavior and evolution have been shaped by their surrounding environments over the eons. This is reflected in their venoms, which are typically highly adapted for their biological niche, including their diet and defense mechanisms for deterring predators. Sub-Saharan Africa is rich in venomous snake species, of which many are dangerous to humans due to the high toxicity of their venoms and their ability to effectively deliver large amounts of venom into their victims via their bite. In this study, the venoms of 26 of sub-Saharan Africa's medically most relevant elapid and viper species were subjected to parallelized toxicovenomics analysis. The analysis included venom proteomics and in vitro functional characterization of whole venom toxicities, enabling a robust comparison of venom profiles between species. The data presented here corroborate previous studies and provide biochemical details for the clinical manifestations observed in envenomings by the 26 snake species. Moreover, two new venom proteomes (Naja anchietae and Echis leucogaster) are presented here for the first time. Combined, the presented data can help shine light on snake venom evolutionary trends and possibly be used to further improve or develop novel antivenoms.
Collapse
Affiliation(s)
- Giang Thi Tuyet Nguyen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Carol O'Brien
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yessica Wouters
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Lorenzo Seneci
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Alex Gallissà-Calzado
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Isabel Campos-Pinto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Murray TE, Richards CM, Robert-Gostlin VN, Bernath AK, Lindhout IA, Klegeris A. Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Res Bull 2022; 189:80-101. [PMID: 35988785 DOI: 10.1016/j.brainresbull.2022.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators. Some of these molecules are neuroprotective and inflammation resolving while others, including reactive oxygen species (ROS), nitric oxide (NO), matrix metalloproteinase (MMP)- 9, L-glutamate, and tumor necrosis factor α (TNF), are well-established toxins known to cause damage to surrounding cells and tissues. We hypothesized that similar to microglia, the brain immune cells, reactive astrocytes can release a broader set of diverse molecules that are potentially neurotoxic. A literature search was conducted to identify such molecules using the following two criteria: 1) evidence of their expression and secretion by astrocytes and 2) direct neurotoxic action. This review describes 14 structurally diverse molecules as less-established astrocyte neurotoxins, including C-X-C motif chemokine ligand (CXCL)10, CXCL12/CXCL12(5-67), FS-7-associated surface antigen ligand (FasL), macrophage inflammatory protein (MIP)- 2α, TNF-related apoptosis inducing ligand (TRAIL), pro-nerve growth factor (proNGF), pro-brain-derived neurotrophic factor (proBDNF), chondroitin sulfate proteoglycans (CSPGs), cathepsin (Cat)B, group IIA secretory phospholipase A2 (sPLA2-IIA), amyloid beta peptides (Aβ), high mobility group box (HMGB)1, ceramides, and lipocalin (LCN)2. For some of these molecules, further studies are required to establish either their direct neurotoxic effects or the full spectrum of stimuli that induce their release by astrocytes. Only limited studies with human-derived astrocytes and neurons are available for most of these potential neurotoxins, which is a knowledge gap that should be addressed in the future. We also summarize available evidence of the role these molecules play in select neuropathologies where reactive astrocytes are a key feature. A comprehensive understanding of the full spectrum of neurotoxins released by reactive astrocytes is key to understanding neuroinflammatory diseases characterized by the adverse activation of these cells and may guide the development of novel treatment strategies.
Collapse
Affiliation(s)
- Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Victoria N Robert-Gostlin
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Anna K Bernath
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Ivan A Lindhout
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
9
|
Pungerčar J, Bihl F, Lambeau G, Križaj I. What do secreted phospholipases A 2 have to offer in combat against different viruses up to SARS-CoV-2? Biochimie 2021; 189:40-50. [PMID: 34097986 PMCID: PMC8449419 DOI: 10.1016/j.biochi.2021.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/09/2022]
Abstract
Secreted phospholipases A2 (sPLA2s) form a widespread group of structurally-related enzymes that catalyse the hydrolysis of the sn-2 ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. In humans, nine catalytically active and two inactive sPLA2 proteins have been identified. These enzymes play diverse biological roles, including host defence against bacteria, parasites and viruses. Several of these endogenous sPLA2s may play a defensive role in viral infections, as they display in vitro antiviral activity by both direct and indirect mechanisms. However, endogenous sPLA2s may also exert an offensive and negative role, dampening the antiviral response or promoting inflammation in animal models of viral infection. Similarly, several exogenous sPLA2s, most of them from snake venoms and other animal venoms, possess in vitro antiviral activities. Thus, both endogenous and exogenous sPLA2s may be exploited for the development of new antiviral substances or as therapeutic targets for antagonistic drugs that may promote a more robust antiviral response. In this review, the antiviral versus proviral role of both endogenous and exogenous sPLA2s against various viruses including coronaviruses is presented. Based on the highlighted developments in this area of research, possible directions of future investigation are envisaged. One of them is also a possibility of exploiting sPLA2s as biological markers of the severity of the Covid-19 pandemic caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jože Pungerčar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Franck Bihl
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France.
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
10
|
Dacheux M, Chaouch S, Joy A, Labat A, Payré C, Petit-Paitel A, Bihl F, Lagrange I, Grellier P, Touqui L, Lambeau G, Deregnaucourt C. Role of human group IIA secreted phospholipase A2 in malaria pathophysiology: Insights from a transgenic mouse model. Biochimie 2021; 189:120-136. [PMID: 34175441 DOI: 10.1016/j.biochi.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/08/2023]
Abstract
We previously showed that injection of recombinant human group IIA secreted phospholipase A2 (hGIIA sPLA2) to Plasmodium chabaudi-infected mice lowers parasitaemia by 20%. Here, we show that transgenic (TG) mice overexpressing hGIIA sPLA2 have a peak of parasitaemia about 30% lower than WT littermates. During infection, levels of circulating sPLA2, enzymatic activity and plasma lipid peroxidation were maximal at day-14, the peak of parasitaemia. Levels of hGIIA mRNA increased in liver but not in spleen and blood cells, suggesting that liver may contribute as a source of circulating hGIIA sPLA2. Before infection, baseline levels of leukocytes and pro-inflammatory cytokines were higher in TG mice than WT littermates. Upon infection, the number of neutrophils, lymphocytes and monocytes increased and were maximal at the peak of parasitaemia in both WT and TG mice, but were higher in TG mice. Similarly, levels of the Th1 cytokines IFN-γ and IL-2 increased in WT and TG mice, but were 7.7- and 1.7-fold higher in TG mice. The characteristic shift towards Th2 cytokines was observed during infection in both WT and TG mice, with increased levels of IL-10 and IL-4 at day-14. The current data are in accordance with our previous in vitro findings showing that hGIIA kills parasites by releasing toxic lipids from oxidized lipoproteins. They further show that hGIIA sPLA2 is induced during mouse experimental malaria and has a protective in vivo role, lowering parasitaemia by likely releasing toxic lipids from oxidized lipoproteins but also indirectly by promoting a more sustained innate immune response.
Collapse
Affiliation(s)
- Mélanie Dacheux
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Soraya Chaouch
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Alonso Joy
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Amandine Labat
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Christine Payré
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Agnès Petit-Paitel
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Franck Bihl
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France
| | - Isabelle Lagrange
- Ecole Nationale Vétérinaire d'Alfort, BioPôle, Laboratoire d'hématologie, 94704 Maisons-Alfort, France
| | - Philippe Grellier
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France
| | - Lhousseine Touqui
- Cystic fibrosis and Bronchial diseases team - INSERM U938, Institut Pasteur, 75015 Paris, France; Sorbonne Université, INSERM UMRS938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Gérard Lambeau
- Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR7275, Valbonne Sophia Antipolis, France.
| | - Christiane Deregnaucourt
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France.
| |
Collapse
|
11
|
Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase. Biochem Soc Trans 2021; 48:719-731. [PMID: 32267491 PMCID: PMC7200639 DOI: 10.1042/bst20200110] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.
Collapse
|
12
|
Di Nicola MR, Pontara A, Kass GEN, Kramer NI, Avella I, Pampena R, Mercuri SR, Dorne JLCM, Paolino G. Vipers of Major clinical relevance in Europe: Taxonomy, venom composition, toxicology and clinical management of human bites. Toxicology 2021; 453:152724. [PMID: 33610611 DOI: 10.1016/j.tox.2021.152724] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022]
Abstract
Snakebites in Europe are mostly due to bites from Viperidae species of the genus Vipera. This represents a neglected public health hazard with poorly defined incidence, morbidity and mortality. In Europe, fourteen species of "true vipers" (subfamily Viperinae) are present, eleven of which belong to the genus Vipera. Amongst these, the main medically relevant species due to their greater diffusion across Europe and the highest number of registered snakebites are six, namely: Vipera ammodytes, V. aspis, V. berus, V. latastei, V. seoanei and V. ursinii. Generally speaking, viper venom composition is characterised by many different toxin families, like phospholipases A2, snake venom serine proteases, snake venom metalloproteases, cysteine-rich secretory proteins, C-type lectins, disintegrins, haemorrhagic factors and coagulation inhibitors. A suspected snakebite is often associated with severe pain, erythema, oedema and, subsequently, the onset of an ecchymotic area around one or two visible fang marks. In the field, the affected limb should be immobilised and mildly compressed with a bandage, which can then be removed once the patient is being treated in hospital. The clinician should advise the patient to remain calm to reduce blood circulation and, therefore, decrease the spread of the toxins. In the case of pain, an analgesic therapy can be administered, the affected area can be treated with hydrogen peroxide or clean water. However, anti-inflammatory drugs and disinfection with alcohol or alcoholic substances should be avoided. For each patient, clinical chemistry and ECG are always a pre-requisite as well as the evaluation of the tetanus immunisation status and for which immunisation may be provided if needed. The treatment of any clinical complication, due to the envenomation, does not differ from treatments of emergency nature. Antivenom is recommended when signs of systemic envenomation exist or in case of advanced local or systemic progressive symptoms. Recommendations for future work concludes. The aim of this review is to support clinicians for the clinical management of viper envenomation, through taxonomic keys for main species identification, description of venom composition and mode of action of known toxins and provide a standardised clinical protocol and antivenom administration.
Collapse
Affiliation(s)
| | - Andrea Pontara
- Internal Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - George E N Kass
- European Food Safety Authority, Scientific Committee and Emerging Risks unit, 43126 Parma, Italy
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, University of Utrecht, Utrecht, the Netherlands
| | - Ignazio Avella
- CIBIO/InBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661, Vairão, Portugal; Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia - CSIC, Calle Jaime Roig 11, 46010, Valencia, Spain
| | - Riccardo Pampena
- Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Italy
| | | | - Jean Lou C M Dorne
- European Food Safety Authority, Scientific Committee and Emerging Risks unit, 43126 Parma, Italy
| | | |
Collapse
|
13
|
Lee CH, Liu CI, Leu SJ, Lee YC, Chiang JR, Chiang LC, Mao YC, Tsai BY, Hung CS, Chen CC, Yang YY. Chicken antibodies against venom proteins of Trimeresurus stejnegeri in Taiwan. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200056. [PMID: 33281887 PMCID: PMC7682652 DOI: 10.1590/1678-9199-jvatitd-2020-0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/06/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. METHODS T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. RESULTS Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. CONCLUSION Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.
Collapse
Affiliation(s)
- Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-I Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Lee
- The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jen-Ron Chiang
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan
| | - Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ching Chen
- Department of Pathology and Laboratory Medicine, Landseed Hospital, Taoyuan, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
14
|
Slagboom J, Mladić M, Xie C, Kazandjian TD, Vonk F, Somsen GW, Casewell NR, Kool J. High throughput screening and identification of coagulopathic snake venom proteins and peptides using nanofractionation and proteomics approaches. PLoS Negl Trop Dis 2020; 14:e0007802. [PMID: 32236099 PMCID: PMC7153897 DOI: 10.1371/journal.pntd.0007802] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/13/2020] [Accepted: 03/01/2020] [Indexed: 11/19/2022] Open
Abstract
Snakebite is a neglected tropical disease that results in a variety of systemic and local pathologies in envenomed victims and is responsible for around 138,000 deaths every year. Many snake venoms cause severe coagulopathy that makes victims vulnerable to suffering life-threating haemorrhage. The mechanisms of action of coagulopathic snake venom toxins are diverse and can result in both anticoagulant and procoagulant effects. However, because snake venoms consist of a mixture of numerous protein and peptide components, high throughput characterizations of specific target bioactives is challenging. In this study, we applied a combination of analytical and pharmacological methods to identify snake venom toxins from a wide diversity of snake species that perturb coagulation. To do so, we used a high-throughput screening approach consisting of a miniaturised plasma coagulation assay in combination with a venom nanofractionation approach. Twenty snake venoms were first separated using reversed-phase liquid chromatography, and a post-column split allowed a small fraction to be analyzed with mass spectrometry, while the larger fraction was collected and dispensed onto 384-well plates. After fraction collection, any solvent present in the wells was removed by means of freeze-drying, after which it was possible to perform a plasma coagulation assay in order to detect coagulopathic activity. Our results demonstrate that many snake venoms simultaneously contain both procoagulant and anticoagulant bioactives that contribute to coagulopathy. In-depth identification analysis from seven medically-important venoms, via mass spectrometry and nanoLC-MS/MS, revealed that phospholipase A2 toxins are frequently identified in anticoagulant venom fractions, while serine protease and metalloproteinase toxins are often associated with procoagulant bioactivities. The nanofractionation and proteomics approach applied herein seems likely to be a valuable tool for the rational development of next-generation snakebite treatments by facilitating the rapid identification and fractionation of coagulopathic toxins, thereby enabling specific targeting of these toxins by new therapeutics such as monoclonal antibodies and small molecule inhibitors.
Collapse
Affiliation(s)
- Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marija Mladić
- Animal Sciences and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Chunfang Xie
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Taline D. Kazandjian
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Freek Vonk
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Govert W. Somsen
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Tasoulis T, Lee MSY, Ziajko M, Dunstan N, Sumner J, Isbister GK. Activity of two key toxin groups in Australian elapid venoms show a strong correlation to phylogeny but not to diet. BMC Evol Biol 2020; 20:9. [PMID: 31931699 PMCID: PMC6958663 DOI: 10.1186/s12862-020-1578-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background The relative influence of diet and phylogeny on snake venom activity is a poorly understood aspect of snake venom evolution. We measured the activity of two enzyme toxin groups – phospholipase A2 (PLA2), and L-amino acid oxidase (LAAO) – in the venom of 39 species of Australian elapids (40% of terrestrial species diversity) and used linear parsimony and BayesTraits to investigate any correlation between enzyme activity and phylogeny or diet. Results PLA2 activity ranged from 0 to 481 nmol/min/mg of venom, and LAAO activity ranged from 0 to 351 nmol/min/mg. Phylogenetic comparative methods, implemented in BayesTraits showed that enzyme activity was strongly correlated with phylogeny, more so for LAAO activity. For example, LAAO activity was absent in both the Vermicella and Pseudonaja/Oxyuranus clade, supporting previously proposed relationships among these disparate taxa. There was no association between broad dietary categories and either enzyme activity. There was strong evidence for faster initial rates of change over evolutionary time for LAAO (delta parameter mean 0.2), but no such pattern in PLA2 (delta parameter mean 0.64). There were some exceptions to the phylogenetic patterns of enzyme activity: different PLA2 activity in the ecologically similar sister-species Denisonia devisi and D. maculata; large inter-specific differences in PLA2 activity in Hoplocephalus and Austrelaps. Conclusions We have shown that phylogeny is a stronger influence on venom enzyme activity than diet for two of the four major enzyme families present in snake venoms. PLA2 and LAAO activities had contrasting evolutionary dynamics with the higher delta value for PLA2 Some species/individuals lacked activity in one protein family suggesting that the loss of single protein family may not incur a significant fitness cost.
Collapse
Affiliation(s)
- Theo Tasoulis
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, New South Wales, 2308, Australia
| | - Michael S Y Lee
- Earth Sciences Section, South Australian Museum, North Terrace, Adelaide, S.A, 5000, Australia.,College of Science and Engineering, Flinders University, Bedford Park, S.A, 5042, Australia
| | - Manon Ziajko
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, New South Wales, 2308, Australia
| | - Nathan Dunstan
- Venom Supplies, Tanunda, South Australia, 5352, Australia
| | - Joanna Sumner
- Museums Victoria, Carlton Gardens, Carlton, VIC, 5053, Australia
| | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, New South Wales, 2308, Australia.
| |
Collapse
|
16
|
Rusmili MRA, Othman I, Abidin SAZ, Yusof FA, Ratanabanangkoon K, Chanhome L, Hodgson WC, Chaisakul J. Variations in neurotoxicity and proteome profile of Malayan krait (Bungarus candidus) venoms. PLoS One 2019; 14:e0227122. [PMID: 31887191 PMCID: PMC6936869 DOI: 10.1371/journal.pone.0227122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Malayan krait (Bungarus candidus) is a medically important snake species found in Southeast Asia. The neurotoxic effects of envenoming present as flaccid paralysis of skeletal muscles. It is unclear whether geographical variation in venom composition plays a significant role in the degree of clinical neurotoxicity. In this study, the effects of geographical variation on neurotoxicity and venom composition of B. candidus venoms from Indonesia, Malaysia and Thailand were examined. In the chick biventer cervicis nerve-muscle preparation, all venoms abolished indirect twitches and attenuated contractile responses to nicotinic receptor agonists, with venom from Indonesia displaying the most rapid neurotoxicity. A proteomic analysis indicated that three finger toxins (3FTx), phospholipase A2 (PLA2) and Kunitz-type serine protease inhibitors were common toxin groups in the venoms. In addition, venom from Thailand contained L-amino acid oxidase (LAAO), cysteine rich secretory protein (CRISP), thrombin-like enzyme (TLE) and snake venom metalloproteinase (SVMP). Short-chain post-synaptic neurotoxins were not detected in any of the venoms. The largest quantity of long-chain post-synaptic neurotoxins and non-conventional toxins was found in the venom from Thailand. Analysis of PLA2 activity did not show any correlation between the amount of PLA2 and the degree of neurotoxicity of the venoms. Our study shows that variation in venom composition is not limited to the degree of neurotoxicity. This investigation provides additional insights into the geographical differences in venom composition and provides information that could be used to improve the management of Malayan krait envenoming in Southeast Asia.
Collapse
Affiliation(s)
- Muhamad Rusdi Ahmad Rusmili
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, Kuantan, Pahang Darul Makmur, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Bandar Sunway, Malaysia
| | - Fathin Athirah Yusof
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Bandar Sunway, Malaysia
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, Thailand
- * E-mail: ,
| |
Collapse
|
17
|
Antimalarial Activity of Human Group IIA Secreted Phospholipase A 2 in Relation to Enzymatic Hydrolysis of Oxidized Lipoproteins. Infect Immun 2019; 87:IAI.00556-19. [PMID: 31405958 DOI: 10.1128/iai.00556-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
The level of human group IIA secreted phospholipase A2 (hGIIA sPLA2) is increased in the plasma of malaria patients, but its role is unknown. In parasite culture with normal plasma, hGIIA is inactive against Plasmodium falciparum, contrasting with hGIIF, hGV, and hGX sPLA2s, which readily hydrolyze plasma lipoproteins, release nonesterified fatty acids (NEFAs), and inhibit parasite growth. Here, we revisited the anti-Plasmodium activity of hGIIA under conditions closer to those of malaria physiopathology where lipoproteins are oxidized. In parasite culture containing oxidized lipoproteins, hGIIA sPLA2 was inhibitory, with a 50% inhibitory concentration value of 150.0 ± 40.8 nM, in accordance with its capacity to release NEFAs from oxidized particles. With oxidized lipoproteins, hGIIF, hGV, and hGX sPLA2s were also more potent, by 4.6-, 2.1-, and 1.9-fold, respectively. Using specific immunoassays, we found that hGIIA sPLA2 is increased in plasma from 41 patients with malaria over levels for healthy donors (median [interquartile range], 1.6 [0.7 to 3.4] nM versus 0.0 [0.0 to 0.1] nM, respectively; P < 0.0001). Other sPLA2s were not detected. Malaria plasma, but not normal plasma, contains oxidized lipoproteins and was inhibitory to P. falciparum when spiked with hGIIA sPLA2 Injection of recombinant hGIIA into mice infected with P. chabaudi reduced the peak of parasitemia, and this was effective only when the level of plasma peroxidation was increased during infection. In conclusion, we propose that malaria-induced oxidation of lipoproteins converts these into a preferential substrate for hGIIA sPLA2, promoting its parasite-killing effect. This mechanism may contribute to host defense against P. falciparum in malaria where high levels of hGIIA are observed.
Collapse
|
18
|
Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J, Cardoso FC. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00218] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
19
|
Šribar J, Kovačič L, Oberčkal J, Ivanušec A, Petan T, Fox JW, Križaj I. The neurotoxic secreted phospholipase A 2 from the Vipera a. ammodytes venom targets cytochrome c oxidase in neuronal mitochondria. Sci Rep 2019; 9:283. [PMID: 30670719 PMCID: PMC6342964 DOI: 10.1038/s41598-018-36461-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022] Open
Abstract
The β-neurotoxic secreted phospholipases A2 (sPLA2s) block neuro-muscular transmission by poisoning nerve terminals. Damage inflicted by such sPLA2s (β-ntx) on neuronal mitochondria is characteristic, very similar to that induced by structurally homologous endogenous group IIA sPLA2 when its activity is elevated, as, for example, in the early phase of Alzheimer's disease. Using ammodytoxin (Atx), the β-ntx from the venom of the nose-horned viper (Vipera a. ammodytes), the sPLA2 receptor R25 has been detected in neuronal mitochondria. This receptor has been purified from porcine cerebral cortex mitochondria by a new Atx-affinity-based chromatographic procedure. Mass spectrometry analysis revealed R25 to be the subunit II of cytochrome c oxidase (CCOX), an essential constituent of the respiratory chain complex. CCOX was confirmed as being the first intracellular membrane receptor for sPLA2 by alternative Atx-affinity-labellings of purified CCOX, supported also by the encounter of Atx and CCOX in PC12 cells. This discovery suggests the explanation of the mechanism by which β-ntx hinders production of ATP in poisoned nerve endings. It also provides a new insight into the potential function and dysfunction of endogenous GIIA sPLA2 in mitochondria.
Collapse
Affiliation(s)
- Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Lidija Kovačič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Jernej Oberčkal
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Jay W Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Arvidson R, Kaiser M, Lee SS, Urenda JP, Dail C, Mohammed H, Nolan C, Pan S, Stajich JE, Libersat F, Adams ME. Parasitoid Jewel Wasp Mounts Multipronged Neurochemical Attack to Hijack a Host Brain. Mol Cell Proteomics 2019; 18:99-114. [PMID: 30293061 PMCID: PMC6317478 DOI: 10.1074/mcp.ra118.000908] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/26/2018] [Indexed: 11/06/2022] Open
Abstract
The parasitoid emerald jewel wasp Ampulex compressa induces a compliant state of hypokinesia in its host, the American cockroach Periplaneta americana through direct envenomation of the central nervous system (CNS). To elucidate the biochemical strategy underlying venom-induced hypokinesia, we subjected the venom apparatus and milked venom to RNAseq and proteomics analyses to construct a comprehensive "venome," consisting of 264 proteins. Abundant in the venome are enzymes endogenous to the host brain, including M13 family metalloproteases, phospholipases, adenosine deaminase, hyaluronidase, and neuropeptide precursors. The amphipathic, alpha-helical ampulexins are among the most abundant venom components. Also prominent are members of the Toll/NF-κB signaling pathway, including proteases Persephone, Snake, Easter, and the Toll receptor ligand Spätzle. We find evidence that venom components are processed following envenomation. The acidic (pH∼4) venom contains unprocessed neuropeptide tachykinin and corazonin precursors and is conspicuously devoid of the corresponding processed, biologically active peptides. Neutralization of venom leads to appearance of mature tachykinin and corazonin, suggesting that the wasp employs precursors as a prolonged time-release strategy within the host brain post-envenomation. Injection of fully processed tachykinin into host cephalic ganglia elicits short-term hypokinesia. Ion channel modifiers and cytolytic toxins are absent in A. compressa venom, which appears to hijack control of the host brain by introducing a "storm" of its own neurochemicals. Our findings deepen understanding of the chemical warfare underlying host-parasitoid interactions and in particular neuromodulatory mechanisms that enable manipulation of host behavior to suit the nutritional needs of opportunistic parasitoid progeny.
Collapse
Affiliation(s)
- Ryan Arvidson
- From the ‡Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, California 92521;; ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521
| | - Maayan Kaiser
- §Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Sang Soo Lee
- ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521;; ‖Graduate Program in Neuroscience, University of California, Riverside, California 92521
| | - Jean-Paul Urenda
- ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521
| | - Christopher Dail
- ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521
| | - Haroun Mohammed
- ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521
| | - Cebrina Nolan
- **Department of Entomology, University of California, Riverside, California 92521
| | - Songqin Pan
- ‡‡Institute for Integrated Genome Biology, University of California, Riverside, California 92521
| | - Jason E Stajich
- §§Department of Microbiology & Plant Pathology, University of California, Riverside, California 92521
| | - Frederic Libersat
- §Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michael E Adams
- From the ‡Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, California 92521;; ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521;; ‖Graduate Program in Neuroscience, University of California, Riverside, California 92521;; **Department of Entomology, University of California, Riverside, California 92521;; ‡‡Institute for Integrated Genome Biology, University of California, Riverside, California 92521;; ¶Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521;.
| |
Collapse
|
21
|
Almeida JR, Palacios ALV, Patiño RSP, Mendes B, Teixeira CAS, Gomes P, da Silva SL. Harnessing snake venom phospholipases A 2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res 2018; 80:68-85. [PMID: 30255943 DOI: 10.1002/ddr.21456] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
The emergence of antibiotic resistance drives an essential race against time to reveal new molecular structures capable of addressing this alarming global health problem. Snake venoms are natural catalogs of multifunctional toxins and privileged frameworks, which serve as potential templates for the inspiration of novel treatment strategies for combating antibiotic resistant bacteria. Phospholipases A2 (PLA2 s) are one of the main classes of antibacterial biomolecules, with recognized therapeutic value, found in these valuable secretions. Recently, a number of biomimetic oligopeptides based on small fragments of primary structure from PLA2 toxins has emerged as a meaningful opportunity to overcome multidrug-resistant clinical isolates. Thus, this review will highlight the biochemical and structural properties of antibacterial PLA2 s and peptides thereof, as well as their possible molecular mechanisms of action and key roles in development of effective therapeutic strategies. Chemical strategies possibly useful to convert antibacterial peptides from PLA2 s to efficient drugs will be equally addressed.
Collapse
Affiliation(s)
| | | | | | - Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Cátia A S Teixeira
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Saulo L da Silva
- Facultad de Ciencias Química, Universidad de Cuenca - Cuenca/Azuay - Ecuador
| |
Collapse
|
22
|
Christian Bharathi A, Srinivas S, Syed Ibrahim B. Exploring the binding mechanism and kinetics of Piperine with snake venom secretory Phospholipase A2. J Biomol Struct Dyn 2017; 36:209-220. [DOI: 10.1080/07391102.2016.1271750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Sistla Srinivas
- GE Healthcare Life Sciences, John F Welch Technology Centre, EPIP, Phase 2, Whitefield Road, Bangalore, 560048, India
| | - B. Syed Ibrahim
- Centre for Bioinformatics, Pondicherry University, Pondicherry, 605014, India
| |
Collapse
|
23
|
Inflammatory Action of Secretory Phospholipases A2 from Snake Venoms. TOXINS AND DRUG DISCOVERY 2017. [DOI: 10.1007/978-94-007-6452-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Osipov AV, Utkin YN. Antiproliferative Effects of Snake Venom Phospholipases A2 and Their Perspectives for Cancer Treatment. TOXINS AND DRUG DISCOVERY 2017. [DOI: 10.1007/978-94-007-6452-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2. PLoS One 2014; 9:e115428. [PMID: 25522251 PMCID: PMC4270787 DOI: 10.1371/journal.pone.0115428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/24/2014] [Indexed: 01/29/2023] Open
Abstract
Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.
Collapse
|
26
|
Crystal structure of phospholipase PA2-Vb, a protease-activated receptor agonist from theTrimeresurus stejnegerisnake venom. FEBS Lett 2014; 588:4604-12. [DOI: 10.1016/j.febslet.2014.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
|
27
|
Abi Nahed R, Escoffier J, Revel C, Jeammet L, Payré C, Ray PF, Hennebicq S, Lambeau G, Arnoult C. The effect of group X secreted phospholipase A2 on fertilization outcome is specific and not mimicked by other secreted phospholipases A2 or progesterone. Biochimie 2014; 99:88-95. [DOI: 10.1016/j.biochi.2013.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
|
28
|
Samy RP, Kandasamy M, Gopalakrishnakone P, Stiles BG, Rowan EG, Becker D, Shanmugam MK, Sethi G, Chow VTK. Wound healing activity and mechanisms of action of an antibacterial protein from the venom of the eastern diamondback rattlesnake (Crotalus adamanteus). PLoS One 2014; 9:e80199. [PMID: 24551028 PMCID: PMC3925076 DOI: 10.1371/journal.pone.0080199] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/30/2013] [Indexed: 11/18/2022] Open
Abstract
Basic phospholipase A2 was identified from the venom of the eastern diamondback rattlesnake. The Crotalus adamanteus toxin-II (CaTx-II) induced bactericidal effects (7.8 µg/ml) on Staphylococcus aureus, while on Burkholderia pseudomallei (KHW), and Enterobacter aerogenes were killed at 15.6 µg/ml. CaTx-II caused pore formation and membrane damaging effects on the bacterial cell wall. CaTx-II was not cytotoxic on lung (MRC-5), skin fibroblast (HEPK) cells and in mice. CaTx-II-treated mice showed significant wound closure and complete healing by 16 days as compared to untreated controls (**P<0.01). Histological examination revealed enhanced collagen synthesis and neovascularization after treatment with CaTx-II versus 2% Fusidic Acid ointment (FAO) treated controls. Measurement of tissue cytokines revealed that interleukin-1 beta (IL-1β) expression in CaTx-II treated mice was significantly suppressed versus untreated controls. In contrast, cytokines involved in wound healing and cell migration i.e., monocyte chemotactic protein-1 (MCP-1), fibroblast growth factor-basic (FGF-b), chemokine (KC), granulocyte-macrophage colony-stimulating factor (GM-CSF) were significantly enhanced in CaTx-II treated mice, but not in the controls. CaTx-II also modulated nuclear factor-kappa B (NF-κB) activation during skin wound healing. The CaTx-II protein highlights distinct snake proteins as a potential source of novel antimicrobial agents with significant therapeutic application for bacterial skin infections.
Collapse
Affiliation(s)
- Ramar Perumal Samy
- Venom and Toxin Research Programme, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Programme, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| | - Matheswaran Kandasamy
- Infection & Immunity Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - Ponnampalam Gopalakrishnakone
- Venom and Toxin Research Programme, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bradley G. Stiles
- Integrated Toxicology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Edward G. Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - David Becker
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom
| | - Muthu K. Shanmugam
- Department of Pharmacology, Clinical Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Clinical Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vincent T. K. Chow
- Infectious Diseases Programme, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Chaisakul J, Isbister GK, Tare M, Parkington HC, Hodgson WC. Hypotensive and vascular relaxant effects of phospholipase A2 toxins from Papuan taipan (Oxyuranus scutellatus) venom. Eur J Pharmacol 2013; 723:227-33. [PMID: 24296315 DOI: 10.1016/j.ejphar.2013.11.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/13/2013] [Accepted: 11/22/2013] [Indexed: 11/16/2022]
Abstract
Phospholipase A2 (PLA2) toxins are common and abundant components of Australasian elapid venoms. These toxins are associated with a range of activities including neurotoxicity, myotoxicity and coagulation disturbances. We have recently reported that sudden cardiovascular collapse induced by Papuan taipan (Oxyuranus scutellatus) venom involves a combination of the release of dilator autacoids and a direct effect on the smooth muscle. In this study, we aimed to isolate PLA2 components from Papuan taipan venom and investigate their contribution to the hypotensive action of this venom. O. scutellatus venom was fractionated using size-exclusion high performance liquid chromatography (HPLC), and fractions screened for activity in anaesthetized rats. Fraction three from O. scutellatus venom (i.e. OSC3, 14.2±1.0% of whole venom) produced a 64% decrease in mean arterial pressure. Reverse-phase HPLC indicated that OSC3 consisted of two major components (i.e. OSC3a and OSC3b). OSC3a and OSC3b produced a significant hypotensive response in anaesthetized rats which were attenuated by prior administration of indomethacin or the combination of mepyramine and heparin. N-terminal analysis indicated that OSC3a and b displayed sequence homology to PLA2 toxins isolated from coastal taipan (O. scutellatus scutellatus) venom. These findings indicate that PLA2 components may play an important role in the development of hypotension and vascular relaxation which may contribute to the effects observed after envenoming by these Australasian elapids.
Collapse
Affiliation(s)
- Janeyuth Chaisakul
- Monash Venom Group, Department of Pharmacology, Monash University, Victoria 3800, Australia; Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand
| | - Geoffrey K Isbister
- Monash Venom Group, Department of Pharmacology, Monash University, Victoria 3800, Australia; School of Medicine and Public Health, University of Newcastle, New South Wales 2300, Australia
| | - Marianne Tare
- Department of Physiology, Monash University, Victoria 3800, Australia
| | | | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
30
|
Marcon F, Purtell L, Santos J, Hains PG, Escoubas P, Graudins A, Nicholson GM. Characterization of monomeric and multimeric snake neurotoxins and other bioactive proteins from the venom of the lethal Australian common copperhead (Austrelaps superbus). Biochem Pharmacol 2013; 85:1555-73. [PMID: 23500536 DOI: 10.1016/j.bcp.2013.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Envenomation by Australian copperheads results mainly in muscle paralysis largely attributed to the presence of postsynaptic α-neurotoxins. However, poorly reversible neurotoxic effects suggest that these venoms may contain snake presynaptic phospholipase A2 neurotoxins (SPANs) that irreversibly inhibit neurotransmitter release. Using size-exclusion liquid chromatography, the present study isolated the first multimeric SPAN complex from the venom of the Australian common copperhead, Austrelaps superbus. The multimeric SPAN P-elapitoxin-As1a (P-EPTX-As1a) along with two novel monomeric SPANs and a new postsynaptic α-neurotoxin were then pharmacologically characterized using the chick biventer cervicis nerve-muscle preparation. All SPANs inhibited nerve-evoked twitch contractions at the neuromuscular junction without inhibiting contractile responses to cholinergic agonists or KCl. These actions are consistent with a prejunctional action to inhibit neurotransmitter release, without direct myotoxicity. Furthermore, the multimeric P-EPTX-As1a caused tetanic 'fade' in muscle tension under high frequency nerve stimulation, and produced a triphasic alteration to neurotransmitter release. These actions have been previously noted with other multimeric SPAN complexes such as taipoxin. Moreover, the neurotoxic α-subunit of P-EPTX-As1a shows high homology to taipoxin α-chain. Several other coagulopathic and myotoxic high mass proteins including a class PIII snake venom metalloproteinase, C-type lectin, l-amino acid oxidase, acetylcholinesterase and phospholipase B were also identified that may contribute to the overall toxicity of A. superbus venom. In conclusion, clinicians should be aware that early antivenom intervention might be necessary to prevent the onset of irreversible presynaptic neurotoxicity caused by multimeric and monomeric SPANs and that A. superbus venom is potentially capable of producing coagulopathic and myotoxic effects.
Collapse
Affiliation(s)
- Francesca Marcon
- Neurotoxin Research Group, School of Medical and Molecular Biosciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Herrera M, Fernández J, Vargas M, Villalta M, Segura Á, León G, Angulo Y, Paiva O, Matainaho T, Jensen SD, Winkel KD, Calvete JJ, Williams DJ, Gutiérrez JM. Comparative proteomic analysis of the venom of the taipan snake, Oxyuranus scutellatus, from Papua New Guinea and Australia: role of neurotoxic and procoagulant effects in venom toxicity. J Proteomics 2012; 75:2128-40. [PMID: 22266484 DOI: 10.1016/j.jprot.2012.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 12/26/2011] [Accepted: 01/08/2012] [Indexed: 11/18/2022]
Abstract
The venom proteomes of populations of the highly venomous taipan snake, Oxyuranus scutellatus, from Australia and Papua New Guinea (PNG), were characterized by reverse-phase HPLC fractionation, followed by analysis of chromatographic fractions by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. Proteins belonging to the following seven protein families were identified in the two venoms: phospholipase A(2) (PLA(2)), Kunitz-type inhibitor, metalloproteinase (SVMP), three-finger toxin (3FTx), serine proteinase, cysteine-rich secretory proteins (CRISP), and coagulation factor V-like protein. In addition, C-type lectin/lectin-like protein and venom natriuretic peptide were identified in the venom of specimens from PNG. PLA(2)s comprised more than 65% of the venoms of these two populations. Antivenoms generated against the venoms of these populations showed a pattern of cross-neutralization, corroborating the immunological kinship of these venoms. Toxicity experiments performed in mice suggest that, at low venom doses, neurotoxicity leading to respiratory paralysis represents the predominant mechanism of prey immobilization and death. However, at high doses, such as those injected in natural bites, intravascular thrombosis due to the action of the prothrombin activator may constitute a potent and very rapid mechanism for killing prey.
Collapse
Affiliation(s)
- María Herrera
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pierce RD, Kim ES, Girton LW, McMurry JL, Francis JW, Albrecht EA. Characterization of crude Echis carinatus venom-induced cytotoxicity in HEK 293T cells. JOURNAL OF VENOM RESEARCH 2011; 2:59-67. [PMID: 22331993 PMCID: PMC3269807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 11/20/2022]
Abstract
Echis carinatus (saw-scaled viper) produces potent hemorrhagic venom that causes the development of apoptotic and necrotic tissues. In this study, we used polyethyleneimine (PEI) to enhance cellular adherence, and to determine whether the substrate attachment influenced the survival of cells treated with crude E. carinatus venom. Human embryonic kidney (HEK) 293T cells were grown for 18hr in tissue culture plates with or without polyethyleneimine (PEI), and were then stimulated with crude E. carinatus venom for 3 or 12hr. HEK 293T cells grown without PEI displayed a robust oxidative response to corresponding substrate detachment, loss of plasma membrane integrity and decreased cell viability. Cells grown on PEI adsorbed substrates demonstrated prolonged substrate attachment resulting in significantly higher cell viabilities. These observations suggest that the cytotoxicity of crude E. carinatus venom is dependent upon cellular detachment.
Collapse
Affiliation(s)
- Rebecca D Pierce
- αDepartment of Biology and Physics, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Ethan S Kim
- αDepartment of Biology and Physics, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Lance W Girton
- αDepartment of Biology and Physics, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jonathan L McMurry
- βDepartment of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 300144, USA
| | - Joshua W Francis
- βDepartment of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 300144, USA
| | - Eric A Albrecht
- αDepartment of Biology and Physics, Kennesaw State University, Kennesaw, GA 30144, USA,*Correspondence to: Eric Albrecht, E-mail: , Tel: +770 4236447, Fax: +770 4236625
| |
Collapse
|
33
|
Vargas M, Segura A, Herrera M, Villalta M, Estrada R, Cerdas M, Paiva O, Matainaho T, Jensen SD, Winkel KD, León G, Gutiérrez JM, Williams DJ. Preclinical evaluation of caprylic acid-fractionated IgG antivenom for the treatment of Taipan (Oxyuranus scutellatus) envenoming in Papua New Guinea. PLoS Negl Trop Dis 2011; 5:e1144. [PMID: 21610854 PMCID: PMC3096592 DOI: 10.1371/journal.pntd.0001144] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/27/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Snake bite is a common medical emergency in Papua New Guinea (PNG). The taipan, Oxyuranus scutellatus, inflicts a large number of bites that, in the absence of antivenom therapy, result in high mortality. Parenteral administration of antivenoms manufactured in Australia is the current treatment of choice for these envenomings. However, the price of these products is high and has increased over the last 25 years; consequently the country can no longer afford all the antivenom it needs. This situation prompted an international collaborative project aimed at generating a new, low-cost antivenom against O. scutellatus for PNG. METHODOLOGY/PRINCIPAL FINDINGS A new monospecific equine whole IgG antivenom, obtained by caprylic acid fractionation of plasma, was prepared by immunising horses with the venom of O. scutellatus from PNG. This antivenom was compared with the currently used F(ab')(2) monospecific taipan antivenom manufactured by CSL Limited, Australia. The comparison included physicochemical properties and the preclinical assessment of the neutralisation of lethal neurotoxicity and the myotoxic, coagulant and phospholipase A(2) activities of the venom of O. scutellatus from PNG. The F(ab')(2) antivenom had a higher protein concentration than whole IgG antivenom. Both antivenoms effectively neutralised, and had similar potency, against the lethal neurotoxic effect (both by intraperitoneal and intravenous routes of injection), myotoxicity, and phospholipase A(2) activity of O. scutellatus venom. However, the whole IgG antivenom showed a higher potency than the F(ab')(2) antivenom in the neutralisation of the coagulant activity of O. scutellatus venom from PNG. CONCLUSIONS/SIGNIFICANCE The new whole IgG taipan antivenom described in this study compares favourably with the currently used F(ab')(2) antivenom, both in terms of physicochemical characteristics and neutralising potency. Therefore, it should be considered as a promising low-cost candidate for the treatment of envenomings by O. scutellatus in PNG, and is ready to be tested in clinical trials.
Collapse
Affiliation(s)
- Mariángela Vargas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - María Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mauren Villalta
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Ricardo Estrada
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Maykel Cerdas
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Owen Paiva
- School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Teatulohi Matainaho
- School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Simon D. Jensen
- School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
- Australian Venom Research Unit, University of Melbourne, Parkville, Australia
| | - Kenneth D. Winkel
- Australian Venom Research Unit, University of Melbourne, Parkville, Australia
| | - Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - David J. Williams
- School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
- Australian Venom Research Unit, University of Melbourne, Parkville, Australia
- Nossal Institute for Global Health, University of Melbourne, Parkville, Australia
| |
Collapse
|
34
|
Sampaio SC, Hyslop S, Fontes MR, Prado-Franceschi J, Zambelli VO, Magro AJ, Brigatte P, Gutierrez VP, Cury Y. Crotoxin: Novel activities for a classic β-neurotoxin. Toxicon 2010; 55:1045-60. [DOI: 10.1016/j.toxicon.2010.01.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 12/17/2009] [Accepted: 01/09/2010] [Indexed: 10/19/2022]
|
35
|
Granata F, Frattini A, Loffredo S, Staiano RI, Petraroli A, Ribatti D, Oslund R, Gelb MH, Lambeau G, Marone G, Triggiani M. Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2. THE JOURNAL OF IMMUNOLOGY 2010; 184:5232-41. [PMID: 20357262 DOI: 10.4049/jimmunol.0902501] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Angiogenesis and lymphangiogenesis mediated by vascular endothelial growth factors (VEGFs) are main features of chronic inflammation and tumors. Secreted phospholipases A(2) (sPLA(2)s) are overexpressed in inflammatory lung diseases and cancer and they activate inflammatory cells by enzymatic and receptor-mediated mechanisms. We investigated the effect of sPLA(2)s on the production of VEGFs from human macrophages purified from the lung tissue of patients undergoing thoracic surgery. Primary macrophages express VEGF-A, VEGF-B, VEGF-C, and VEGF-D at both mRNA and protein level. Two human sPLA(2)s (group IIA and group X) induced the expression and release of VEGF-A and VEGF-C from macrophages. Enzymatically-inactive sPLA(2)s were as effective as the active enzymes in inducing VEGF production. Me-Indoxam and RO092906A, two compounds that block receptor-mediated effects of sPLA(2)s, inhibited group X-induced release of VEGF-A. Inhibition of the MAPK p38 by SB203580 also reduced sPLA(2)-induced release of VEGF-A. Supernatants of group X-activated macrophages induced an angiogenic response in chorioallantoic membranes that was inhibited by Me-Indoxam. Stimulation of macrophages with group X sPLA(2) in the presence of adenosine analogs induced a synergistic increase of VEGF-A release and inhibited TNF-alpha production through a cooperation between A(2A) and A(3) receptors. These results demonstrate that sPLA(2)s induce production of VEGF-A and VEGF-C in human macrophages by a receptor-mediated mechanism independent from sPLA(2) catalytic activity. Thus, sPLA(2)s may play an important role in inflammatory and/or neoplastic angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Francescopaolo Granata
- Division of Clinical Immunology and Allergy and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Characterisation of the heterotrimeric presynaptic phospholipase A(2) neurotoxin complex from the venom of the common death adder (Acanthophis antarcticus). Biochem Pharmacol 2010; 80:277-87. [PMID: 20361942 DOI: 10.1016/j.bcp.2010.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/16/2010] [Accepted: 03/24/2010] [Indexed: 11/23/2022]
Abstract
While Australo-Papuan death adder neurotoxicity is generally considered to be due to the actions of reversible competitive postsynaptic alpha-neurotoxins, the neurotoxic effects are often poorly reversed by antivenom or anticholinesterases. This suggests that the venom may contain a snake presynaptic phospholipase A(2) (PLA(2)) neurotoxin (SPAN) that binds irreversibly to motor nerve terminals to inhibit neurotransmitter release. Using size-exclusion liquid chromatography under non-reducing conditions, we report the isolation and characterisation of a high molecular mass SPAN complex, P-elapitoxin-Aa1a (P-EPTX-Aa1a), from the venom of the common death adder Acanthophis antarcticus. Using the chick biventer-cervicis nerve-muscle preparation, P-EPTX-Aa1a (44,698Da) caused inhibition of nerve-evoked twitch contractions while responses to cholinergic agonists and KCl remained unaffected. P-EPTX-Aa1a also produced significant fade in tetanic contractions and a triphasic timecourse of neuromuscular blockade. These actions are consistent with other SPANs that inhibit acetylcholine release. P-EPTX-Aa1a was found to be a heterotrimeric complex composed of alpha, beta and gamma-subunits in a 1:1:1 stoichiometry with each subunit showing significant N-terminal sequence homology to the subunits of taipoxin, a SPAN from Oxyuranus s. scutellatus. Like taipoxin, only the alpha-chain produced any signs of neurotoxicity or displayed significant PLA(2) enzymatic activity. Preincubation with monovalent death adder antivenom or suramin, or inhibition of PLA(2) activity by incubation with 4-bromophenacyl bromide, either prevented or significantly delayed the onset of toxicity by P-EPTX-Aa1a. However, antivenom failed to reverse neurotoxicity. Early intervention with antivenom may therefore be important in severe cases of envenomation by A. antarcticus, given the presence of potent irreversible presynaptic neurotoxins.
Collapse
|
37
|
Escoffier J, Couvet M, de Pomyers H, Ray PF, Sève M, Lambeau G, De Waard M, Arnoult C. Snake venoms as a source of compounds modulating sperm physiology: Secreted phospholipases A2 from Oxyuranus scutellatus scutellatus impact sperm motility, acrosome reaction and in vitro fertilization in mice. Biochimie 2010; 92:826-36. [PMID: 20226834 DOI: 10.1016/j.biochi.2010.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/05/2010] [Indexed: 11/19/2022]
Abstract
The goal of this study was to identify new compounds from venoms able to modulate sperm physiology and more particularly sperm motility. For this purpose, we screened the effects of 16 snake venoms cleared of molecules higher than 15 kDa on sperm motility. Venoms rich in neurotoxins like those from Oxyuranus scutellatus scutellatus or Daboia russelii, were highly potent inhibitors of sperm motility. In contrast, venoms rich in myotoxins like those from Echis carinatus, Bothrops alternatus and Macrovipera lebetina, were inactive. From the main pharmacologically-active fraction of the Taipan snake O. scutellatus s., a proteomic approach allowed us to identify 16 different proteins, among which OS1 and OS2, two secreted phospholipases A2 (sPLA(2)). Purified OS1 and OS2 mimicked the inhibitory effect on sperm motility and were likely responsible for the inhibitory effect of the active fraction. OS1 and OS2 triggered sperm acrosome reaction and induced lipid rearrangements of the plasma membrane. The catalytic activity of OS2 was required to modulate sperm physiology since catalytically inactive mutants had no effect. Finally, sperm treated with OS2 were less competent than control sperm to initiate in vitro normal embryo development. This is the first report characterizing sPLA(2) toxins that modulate in vitro sperm physiology.
Collapse
|
38
|
Fortes-Dias CL, Santos RMMD, Magro AJ, Fontes MRDM, Chávez-Olórtegui C, Granier C. Identification of continuous interaction sites in PLA2-based protein complexes by peptide arrays. Biochimie 2009; 91:1482-92. [DOI: 10.1016/j.biochi.2009.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
|
39
|
Gao W, Starkov VG, He ZX, Wang QH, Tsetlin VI, Utkin YN, Lin ZJ, Bi RC. Functions, structures and Triton X-100 effect for the catalytic subunits of heterodimeric phospholipases A2 from Vipera nikolskii venom. Toxicon 2009; 54:709-16. [DOI: 10.1016/j.toxicon.2009.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/16/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
|
40
|
Surrel F, Jemel I, Boilard E, Bollinger JG, Payré C, Mounier CM, Talvinen KA, Laine VJO, Nevalainen TJ, Gelb MH, Lambeau G. Group X phospholipase A2 stimulates the proliferation of colon cancer cells by producing various lipid mediators. Mol Pharmacol 2009; 76:778-90. [PMID: 19602573 DOI: 10.1124/mol.108.053371] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Among mammalian secreted phospholipases A2 (sPLA(2)s), the group X enzyme has the most potent hydrolyzing capacity toward phosphatidylcholine, the major phospholipid of cell membrane and lipoproteins. This enzyme has recently been implicated in chronic inflammatory diseases such as atherosclerosis and asthma and may also play a role in colon tumorigenesis. We show here that group X sPLA(2) [mouse (m)GX] is one of the most highly expressed PLA(2) in the mouse colon and that recombinant mouse and human enzymes stimulate proliferation and mitogen-activated protein kinase activation of various colon cell lines, including Colon-26 cancer cells. Among various recombinant sPLA(2)s, mGX is the most potent enzyme to stimulate cell proliferation. Based on the use of sPLA(2) inhibitors, catalytic site mutants, and small interfering RNA silencing of cytosolic PLA(2)alpha and M-type sPLA(2) receptor, we demonstrate that mGX promotes cell proliferation independently of the receptor and via its intrinsic catalytic activity and production of free arachidonic acid and lysophospholipids, which are mitogenic by themselves. mGX can also elicit the production of large amounts of prostaglandin E2 and other eicosanoids from Colon-26 cells, but these lipid mediators do not play a role in mGX-induced cell proliferation because inhibitors of cyclooxygenases and lipoxygenases do not prevent sPLA(2) mitogenic effects. Together, our results indicate that group X sPLA(2) may play an important role in colon tumorigenesis by promoting cancer cell proliferation and releasing various lipid mediators involved in other key events in cancer progression.
Collapse
Affiliation(s)
- Fanny Surrel
- Institut de Pharmacologie Moléculaire et Cellulaire, Université de Nice Sophia Antipolis et Centre National de la Recherche Scientifique, 06560 Valbonne, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Molecular and functional characterization of polymorphisms in the secreted phospholipase A2 group X gene: relevance to coronary artery disease. J Mol Med (Berl) 2009; 87:723-33. [PMID: 19495570 PMCID: PMC2700867 DOI: 10.1007/s00109-009-0483-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/17/2009] [Accepted: 04/29/2009] [Indexed: 01/21/2023]
Abstract
Among secreted phospholipases A2 (sPLA2s), human group X sPLA2 (hGX sPLA2) is emerging as a novel attractive therapeutic target due to its implication in inflammatory diseases. To elucidate whether hGX sPLA2 plays a causative role in coronary artery disease (CAD), we screened the human PLA2G10 gene to identify polymorphisms and possible associations with CAD end-points in a prospective study, AtheroGene. We identified eight polymorphisms, among which, one non-synonymous polymorphism R38C in the propeptide region of the sPLA2. The T-512C polymorphism located in the 5' untranslated region was associated with a decreased risk of recurrent cardiovascular events during follow-up. The functional analysis of the R38C polymorphism showed that it leads to a profound change in expression and activity of hGX sPLA2, although there was no detectable impact on CAD risk. Due to the potential role of hGX sPLA2 in inflammatory processes, these polymorphisms should be investigated in other inflammatory diseases.
Collapse
|
42
|
Zouari-Kessentini R, Luis J, Karray A, Kallech-Ziri O, Srairi-Abid N, Bazaa A, Loret E, Bezzine S, El Ayeb M, Marrakchi N. Two purified and characterized phospholipases A2 from Cerastes cerastes venom, that inhibit cancerous cell adhesion and migration. Toxicon 2009; 53:444-53. [DOI: 10.1016/j.toxicon.2009.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Lambeau G, Gelb MH. Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 2008; 77:495-520. [PMID: 18405237 DOI: 10.1146/annurev.biochem.76.062405.154007] [Citation(s) in RCA: 406] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipases A(2) (PLA2s) are esterases that hydrolyze the sn-2 ester of glycerophospholipids and constitute one of the largest families of lipid hydrolyzing enzymes. The mammalian genome contains 10 enzymatically active secreted PLA2s (sPLA2s) and two sPLA2-related proteins devoid of lipolytic enzymatic activity. In addition to the well-established functions of one of these enzymes in digestion of dietary phospholipids and another in host defense against bacterial infections, accumulating evidence shows that some of these sPLA2s are involved in arachidonic acid release from cellular phospholipids for the biosynthesis of eicosanoids, especially during inflammation. More speculative results suggest the involvement of one or more sPLA2s in promoting atherosclerosis and cancer. In addition, the mammalian genome encodes several types of sPLA2-binding proteins, and mounting evidence shows that sPLA2s may have functions related to binding to cellular target proteins in a manner independent of their lipolytic enzymatic activity.
Collapse
Affiliation(s)
- Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université de Nice-Sophia-Antipolis, 06560 Valbonne, France.
| | | |
Collapse
|
44
|
Peroutka RJ, Elshourbagy N, Piech T, Butt TR. Enhanced protein expression in mammalian cells using engineered SUMO fusions: secreted phospholipase A2. Protein Sci 2008; 17:1586-95. [PMID: 18539905 DOI: 10.1110/ps.035576.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
SUMOylation, the covalent attachment of SUMO (small ubiquitin-like modifier), is a eukaryotic post-translational event that has been demonstrated to play a critical role in several biological processes. When used as an N-terminal tag or fusion partner, SUMO has been shown to enhance functional protein production significantly by improving folding, solubility, and stability. We have engineered several SUMOs and, through their fusion, developed a system for enhancing the expression and secretion of complex proteins. To demonstrate the fidelity of this fusion technology, secreted phospholipase A(2) proteins (sPLA(2)) were produced using HEK-293T and CHO-K1 cells. Five mouse sPLA(2) homologs were expressed and secreted in mammalian cell cultures using SUMO or SUMO-derived, N-terminal fusion partners. Mean and median increases of 43- and 18-fold, respectively, were obtained using novel SUMO mutants that are resistant to digestion by endogenous deSUMOylases.
Collapse
|
45
|
Pražnikar ZJ, Kovačič L, Rowan EG, Romih R, Rusmini P, Poletti A, Križaj I, Pungerčar J. A presynaptically toxic secreted phospholipase A2 is internalized into motoneuron-like cells where it is rapidly translocated into the cytosol. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1129-39. [DOI: 10.1016/j.bbamcr.2008.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
|
46
|
Hu P, Sun L, Zhu ZQ, Hou XW, Wang S, Yu SS, Wang HL, Zhang P, Wang M, Niu LW, Teng MK, Ruan DY. Crystal structure of Natratoxin, a novel snake secreted phospholipaseA2 neurotoxin from Naja atra venom inhibiting A-type K+ currents. Proteins 2008; 72:673-83. [PMID: 18247353 DOI: 10.1002/prot.21964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Snake secreted phospholipasesA2 (sPLA2s) are widely used as pharmacological tools to investigate their role in diverse pathophysiological processes. Some members of snake venom sPLA2s have been found to block voltage-activated K(+) channels (K(v) channels). However, most studies involved in their effects on ion channels were indirectly performed on motor nerve terminals while few studies were directly done on native neurons. Here, a novel snake sPLA2 peptide neurotoxin, Natratoxin, composed of 119 amino acid residues and purified from Naja atra venom was reported. It was characterized using whole-cell patch-clamp in acutely dissociated rat dorsal root ganglion (DRG) neurons. It was found to effectively inhibit A-type K(+) currents and cause alterations of channel gating characters, such as the shifts of steady-state activation and inactivation curves to hyperpolarization direction and changes of V(1/2) and slope factor. Therefore, Natratoxin was suggested to be a gating modifier of K(v) channel. In addition, this inhibitory effect was found to be independent of its enzymatic activity. These results suggested that the toxin enacted its inhibitory effect by binding to K(v) channel. To further elucidate the structural basis for this electrophysiological phenomenon, we determined the crystal structure of Natratoxin at 2.2 A resolution by molecular replacement method and refined to an R-factor of 0.190. The observed overall fold has a different structural organization from other K(+) channel inhibitors in animal toxins. Compared with other K(v) channel inhibitors, a similar putative functional surface in its C-terminal was revealed to contribute to protein-protein interaction in such a blocking effect. Our results demonstrated that the spatial distribution of key amino acid residues matters most in the recognition of this toxin towards its channel target rather than its type of fold.
Collapse
Affiliation(s)
- Pu Hu
- Department of Neurobiology and Biophysics, School of Life Sciences, University of Science and Technology of China, HeFei, Anhui, 230027, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fry BG, Scheib H, van der Weerd L, Young B, McNaughtan J, Ramjan SFR, Vidal N, Poelmann RE, Norman JA. Evolution of an Arsenal. Mol Cell Proteomics 2008; 7:215-46. [PMID: 17855442 DOI: 10.1074/mcp.m700094-mcp200] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Venom is a key innovation underlying the evolution of advanced snakes (Caenophidia). Despite this, very little is known about venom system structural diversification, toxin recruitment event timings, or toxin molecular evolution. A multidisciplinary approach was used to examine the diversification of the venom system and associated toxins across the full range of the approximately 100 million-year-old advanced snake clade with a particular emphasis upon families that have not secondarily evolved a front-fanged venom system ( approximately 80% of the 2500 species). Analysis of cDNA libraries revealed complex venom transcriptomes containing multiple toxin types including three finger toxins, cobra venom factor, cysteine-rich secretory protein, hyaluronidase, kallikrein, kunitz, lectin, matrix metalloprotease, phospholipase A(2), snake venom metalloprotease/a disintegrin and metalloprotease, and waprin. High levels of sequence diversity were observed, including mutations in structural and functional residues, changes in cysteine spacing, and major deletions/truncations. Morphological analysis comprising gross dissection, histology, and magnetic resonance imaging also demonstrated extensive modification of the venom system architecture in non-front-fanged snakes in contrast to the conserved structure of the venom system within the independently evolved front-fanged elapid or viperid snakes. Further, a reduction in the size and complexity of the venom system was observed in species in which constriction has been secondarily evolved as the preferred method of prey capture or dietary preference has switched from live prey to eggs or to slugs/snails. Investigation of the timing of toxin recruitment events across the entire advanced snake radiation indicates that the evolution of advanced venom systems in three front-fanged lineages is associated with recruitment of new toxin types or explosive diversification of existing toxin types. These results support the role of venom as a key evolutionary innovation in the diversification of advanced snakes and identify a potential role for non-front-fanged venom toxins as a rich source for lead compounds for drug design and development.
Collapse
Affiliation(s)
- Bryan G Fry
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chiou YL, Cheng YC, Kao PH, Wang JJ, Chang LS. Mutations on the N-terminal region abolish differentially the enzymatic activity, membrane-damaging activity and cytotoxicity of Taiwan cobra phospholipase A2. Toxicon 2008; 51:270-9. [DOI: 10.1016/j.toxicon.2007.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/27/2007] [Accepted: 10/02/2007] [Indexed: 12/01/2022]
|
49
|
Kao PH, Chen KC, Lin SR, Chang LS. The structural and functional contribution ofN-terminal region and His-47 on Taiwan cobra phospholipase A2. J Pept Sci 2008; 14:342-8. [DOI: 10.1002/psc.943] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Pungercar J, Krizaj I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2. Toxicon 2007; 50:871-92. [PMID: 17905401 DOI: 10.1016/j.toxicon.2007.07.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/13/2007] [Accepted: 07/20/2007] [Indexed: 11/24/2022]
Abstract
An important group of toxins, whose action at the molecular level is still a matter of debate, is secreted phospholipases A(2) (sPLA(2)s) endowed with presynaptic or beta-neurotoxicity. The current belief is that these beta-neurotoxins (beta-ntxs) exert their toxicity primarily due to their extracellular enzymatic action on the plasma membrane of motoneurons at the neuromuscular junction. However, the discovery of several extra- and intracellular proteins, with high binding affinity for snake venom beta-ntxs, has raised the question as to whether this explanation is adequate to account for all the observed phenomena in the process of presynaptic toxicity. The purpose of this review is to critically examine the various published studies, including the most recent results on internalization of a beta-ntx into motor nerve terminals, in order to contribute to a better understanding of the molecular mechanism of beta-neurotoxicity. As a result, we propose that presynaptic neurotoxicity of sPLA(2)s is a result of both extra- and intracellular actions of beta-ntxs, involving enzymatic activity as well as interaction of the toxins with intracellular proteins affecting the cycling of synaptic vesicles in the axon terminals of vertebrate motoneurons.
Collapse
Affiliation(s)
- Joze Pungercar
- Department of Molecular and Biomedical Sciences, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | | |
Collapse
|