1
|
Torres-Paris C, Song HJ, Engelberger F, Ramírez-Sarmiento CA, Komives EA. The Light Chain Allosterically Enhances the Protease Activity of Murine Urokinase-Type Plasminogen Activator. Biochemistry 2024; 63:1434-1444. [PMID: 38780522 PMCID: PMC11154964 DOI: 10.1021/acs.biochem.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The active form of the murine urokinase-type plasminogen activator (muPA) is formed by a 27-residue disordered light chain connecting the amino-terminal fragment (ATF) with the serine protease domain. The two chains are tethered by a disulfide bond between C1CT in the disordered light chain and C122CT in the protease domain. Previous work showed that the presence of the disordered light chain affected the inhibition of the protease domain by antibodies. Here we show that the disordered light chain induced a 3.7-fold increase in kcat of the protease domain of muPA. In addition, hydrogen-deuterium exchange mass spectrometry (HDX-MS) and accelerated molecular dynamics (AMD) were performed to identify the interactions between the disordered light chain and the protease domain. HDX-MS revealed that the light chain is contacting the 110s, the turn between the β10- and β11-strand, and the β7-strand. A reduction in deuterium uptake was also observed in the activation loop, the 140s loop and the 220s loop, which forms the S1-specificty pocket where the substrate binds. These loops are further away from where the light chain seems to be interacting with the protease domain. Our results suggest that the light chain most likely increases the activity of muPA by allosterically favoring conformations in which the specificity pocket is formed. We propose a model by which the allostery would be transmitted through the β-strands of the β-barrels to the loops on the other side of the protease domain.
Collapse
Affiliation(s)
- Constanza Torres-Paris
- Department
of Chemistry and Biochemistry, Mail Code 0309, University of California San Diego, 9325 S Scholars Dr, La Jolla, California 92161, United States
| | - Harriet J. Song
- Department
of Chemistry and Biochemistry, Mail Code 0309, University of California San Diego, 9325 S Scholars Dr, La Jolla, California 92161, United States
| | - Felipe Engelberger
- Institute
for Biological and Medical Engineering, Schools of Engineering, Medicine
and Biological Sciences, Pontificia Universidad
Católica de Chile, Santiago 7820436, Chile
- ANID
- Millennium Science Initiative Program - Millennium Institute for
Integrative Biology (iBio), Santiago 8331150, Chile
| | - César A. Ramírez-Sarmiento
- Institute
for Biological and Medical Engineering, Schools of Engineering, Medicine
and Biological Sciences, Pontificia Universidad
Católica de Chile, Santiago 7820436, Chile
- ANID
- Millennium Science Initiative Program - Millennium Institute for
Integrative Biology (iBio), Santiago 8331150, Chile
| | - Elizabeth A. Komives
- Department
of Chemistry and Biochemistry, Mail Code 0309, University of California San Diego, 9325 S Scholars Dr, La Jolla, California 92161, United States
| |
Collapse
|
2
|
Wu D, Prem A, Xiao J, Salsbury FR. Thrombin - A Molecular Dynamics Perspective. Mini Rev Med Chem 2024; 24:1112-1124. [PMID: 37605420 DOI: 10.2174/1389557523666230821102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023]
Abstract
Thrombin is a crucial enzyme involved in blood coagulation, essential for maintaining circulatory system integrity and preventing excessive bleeding. However, thrombin is also implicated in pathological conditions such as thrombosis and cancer. Despite the application of various experimental techniques, including X-ray crystallography, NMR spectroscopy, and HDXMS, none of these methods can precisely detect thrombin's dynamics and conformational ensembles at high spatial and temporal resolution. Fortunately, molecular dynamics (MD) simulation, a computational technique that allows the investigation of molecular functions and dynamics in atomic detail, can be used to explore thrombin behavior. This review summarizes recent MD simulation studies on thrombin and its interactions with other biomolecules. Specifically, the 17 studies discussed here provide insights into thrombin's switch between 'slow' and 'fast' forms, active and inactive forms, the role of Na+ binding, the effects of light chain mutation, and thrombin's interactions with other biomolecules. The findings of these studies have significant implications for developing new therapies for thrombosis and cancer. By understanding thrombin's complex behavior, researchers can design more effective drugs and treatments that target thrombin.
Collapse
Affiliation(s)
- Dizhou Wu
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Athul Prem
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Jiajie Xiao
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
- Freenome, South San Francisco, CA, 94080, USA
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| |
Collapse
|
3
|
Torres-Paris C, Chen Y, Xiao L, Song HJ, Chen P, Komives EA. The autoactivation of human single-chain urokinase-type plasminogen activator (uPA). J Biol Chem 2023; 299:105179. [PMID: 37607618 PMCID: PMC10520878 DOI: 10.1016/j.jbc.2023.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Most serine proteases are synthesized as inactive zymogens that are activated by cleavage by another protease in a tightly regulated mechanism. The urokinase-type plasminogen activator (uPA) and plasmin cleave and activate each other, constituting a positive feedback loop. How this mutual activation cycle begins has remained a mystery. We used hydrogen deuterium exchange mass spectrometry to characterize the dynamic differences between the inactive single-chain uPA (scuPA) and its active form two-chain uPA (tcuPA). The results show that the C-terminal β-barrel and the area around the new N terminus have significantly reduced dynamics in tcuPA as compared with scuPA. We also show that the zymogen scuPA is inactive but can, upon storage, become active in the absence of external proteases. In addition to plasmin, the tcuPA can activate scuPA by cleavage at K158, a process called autoactivation. Unexpectedly, tcuPA can cleave at position 158 even when this site is mutated. TcuPA can also cleave scuPA after K135 or K136 in the disordered linker, which generates the soluble protease domain of uPA. Plasmin cleaves scuPA exclusively after K158 and at a faster rate than tcuPA. We propose a mechanism by which the uPA receptor dimerization could promote autoactivation of scuPA on cell surfaces. These results resolve long-standing controversies in the literature surrounding the mechanism of uPA activation.
Collapse
Affiliation(s)
- Constanza Torres-Paris
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Yueyi Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Lufan Xiao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Harriet J Song
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Pingyu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
4
|
Structural and functional analysis of the simultaneous binding of two duplex/quadruplex aptamers to human α-thrombin. Int J Biol Macromol 2021; 181:858-867. [PMID: 33864869 DOI: 10.1016/j.ijbiomac.2021.04.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
The long-range communication between the two exosites of human α-thrombin (thrombin) tightly modulates the protein-effector interactions. Duplex/quadruplex aptamers represent an emerging class of very effective binders of thrombin. Among them, NU172 and HD22 aptamers are at the forefront of exosite I and II recognition, respectively. The present study investigates the simultaneous binding of these two aptamers by combining a structural and dynamics approach. The crystal structure of the ternary complex formed by the thrombin with NU172 and HD22_27mer provides a detailed view of the simultaneous binding of these aptamers to the protein, inspiring the design of novel bivalent thrombin inhibitors. The crystal structure represents the starting model for molecular dynamics studies, which point out the cooperation between the binding at the two exosites. In particular, the binding of an aptamer to its exosite reduces the intrinsic flexibility of the other exosite, that preferentially assumes conformations similar to those observed in the bound state, suggesting a predisposition to interact with the other aptamer. This behaviour is reflected in a significant increase of the anticoagulant activity of NU172 when the inactive HD22_27mer is bound to exosite II, providing a clear evidence of the synergic action of the two aptamers.
Collapse
|
5
|
Troisi R, Balasco N, Vitagliano L, Sica F. Molecular dynamics simulations of human α-thrombin in different structural contexts: evidence for an aptamer-guided cooperation between the two exosites. J Biomol Struct Dyn 2020; 39:2199-2209. [PMID: 32202471 DOI: 10.1080/07391102.2020.1746693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human α-thrombin (thrombin) is a multifunctional enzyme that plays a pivotal role in the coagulation pathway. Thrombin activity can be effectively modulated by G-quadruplex-based oligonucleotide aptamers that specifically interact with the two positively charged regions (exosites I and II) on the protein surface. Although insightful atomic-level snapshots of the recognition between thrombin and aptamers have been recently achieved through crystallographic analyses, some dynamic aspects of this interaction have not been fully characterized. We here report molecular dynamics simulations of thrombin in different association states: ligand-free and binary/ternary complexes with the aptamers TBA (at exosite I) and HD22_27mer (at exosite II). The simulations carried out on the binary and ternary complexes formed by thrombin with these aptamers provide a dynamic view of the interactions that stabilize them in a crystal-free environment. Interestingly, the analysis of the dynamics of the exosites in different thrombin binding states clearly indicates that the HD22_27mer binding at the exosite II favours conformations of exosite I that are prone to the TBA binding. Similar effects are observed upon the binding of TBA to the exosite I. These observations provide an atomic-level picture of the exosite inter-communication in thrombin and explain the experimentally detected cooperativity of the TBA/HD22_27mer binding.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| |
Collapse
|
6
|
Benhaim M, Lee KK, Guttman M. Tracking Higher Order Protein Structure by Hydrogen-Deuterium Exchange Mass Spectrometry. Protein Pept Lett 2019; 26:16-26. [PMID: 30543159 PMCID: PMC6386625 DOI: 10.2174/0929866526666181212165037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/30/2018] [Accepted: 11/17/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Structural biology has provided a fundamental understanding of protein structure and mechanistic insight into their function. However, high-resolution structures alone are insufficient for a complete understanding of protein behavior. Higher energy conformations, conformational changes, and subtle structural fluctuations that underlie the proper function of proteins are often difficult to probe using traditional structural approaches. Hydrogen/Deuterium Exchange with Mass Spectrometry (HDX-MS) provides a way to probe the accessibility of backbone amide protons under native conditions, which reports on local structural dynamics of solution protein structure that can be used to track complex structural rearrangements that occur in the course of a protein's function. CONCLUSION In the last 20 years the advances in labeling techniques, sample preparation, instrumentation, and data analysis have enabled HDX to gain insights into very complex biological systems. Analysis of challenging targets such as membrane protein complexes is now feasible and the field is paving the way to the analysis of more and more complex systems.
Collapse
Affiliation(s)
- Mark Benhaim
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
7
|
Billur R, Ban D, Sabo TM, Maurer MC. Deciphering Conformational Changes Associated with the Maturation of Thrombin Anion Binding Exosite I. Biochemistry 2017; 56:6343-6354. [PMID: 29111672 DOI: 10.1021/acs.biochem.7b00970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Thrombin participates in procoagulation, anticoagulation, and platelet activation. This enzyme contains anion binding exosites, ABE I and ABE II, which attract regulatory biomolecules. As prothrombin is activated to thrombin, pro-ABE I is converted into mature ABE I. Unexpectedly, certain ligands can bind to pro-ABE I specifically. Moreover, knowledge of changes in conformation and affinity that occur at the individual residue level as pro-ABE I is converted to ABE I is lacking. Such changes are transient and were not captured by crystallography. Therefore, we employed nuclear magnetic resonance (NMR) titrations to monitor development of ABE I using peptides based on protease-activated receptor 3 (PAR3). Proton line broadening NMR revealed that PAR3 (44-56) and more weakly binding PAR3G (44-56) could already interact with pro-ABE I on prothrombin. 1H-15N heteronuclear single-quantum coherence NMR titrations were then used to probe binding of individual 15N-labeled PAR3G residues (F47, E48, L52, and D54). PAR3G E48 and D54 could interact electrostatically with prothrombin and tightened upon thrombin maturation. The higher affinity for PAR3G D54 suggests the region surrounding thrombin R77a is better oriented to bind D54 than the interaction between PAR3G E48 and thrombin R75. Aromatic PAR3G F47 and aliphatic L52 both reported on significant changes in the chemical environment upon conversion of prothrombin to thrombin. The ABE I region surrounding the 30s loop was more affected than the hydrophobic pocket (F34, L65, and I82). Our NMR titrations demonstrate that PAR3 residues document structural rearrangements occurring during exosite maturation that are missed by reported X-ray crystal structures.
Collapse
Affiliation(s)
- Ramya Billur
- Department of Chemistry, University of Louisville , Louisville, Kentucky 40292, United States
| | - David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville , Louisville, Kentucky 40202, United States
| | - T Michael Sabo
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville , Louisville, Kentucky 40202, United States
| | - Muriel C Maurer
- Department of Chemistry, University of Louisville , Louisville, Kentucky 40292, United States
| |
Collapse
|
8
|
Pica A, Russo Krauss I, Parente V, Tateishi-Karimata H, Nagatoishi S, Tsumoto K, Sugimoto N, Sica F. Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers. Nucleic Acids Res 2016; 45:461-469. [PMID: 27899589 PMCID: PMC5224481 DOI: 10.1093/nar/gkw1113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/29/2016] [Indexed: 11/23/2022] Open
Abstract
Aptamers directed against human thrombin can selectively bind to two different exosites on the protein surface. The simultaneous use of two DNA aptamers, HD1 and HD22, directed to exosite I and exosite II respectively, is a very powerful approach to exploit their combined affinity. Indeed, strategies to link HD1 and HD22 together have been proposed in order to create a single bivalent molecule with an enhanced ability to control thrombin activity. In this work, the crystal structures of two ternary complexes, in which thrombin is sandwiched between two DNA aptamers, are presented and discussed. The structures shed light on the cross talk between the two exosites. The through-bond effects are particularly evident at exosite II, with net consequences on the HD22 structure. Moreover, thermodynamic data on the binding of the two aptamers are also reported and analyzed.
Collapse
Affiliation(s)
- Andrea Pica
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy.,Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone, 16, I-80134 Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy.,Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone, 16, I-80134 Naples, Italy
| | - Valeria Parente
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan
| | - Satoru Nagatoishi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113- 8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113- 8656, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan .,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy .,Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone, 16, I-80134 Naples, Italy
| |
Collapse
|
9
|
Fuglestad B, Gasper PM, McCammon JA, Markwick PRL, Komives EA. Correlated motions and residual frustration in thrombin. J Phys Chem B 2013; 117:12857-63. [PMID: 23621631 PMCID: PMC3808083 DOI: 10.1021/jp402107u] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thrombin is the central protease in the cascade of blood coagulation proteases. The structure of thrombin consists of a double β-barrel core surrounded by connecting loops and helices. Compared to chymotrypsin, thrombin has more extended loops that are thought to have arisen from insertions in the serine protease that evolved to impart greater specificity. Previous experiments showed thermodynamic coupling between ligand binding at the active site and distal exosites. We present a combined approach of molecular dynamics (MD), accelerated molecular dynamics (AMD), and analysis of the residual local frustration of apo-thrombin and active-site-bound (PPACK-thrombin). Community analysis of the MD ensembles identified changes upon active site occupation in groups of residues linked through correlated motions and physical contacts. AMD simulations, calibrated on measured residual dipolar couplings, reveal that upon active site ligation, correlated loop motions are quenched, but new ones connecting the active site with distal sites where allosteric regulators bind emerge. Residual local frustration analysis reveals a striking correlation between frustrated contacts and regions undergoing slow time scale dynamics. The results elucidate a motional network that probably evolved through retention of frustrated contacts to provide facile conversion between ensembles of states.
Collapse
Affiliation(s)
- Brian Fuglestad
- Department of Chemistry and Biochemistry and ⊥Department of Pharmacology, University of California, San Diego , La Jolla, California, United States
| | | | | | | | | |
Collapse
|
10
|
Treuheit NA, Beach MA, Komives EA. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin. Biochemistry 2011; 50:4590-6. [PMID: 21526769 DOI: 10.1021/bi2004069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.
Collapse
Affiliation(s)
- Nicholas A Treuheit
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093-0378, USA
| | | | | |
Collapse
|
11
|
Li CZ, Koter M, Ye X, Zhou SF, Chou W, Luo R, Gershon PD. Widespread but Small-Scale Changes in the Structural and Dynamic Properties of Vaccinia Virus Poly(A) Polymerase upon Association with Its Processivity Factor in Solution. Biochemistry 2010; 49:6247-62. [DOI: 10.1021/bi100166x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C.-Z. Li
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - M. Koter
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - X. Ye
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - S.-F. Zhou
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - W. Chou
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - R. Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - P. D. Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| |
Collapse
|
12
|
Liao WL, Dodder NG, Mast N, Pikuleva IA, Turko IV. Steroid and protein ligand binding to cytochrome P450 46A1 as assessed by hydrogen-deuterium exchange and mass spectrometry. Biochemistry 2009; 48:4150-8. [PMID: 19317426 DOI: 10.1021/bi900168m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 46A1 (CYP46A1) is a key enzyme responsible for cholesterol elimination from the brain. This P450 can interact with different steroid substrates and protein redox partners. We utilized hydrogen-deuterium (H-D) exchange mass spectrometry for investigating CYP46A1-ligand interactions. First, we tested the applicability of the H-D exchange methodology and assessed the amide proton exchange in substrate-free and cholesterol-sulfate-bound P450. The results showed good correspondence to the available crystal structures and prompted investigation of the CYP46A1 interactions with the two steroid substrates cholesterol and 24S-hydroxycholesterol and the protein redox partner adrenodoxin (Adx). Compared to substrate-free P450, four peptides in cholesterol-bound CYP46A1 (65-80, 109-116, 151-164, and 351-361) and eight peptides in 24S-hydroxycholesterol-bound enzyme (50-64, 65-80, 109-116, 117-125, 129-143, 151-164, 260-270, and 364-373) showed altered deuterium incorporation. Most of these peptides constitute the enzyme active site, whereas the 351-361 peptide is from the region putatively interacting with the redox partner Adx. This also defines the proximal (presumably water) channel that opens in CYP46A1 upon substrate binding. Reciprocal studies of Adx binding to substrate-free and cholesterol-sulfate-bound CYP46A1 revealed changes in the deuteration of the Adx-binding site 144-150 and 351-361 peptides, active site 225-239 and 301-313 peptides, and in the 265-276 peptide, whose functional role is not yet known. The data obtained provide structural insights into how substrate and redox partner binding are coordinated and linked to the hydration of the enzyme active site.
Collapse
Affiliation(s)
- Wei-Li Liao
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | |
Collapse
|
13
|
Laine O, Streaker ED, Nabavi M, Fenselau CC, Beckett D. Allosteric signaling in the biotin repressor occurs via local folding coupled to global dampening of protein dynamics. J Mol Biol 2008; 381:89-101. [PMID: 18586268 DOI: 10.1016/j.jmb.2008.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/09/2008] [Accepted: 05/10/2008] [Indexed: 11/18/2022]
Abstract
The biotin repressor is an allosterically regulated, site-specific DNA-binding protein. Binding of the small ligand bio-5'-AMP activates repressor dimerization, which is a prerequisite to DNA binding. Multiple disorder-to-order transitions, some of which are known to be important for the functional allosteric response, occur in the vicinity of the ligand-binding site concomitant with effector binding to the repressor monomer. In this work, the extent to which these local changes are coupled to additional changes in the structure/dynamics of the repressor was investigated using hydrogen/deuterium exchange coupled to mass spectrometry. Measurements were performed on the apo-protein and on complexes of the protein bound to four different effectors that elicit a range of thermodynamic responses in the repressor. Global exchange measurements indicate that binding of any effector to the intact protein is accompanied by protection from exchange. Mass spectrometric analysis of pepsin-cleavage products generated from the exchanged complexes reveals that the protection is distributed throughout the protein. Furthermore, the magnitude of the level of protection in each peptide from hydrogen/deuterium exchange correlates with the magnitude of the functional allosteric response elicited by a ligand. These results indicate that local structural changes in the binding site that occur concomitant with effector binding nucleate global dampening of dynamics. Moreover, the magnitude of dampening of repressor dynamics tracks with the magnitude of the functional response to effector binding.
Collapse
Affiliation(s)
- Olli Laine
- Department of Chemistry and Biochemistry and Center for Biological Structure and Organization, College of Chemical and Life Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.
Collapse
Affiliation(s)
- P E Bock
- Department of Pathology, Vanderbilt University, Nashville, TN 37232-2561, USA.
| | | | | |
Collapse
|