1
|
Characterization of a Solvent-Tolerant Amidohydrolase Involved in Natural Product Heterocycle Formation. Catalysts 2021. [DOI: 10.3390/catal11080892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heterocycles are important building blocks in pharmaceutical drugs and their enzymatic synthesis is attracting increasing interest. In recent years, various enzymes of the amidohydrolase superfamily were reported to catalyze heterocycle-forming condensation reactions. One of these enzymes, MxcM, is biochemically and kinetically characterized in this study. MxcM generates an imidazoline moiety in the biosynthesis of the natural product pseudochelin A, which features potent anti-inflammatory properties. The enzyme shows maximal activity at 50 °C and pH 10 as well as a kcat/Km value of 22,932 s−1 M−1 at its temperature optimum. Experimental data suggest that the activity of MxcM does not depend on a catalytic metal ion, which is uncommon among amidohydrolases. MxcM is highly active in diverse organic solvents and concentrated salt solutions. Furthermore, we show that MxcM is also capable to introduce imidazoline rings into derivatives of its natural substrate myxochelin B. Overall, MxcM is a solvent-stable, halotolerant enzyme with promising biochemical and kinetic properties and, in future, might become a valuable biocatalyst for the manufacturing of pharmaceutical drugs.
Collapse
|
2
|
Cienfuegos-Pecina E, Ibarra-Rivera TR, Saucedo AL, Ramírez-Martínez LA, Esquivel-Figueroa D, Domínguez-Vázquez I, Alcántara-Solano KJ, Moreno-Peña DP, Alarcon-Galvan G, Rodríguez-Rodríguez DR, Torres-González L, Muñoz-Espinosa LE, Pérez-Rodríguez E, Cordero-Pérez P. Effect of sodium ( S)-2-hydroxyglutarate in male, and succinic acid in female Wistar rats against renal ischemia-reperfusion injury, suggesting a role of the HIF-1 pathway. PeerJ 2020; 8:e9438. [PMID: 32728491 PMCID: PMC7357568 DOI: 10.7717/peerj.9438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background Ischemia–reperfusion (IR) injury is the main cause of delayed graft function in solid organ transplantation. Hypoxia-inducible factors (HIFs) control the expression of genes related to preconditioning against IR injury. During normoxia, HIF-α subunits are marked for degradation by the egg-laying defective nine homolog (EGLN) family of prolyl-4-hydroxylases. The inhibition of EGLN stabilizes HIFs and protects against IR injury. The aim of this study was to determine whether the EGLN inhibitors sodium (S)-2-hydroxyglutarate [(S)-2HG] and succinic acid (SA) have a nephroprotective effect against renal IR injury in Wistar rats. Methods (S)-2HG was synthesized in a 22.96% yield from commercially available L-glutamic acid in a two-step methodology (diazotization/alkaline hydrolysis), and its structure was confirmed by nuclear magnetic resonance and polarimetry. SA was acquired commercially. (S)-2HG and SA were independently evaluated in male and female Wistar rats respectively after renal IR injury. Rats were divided into the following groups: sham (SH), nontoxicity [(S)-2HG: 12.5 or 25 mg/kg; SA: 12.5, 25, or 50 mg/kg], IR, and compound+IR [(S)-2HG: 12.5 or 25 mg/kg; SA: 12.5, 25, or 50 mg/kg]; independent SH and IR groups were used for each assessed compound. Markers of kidney injury (BUN, creatinine, glucose, and uric acid) and liver function (ALT, AST, ALP, LDH, serum proteins, and albumin), proinflammatory cytokines (IL-1β, IL-6, and TNF-α), oxidative stress biomarkers (malondialdehyde and superoxide dismutase), and histological parameters (tubular necrosis, acidophilic casts, and vascular congestion) were assessed. Tissue HIF-1α was measured by ELISA and Western blot, and the expression of Hmox1 was assessed by RT-qPCR. Results (S)-2HG had a dose-dependent nephroprotective effect, as evidenced by a significant reduction in the changes in the BUN, creatinine, ALP, AST, and LDH levels compared with the IR group. Tissue HIF-1α was only increased in the IR group compared to SH; however, (S)-2HG caused a significant increase in the expression of Hmox1, suggesting an early accumulation of HIF-1α in the (S)-2HG-treated groups. There were no significant effects on the other biomarkers. SA did not show a nephroprotective effect; the only changes were a decrease in creatinine level at 12.5 mg/kg and increased IR injury at 50 mg/kg. There were no effects on the other biochemical, proinflammatory, or oxidative stress biomarkers. Conclusion None of the compounds were hepatotoxic at the tested doses. (S)-2HG showed a dose-dependent nephroprotective effect at the evaluated doses, which involved an increase in the expression of Hmox1, suggesting stabilization of HIF-1α. SA did not show a nephroprotective effect but tended to increase IR injury when given at high doses.
Collapse
Affiliation(s)
- Eduardo Cienfuegos-Pecina
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Tannya R Ibarra-Rivera
- Universidad Autonoma de Nuevo Leon, Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Alma L Saucedo
- Universidad Autonoma de Nuevo Leon, Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Luis A Ramírez-Martínez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Deanna Esquivel-Figueroa
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Ixel Domínguez-Vázquez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Karina J Alcántara-Solano
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana P Moreno-Peña
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Gabriela Alarcon-Galvan
- Universidad de Monterrey, Basic Science Department, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Diana Raquel Rodríguez-Rodríguez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Liliana Torres-González
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Linda E Muñoz-Espinosa
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Edelmiro Pérez-Rodríguez
- Universidad Autonoma de Nuevo Leon, Transplant Service, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Paula Cordero-Pérez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| |
Collapse
|
3
|
Abstract
Fluorochemicals are a widely distributed class of compounds and have been utilized across a wide range of industries for decades. Given the environmental toxicity and adverse health threats of some fluorochemicals, the development of new methods for their decomposition is significant to public health. However, the carbon-fluorine (C-F) bond is among the most chemically robust bonds; consequently, the degradation of fluorinated hydrocarbons is exceptionally difficult. Here, metalloenzymes that catalyze the cleavage of this chemically challenging bond are reviewed. These enzymes include histidine-ligated heme-dependent dehaloperoxidase and tyrosine hydroxylase, thiolate-ligated heme-dependent cytochrome P450, and four nonheme oxygenases, namely, tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, 2-oxoglutarate-dependent hydroxylase, Rieske dioxygenase, and thiol dioxygenase. While much of the literature regarding the aforementioned enzymes highlights their ability to catalyze C-H bond activation and functionalization, in many cases, the C-F bond cleavage has been shown to occur on fluorinated substrates. A copper-dependent laccase-mediated system representing an unnatural radical defluorination approach is also described. Detailed discussions on the structure-function relationships and catalytic mechanisms provide insights into biocatalytic defluorination, which may inspire drug design considerations and environmental remediation of halogenated contaminants.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
4
|
Vorobjeva NN, Kurilova SA, Petukhova AF, Nazarova TI, Kolomijtseva GY, Baykov AA, Rodina EV. A novel, cupin-type phosphoglucose isomerase in Escherichia coli. Biochim Biophys Acta Gen Subj 2020; 1864:129601. [PMID: 32179131 DOI: 10.1016/j.bbagen.2020.129601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Escherichia coli cells contain a homolog of presumed 5-keto-4-deoxyuronate isomerase (KduI) from pectin-degrading soil bacteria, but the catalytic activity of the E. coli protein (o-KduI) was never demonstrated. METHODS The known three-dimensional structure of E. coli o-KduI was compared with the available structures of sugar-converting enzymes. Based on the results of this analysis, sugar isomerization activity of recombinant o-KduI was tested against a panel of D-sugars and their derivatives. RESULTS The three-dimensional structure of o-KduI exhibits a close similarity with Pyrococcus furiosus cupin-type phosphoglucose isomerase. In accordance with this similarity, o-KduI was found to catalyze interconversion of glucose-6-phosphate and fructose-6-phosphate and, less efficiently, conversion of glucuronate to fructuronate. o-KduI was hexameric in crystals but represented a mixture of inactive hexamers and active dimers in solution and contained a tightly bound Zn2+ ion. Dilution, substrate binding and Zn2+ removal shifted the hexamer ⇆ dimer equilibrium to the dimers. CONCLUSIONS Our findings identify o-KduI as a novel phosphosugar isomerase in E. coli, whose activity may be regulated by changes in oligomeric structure. GENERAL SIGNIFICANCE More than 5700 protein sequences are annotated as KduI, but their enzymatic activity has not been directly demonstrated. E. coli o-KduI is the first characterized member of this group, and its enzymatic activity was found to be different from the predicted activity.
Collapse
Affiliation(s)
- Natalia N Vorobjeva
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana A Kurilova
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia F Petukhova
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana I Nazarova
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Galina Ya Kolomijtseva
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander A Baykov
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Elena V Rodina
- Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
5
|
Huddleston JP, Raushel FM. Functional Characterization of YdjH, a Sugar Kinase of Unknown Specificity in Escherichia coli K12. Biochemistry 2019; 58:3354-3364. [PMID: 31314509 DOI: 10.1021/acs.biochem.9b00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ydj gene cluster is annotated to catalyze the catabolism of an unknown carbohydrate. Previously, YdjI, a class II aldolase, was shown to catalyze the retro-aldol cleavage of l-glycero-l-galacto-octuluronate-1-phosphate into DHAP and l-arabinuronate. In this report, the functional characterization of YdjH is presented. YdjH catalyzes the phosphorylation of 2-keto-monosaccharides at the C1 hydroxyl group with a substrate profile significantly more stringent than that of YdjI. Similar to YdjI, YdjH shows a strong preference for higher-order monosaccharides (seven to nine carbons) with a carboxylate terminus. The best substrate was determined to be l-glycero-l-galacto-octuluronate, yielding l-glycero-l-galacto-octuluronate-1-phosphate with a kcat of 16 s-1 and a kcat/Km of 2.1 × 104 M-1 s-1. This is apparently the first reported example of kinase activity with eight-carbon monosaccharides. Two crystal structures of YdjH were previously determined to 2.15 and 1.8 Å resolution (Protein Data Bank entries 3H49 and 3IN1 ). We present an analysis of the active site layout and use computational docking to identify potential key residues in the binding of l-glycero-l-galacto-octuluronate.
Collapse
Affiliation(s)
- Jamison P Huddleston
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Frank M Raushel
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
6
|
Wirth R, Kádár G, Kakuk B, Maróti G, Bagi Z, Szilágyi Á, Rákhely G, Horváth J, Kovács KL. The Planktonic Core Microbiome and Core Functions in the Cattle Rumen by Next Generation Sequencing. Front Microbiol 2018; 9:2285. [PMID: 30319585 PMCID: PMC6165872 DOI: 10.3389/fmicb.2018.02285] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022] Open
Abstract
The cow rumen harbors a great variety of diverse microbes, which form a complex, organized community. Understanding the behavior of this multifarious network is crucial in improving ruminant nutrient use efficiency. The aim of this study was to expand our knowledge by examining 10 Holstein dairy cow rumen fluid fraction whole metagenome and transcriptome datasets. DNA and mRNA sequence data, generated by Ion Torrent, was subjected to quality control and filtering before analysis for core elements. The taxonomic core microbiome consisted of 48 genera belonging to Bacteria (47) and Archaea (1). The genus Prevotella predominated the planktonic core community. Core functional groups were identified using co-occurrence analysis and resulted in 587 genes, from which 62 could be assigned to metabolic functions. Although this was a minimal functional core, it revealed key enzymes participating in various metabolic processes. A diverse and rich collection of enzymes involved in carbohydrate metabolism and other functions were identified. Transcripts coding for enzymes active in methanogenesis made up 1% of the core functions. The genera associated with the core enzyme functions were also identified. Linking genera to functions showed that the main metabolic pathways are primarily provided by Bacteria and several genera may serve as a “back-up” team for the central functions. The key actors in most essential metabolic routes belong to the genus Prevotella. Confirming earlier studies, the genus Methanobrevibacter carries out the overwhelming majority of rumen methanogenesis and therefore methane emission mitigation seems conceivable via targeting the hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | | | - Balázs Kakuk
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - József Horváth
- Faculty of Agriculture, University of Szeged, Hódmezövásárhely, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Mehtiö T, Toivari M, Wiebe MG, Harlin A, Penttilä M, Koivula A. Production and applications of carbohydrate-derived sugar acids as generic biobased chemicals. Crit Rev Biotechnol 2015; 36:904-16. [DOI: 10.3109/07388551.2015.1060189] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tuomas Mehtiö
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Mervi Toivari
- VTT Technical Research Centre of Finland, Espoo, Finland
| | | | - Ali Harlin
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Anu Koivula
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
8
|
Yevglevskis M, Lee GL, Threadgill MD, Woodman TJ, Lloyd MD. The perils of rational design--unexpected irreversible elimination of fluoride from 3-fluoro-2-methylacyl-CoA esters catalysed by α-methylacyl-CoA racemase (AMACR; P504S). Chem Commun (Camb) 2015; 50:14164-6. [PMID: 25277991 DOI: 10.1039/c4cc06127f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Methylacyl-CoA racemase (AMACR; P504S) catalyses 'racemization' of 2-methylacyl-CoAs, the activation of R-ibuprofen and is a promising cancer drug target. Human recombinant AMACR 1A catalyses elimination of 3-fluoro-2-methyldecanoyl-CoAs to give E-2-methyldec-2-enoyl-CoA and fluoride anion, a previously unknown reaction. 'Racemization' of 2-methyldec-3-enoyl-CoAs was also catalysed, without double bond migration.
Collapse
Affiliation(s)
- Maksims Yevglevskis
- Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | | | |
Collapse
|
9
|
Evolutionary expansion of the amidohydrolase superfamily in bacteria in response to the synthetic compounds molinate and diuron. Appl Environ Microbiol 2015; 81:2612-24. [PMID: 25636851 DOI: 10.1128/aem.04016-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amidohydrolase superfamily has remarkable functional diversity, with considerable structural and functional annotation of known sequences. In microbes, the recent evolution of several members of this family to catalyze the breakdown of environmental xenobiotics is not well understood. An evolutionary transition from binuclear to mononuclear metal ion coordination at the active sites of these enzymes could produce large functional changes such as those observed in nature, but there are few clear examples available to support this hypothesis. To investigate the role of binuclear-mononuclear active-site transitions in the evolution of new function in this superfamily, we have characterized two recently evolved enzymes that catalyze the hydrolysis of the synthetic herbicides molinate (MolA) and phenylurea (PuhB). In this work, the crystal structures, mutagenesis, metal ion analysis, and enzyme kinetics of both MolA and PuhB establish that these enzymes utilize a mononuclear active site. However, bioinformatics and structural comparisons reveal that the closest putative ancestor of these enzymes had a binuclear active site, indicating that a binuclear-mononuclear transition has occurred. These proteins may represent examples of evolution modifying the characteristics of existing catalysts to satisfy new requirements, specifically, metal ion rearrangement leading to large leaps in activity that would not otherwise be possible.
Collapse
|
10
|
Huo L, Liu F, Iwaki H, Li T, Hasegawa Y, Liu A. Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD): a structural and mechanistic unveiling. Proteins 2014; 83:178-87. [PMID: 25392945 DOI: 10.1002/prot.24722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/28/2014] [Accepted: 11/04/2014] [Indexed: 11/07/2022]
Abstract
Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase determines the fate of tryptophan metabolites in the kynurenine pathway by controlling the quinolinate levels for de novo nicotinamide adenine dinucleotide biosynthesis. The unstable nature of its substrate has made gaining insight into its reaction mechanism difficult. Our electron paramagnetic resonance (EPR) spectroscopic study on the Cu-substituted human enzyme suggests that the native substrate does not directly ligate to the metal ion. Substrate binding did not result in a change of either the hyperfine structure or the super-hyperfine structure of the EPR spectrum. We also determined the crystal structure of the human enzyme in its native catalytically active state (at 1.99 Å resolution), a substrate analogue-bound form (2.50 Å resolution), and a selected active site mutant form with one of the putative substrate binding residues altered (2.32 Å resolution). These structures illustrate that each asymmetric unit contains three pairs of dimers. Consistent with the EPR findings, the ligand-bound complex structure shows that the substrate analogue does not directly coordinate to the metal ion but is bound to the active site by two arginine residues through noncovalent interactions.
Collapse
Affiliation(s)
- Lu Huo
- Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| | | | | | | | | | | |
Collapse
|
11
|
Hobbs ME, Williams HJ, Hillerich B, Almo SC, Raushel FM. l-Galactose metabolism in Bacteroides vulgatus from the human gut microbiota. Biochemistry 2014; 53:4661-70. [PMID: 24963813 PMCID: PMC4108180 DOI: 10.1021/bi500656m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A previously
unknown metabolic pathway for the utilization of l-galactose
was discovered in a prevalent gut bacterium, Bacteroides vulgatus. The new pathway consists of three
previously uncharacterized enzymes that were found to be responsible
for the conversion of l-galactose to d-tagaturonate.
Bvu0219 (l-galactose dehydrogenase) was determined to oxidize l-galactose to l-galactono-1,5-lactone with kcat and kcat/Km values of 21 s–1 and 2.0
× 105 M–1 s–1,
respectively. The kinetic product of Bvu0219 is rapidly converted
nonenzymatically to the thermodynamically more stable l-galactono-1,4-lactone.
Bvu0220 (l-galactono-1,5-lactonase) hydrolyzes both the kinetic
and thermodynamic products of Bvu0219 to l-galactonate. However, l-galactono-1,5-lactone is estimated to be hydrolyzed 300-fold
faster than its thermodynamically more stable counterpart, l-galactono-1,4-lactone. In the final step of this pathway, Bvu0222
(l-galactonate dehydrogenase) oxidizes l-galactonate
to d-tagaturonate with kcat and kcat/Km values of
0.6 s–1 and 1.7 × 104 M–1 s–1, respectively. In the reverse direction, d-tagaturonate is reduced to l-galactonate with values
of kcat and kcat/Km of 90 s–1 and 1.6
× 105 M–1 s–1,
respectively. d-Tagaturonate is subsequently converted to d-glyceraldehyde and pyruvate through enzymes encoded within
the degradation pathway for d-glucuronate and d-galacturonate.
Collapse
Affiliation(s)
- Merlin Eric Hobbs
- Department of Biochemistry and Biophysics, §Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | | | | | | | | |
Collapse
|
12
|
Ornelas A, Korczynska M, Ragumani S, Kumaran D, Narindoshvili T, Shoichet BK, Swaminathan S, Raushel FM. Functional annotation and three-dimensional structure of an incorrectly annotated dihydroorotase from cog3964 in the amidohydrolase superfamily. Biochemistry 2012; 52:228-38. [PMID: 23214420 DOI: 10.1021/bi301483z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The substrate specificities of two incorrectly annotated enzymes belonging to cog3964 from the amidohydrolase superfamily were determined. This group of enzymes are currently misannotated as either dihydroorotases or adenine deaminases. Atu3266 from Agrobacterium tumefaciens C58 and Oant2987 from Ochrobactrum anthropi ATCC 49188 were found to catalyze the hydrolysis of acetyl-(R)-mandelate and similar esters with values of k(cat)/K(m) that exceed 10(5) M(-1) s(-1). These enzymes do not catalyze the deamination of adenine or the hydrolysis of dihydroorotate. Atu3266 was crystallized and the structure determined to a resolution of 2.62 Å. The protein folds as a distorted (β/α)(8) barrel and binds two zincs in the active site. The substrate profile was determined via a combination of computational docking to the three-dimensional structure of Atu3266 and screening of a highly focused library of potential substrates. The initial weak hit was the hydrolysis of N-acetyl-D-serine (k(cat)/K(m) = 4 M(-1) s(-1)). This was followed by the progressive identification of acetyl-(R)-glycerate (k(cat)/K(m) = 4 × 10(2) M(-1) s(-1)), acetyl glycolate (k(cat)/K(m) = 1.3 × 10(4) M(-1) s(-1)), and ultimately acetyl-(R)-mandelate (k(cat)/K(m) = 2.8 × 10(5) M(-1) s(-1)).
Collapse
Affiliation(s)
- Argentina Ornelas
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, TX 77842-3012, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Esmurziev AM, Reimers A, Andreassen T, Simic N, Sundby E, Hoff BH. Benzoylated uronic acid building blocks and synthesis of N-uronate conjugates of lamotrigine. Molecules 2012; 17:820-35. [PMID: 22269868 PMCID: PMC6268592 DOI: 10.3390/molecules17010820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 11/24/2022] Open
Abstract
A chemoenzymatic approach towards benzoylated uronic acid building blocks has been investigated starting with benzoylated hexapyranosides using regioselective C-6 enzymatic hydrolysis as the key step. Two of the building blocks were reacted with the antiepileptic drug lamotrigine. Glucuronidation of lamotrigine using methyl (2,3,4-tri-O-benzoyl-α-D-glycopyranosyl bromide)uronate proceeded to give the N2-conjugate. However, lamotrigine-N2-glucuronide was most efficiently synthesised from methyl (2,3,4-tri-O-acetyl-α-D-glucopyranosyl bromide)uronate. Employing nitromethane as solvent with CdCO(3) as a base lamotrigine-N2 glucuronide was prepared in a high yield (41%). Also methyl (2,3-di-O-benzoyl-4-deoxy-4-fluoro-α-D-glucosyl bromide)uronate underwent N-glucuronidation, but the product was unstable, eliminating hydrogen fluoride to give the corresponding enoate conjugate.
Collapse
Affiliation(s)
- Aslan M. Esmurziev
- Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim NO-7491, Norway
- Sør-Trøndelag University College, E.C. Dahls Gate 2, Trondheim NO-7004, Norway
| | - Arne Reimers
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Trygve Andreassen
- Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Trondheim NO-7491, Norway
| | - Nebojsa Simic
- Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim NO-7491, Norway
| | - Eirik Sundby
- Sør-Trøndelag University College, E.C. Dahls Gate 2, Trondheim NO-7004, Norway
| | - Bård Helge Hoff
- Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim NO-7491, Norway
| |
Collapse
|
14
|
Xiang DF, Patskovsky Y, Xu C, Fedorov AA, Fedorov EV, Sisco AA, Sauder JM, Burley SK, Almo SC, Raushel FM. Functional identification and structure determination of two novel prolidases from cog1228 in the amidohydrolase superfamily . Biochemistry 2010; 49:6791-803. [PMID: 20604542 PMCID: PMC2914802 DOI: 10.1021/bi100897u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two uncharacterized enzymes from the amidohydrolase superfamily belonging to cog1228 were cloned, expressed, and purified to homogeneity. The two proteins, Sgx9260c ( gi|44242006 ) and Sgx9260b ( gi|44479596 ), were derived from environmental DNA samples originating from the Sargasso Sea. The catalytic function and substrate profiles for Sgx9260c and Sgx9260b were determined using a comprehensive library of dipeptides and N-acyl derivative of l-amino acids. Sgx9260c catalyzes the hydrolysis of Gly-l-Pro, l-Ala-l-Pro, and N-acyl derivatives of l-Pro. The best substrate identified to date is N-acetyl-l-Pro with a value of k(cat)/K(m) of 3 x 10(5) M(-1) s(-1). Sgx9260b catalyzes the hydrolysis of l-hydrophobic l-Pro dipeptides and N-acyl derivatives of l-Pro. The best substrate identified to date is N-propionyl-l-Pro with a value of k(cat)/K(m) of 1 x 10(5) M(-1) s(-1). Three-dimensional structures of both proteins were determined by X-ray diffraction methods (PDB codes 3MKV and 3FEQ ). These proteins fold as distorted (beta/alpha)(8)-barrels with two divalent cations in the active site. The structure of Sgx9260c was also determined as a complex with the N-methylphosphonate derivative of l-Pro (PDB code 3N2C ). In this structure the phosphonate moiety bridges the binuclear metal center, and one oxygen atom interacts with His-140. The alpha-carboxylate of the inhibitor interacts with Tyr-231. The proline side chain occupies a small substrate binding cavity formed by residues contributed from the loop that follows beta-strand 7 within the (beta/alpha)(8)-barrel. A total of 38 other proteins from cog1228 are predicted to have the same substrate profile based on conservation of the substrate binding residues. The structure of an evolutionarily related protein, Cc2672 from Caulobacter crecentus, was determined as a complex with the N-methylphosphonate derivative of l-arginine (PDB code 3MTW ).
Collapse
Affiliation(s)
- Dao Feng Xiang
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| | - Yury Patskovsky
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Chengfu Xu
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| | - Alexander A. Fedorov
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Elena V. Fedorov
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Abby A. Sisco
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| | - J. Michael Sauder
- Lilly Biotechnology Center, Eli Lilly and Company, 10300 Campus Point Dr., San Diego, California 92121
| | - Stephen K. Burley
- Lilly Biotechnology Center, Eli Lilly and Company, 10300 Campus Point Dr., San Diego, California 92121
| | - Steven C. Almo
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461,(SCA) telephone: (718) 430-2746; fax: (718)-430-8565;
| | - Frank M. Raushel
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012,To whom correspondence may be addressed: (FMR) telephone: (979) 845-3373; fax: (979)-845-9452;
| |
Collapse
|
15
|
Hall RS, Agarwal R, Hitchcock D, Sauder JM, Burley SK, Swaminathan S, Raushel FM. Discovery and structure determination of the orphan enzyme isoxanthopterin deaminase . Biochemistry 2010; 49:4374-82. [PMID: 20415463 DOI: 10.1021/bi100252s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two previously uncharacterized proteins have been identified that efficiently catalyze the deamination of isoxanthopterin and pterin 6-carboxylate. The genes encoding these two enzymes, NYSGXRC-9339a ( gi|44585104 ) and NYSGXRC-9236b ( gi|44611670 ), were first identified from DNA isolated from the Sargasso Sea as part of the Global Ocean Sampling Project. The genes were synthesized, and the proteins were subsequently expressed and purified. The X-ray structure of Sgx9339a was determined at 2.7 A resolution (Protein Data Bank entry 2PAJ ). This protein folds as a distorted (beta/alpha)(8) barrel and contains a single zinc ion in the active site. These enzymes are members of the amidohydrolase superfamily and belong to cog0402 within the clusters of orthologous groups (COG). Enzymes in cog0402 have previously been shown to catalyze the deamination of guanine, cytosine, S-adenosylhomocysteine, and 8-oxoguanine. A small compound library of pteridines, purines, and pyrimidines was used to probe catalytic activity. The only substrates identified in this search were isoxanthopterin and pterin 6-carboxylate. The kinetic constants for the deamination of isoxanthopterin with Sgx9339a were determined to be 1.0 s(-1), 8.0 muM, and 1.3 x 10(5) M(-1) s(-1) (k(cat), K(m), and k(cat)/K(m), respectively). The active site of Sgx9339a most closely resembles the active site for 8-oxoguanine deaminase (Protein Data Bank entry 2UZ9 ). A model for substrate recognition of isoxanthopterin by Sgx9339a was proposed on the basis of the binding of guanine and xanthine in the active site of guanine deaminase. Residues critical for substrate binding appear to be conserved glutamine and tyrosine residues that form hydrogen bonds with the carbonyl oxygen at C4, a conserved threonine residue that forms hydrogen bonds with N5, and another conserved threonine residue that forms hydrogen bonds with the carbonyl group at C7. These conserved active site residues were used to identify 24 other genes which are predicted to deaminate isoxanthopterin.
Collapse
Affiliation(s)
- Richard S Hall
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
The mechanism of the reaction catalyzed by uronate isomerase illustrates how an isomerase may have evolved from a hydrolase within the amidohydrolase superfamily. Biochemistry 2009; 48:8879-90. [PMID: 19678710 PMCID: PMC2773443 DOI: 10.1021/bi901046x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Uronate isomerase (URI) catalyzes the reversible isomerization of D-glucuronate to D-fructuronate and of D-galacturonate to D-tagaturonate. URI is a member of the amidohydrolase superfamily (AHS), a highly divergent group of enzymes that catalyze primarily hydrolytic reactions. The chemical mechanism and active site structure of URI were investigated in an attempt to improve our understanding of how an active site template that apparently evolved to catalyze hydrolytic reactions has been reforged to catalyze an isomerization reaction. The pH-rate profiles for k(cat) and k(cat)/K(m) for URI from Escherichia coli are bell-shaped and indicate that one group must be unprotonated and another residue must be protonated for catalytic activity. Primary isotope effects on the kinetic constants with [2-2H]-D-glucuronate and the effects of changes in solvent viscosity are consistent with product release being the rate-limiting step. The X-ray structure of Bh0493, a URI from Bacillus halodurans, was determined in the presence of the substrate D-glucuronate. The bound complex showed that the mononuclear metal center in the active site is ligated to the C-6 carboxylate and the C-5 hydroxyl group of the substrate. This hydroxyl group is also hydrogen bonded to Asp-355 in the same orientation as the hydroxide or water is bound in those members of the AHS that catalyze hydrolytic reactions. In addition, the C-2 and C-3 hydroxyl groups of the substrate are hydrogen bonded to Arg-357 and the carbonyl group at C-1 is hydrogen bonded to Tyr-50. A chemical mechanism is proposed that utilizes a proton transfer from C-2 of D-glucuronate to C-1 that is initiated by the combined actions of Asp-355 from the end of beta-strand 8 and the C-5 hydroxyl of the substrate that is bound to the metal ion. The formation of the proposed cis-enediol intermediate is further facilitated by the shuttling of the proton between the C-2 and C-1 oxygens by the conserved Tyr-50 and/or Arg-355.
Collapse
|
17
|
Xiang DF, Patskovsky Y, Xu C, Meyer AJ, Sauder JM, Burley SK, Almo SC, Raushel FM. Functional identification of incorrectly annotated prolidases from the amidohydrolase superfamily of enzymes. Biochemistry 2009; 48:3730-42. [PMID: 19281183 PMCID: PMC2683473 DOI: 10.1021/bi900111q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The substrate profiles for two proteins from Caulobacter crescentus CB15 (Cc2672 and Cc3125) and one protein (Sgx9359b) derived from a DNA sequence ( gi|44368820 ) isolated from the Sargasso Sea were determined using combinatorial libraries of dipeptides and N-acyl derivatives of amino acids. These proteins are members of the amidohydrolase superfamily and are currently misannotated in NCBI as catalyzing the hydrolysis of l-Xaa-l-Pro dipeptides. Cc2672 was shown to catalyze the hydrolysis of l-Xaa-l-Arg/Lys dipeptides and the N-acetyl and N-formyl derivatives of lysine and arginine. This enzyme will also hydrolyze longer peptides that terminate in either lysine or arginine. The N-methyl phosphonate derivative of l-lysine was a potent competitive inhibitor of Cc2672 with a K(i) value of 120 nM. Cc3125 was shown to catalyze the hydrolysis of l-Xaa-l-Arg/Lys dipeptides but will not hydrolyze tripeptides or the N-formyl and N-acetyl derivatives of lysine or arginine. The substrate profile for Sgx9359b is similar to that of Cc2672 except that compounds with a C-terminal lysine are not recognized as substrates. The X-ray structure of Sgx9359b was determined to a resolution of 2.3 A. The protein folds as a (beta/alpha)(8)-barrel and self-associates to form a homooctamer. The active site is composed of a binuclear metal center similar to that found in phosphotriesterase and dihydroorotase. In one crystal form, arginine was bound adventitiously to the eight active sites within the octamer. The orientation of the arginine in the active site identified the structural determinants for recognition of the alpha-carboxylate and the positively charged side chains of arginine-containing substrates. This information was used to identify 18 other bacterial sequences that possess identical or similar substrate profiles.
Collapse
Affiliation(s)
- Dao Feng Xiang
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| | - Yury Patskovsky
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Chengfu Xu
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| | | | - J. Michael Sauder
- SGX Pharmaceuticals, Inc., 10505 Roselle Street, San Diego, CA, 92121
| | - Stephen K. Burley
- SGX Pharmaceuticals, Inc., 10505 Roselle Street, San Diego, CA, 92121
| | - Steven C. Almo
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461,To whom correspondence may be addressed: (FMR) telephone: (979) 845-3373; fax: (979)-845-9452; e-mail: (SCA) telephone: (718) 430-2746; fax: (718)-430-8565; e-mail:
| | - Frank M. Raushel
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012,To whom correspondence may be addressed: (FMR) telephone: (979) 845-3373; fax: (979)-845-9452; e-mail: (SCA) telephone: (718) 430-2746; fax: (718)-430-8565; e-mail:
| |
Collapse
|
18
|
Xiang DF, Kolb P, Fedorov AA, Meier MM, Fedorov EV, Nguyen TT, Sterner R, Almo SC, Shoichet BK, Raushel FM. Functional annotation and three-dimensional structure of Dr0930 from Deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily. Biochemistry 2009; 48:2237-47. [PMID: 19159332 PMCID: PMC3176505 DOI: 10.1021/bi802274f] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dr0930, a member of the amidohydrolase superfamily in Deinococcus radiodurans, was cloned, expressed, and purified to homogeneity. The enzyme crystallized in the space group P3121, and the structure was determined to a resolution of 2.1 A. The protein folds as a (beta/alpha)7beta-barrel, and a binuclear metal center is found at the C-terminal end of the beta-barrel. The purified protein contains a mixture of zinc and iron and is intensely purple at high concentrations. The purple color was determined to be due to a charge transfer complex between iron in the beta-metal position and Tyr-97. Mutation of Tyr-97 to phenylalanine or complexation of the metal center with manganese abolished the absorbance in the visible region of the spectrum. Computational docking was used to predict potential substrates for this previously unannotated protein. The enzyme was found to catalyze the hydrolysis of delta- and gamma-lactones with an alkyl substitution at the carbon adjacent to the ring oxygen. The best substrate was delta-nonanoic lactone with a kcat/Km of 1.6 x 10(6) M-1 s-1. Dr0930 was also found to catalyze the very slow hydrolysis of paraoxon with values of kcat and kcat/Km of 0.07 min-1 and 0.8 M-1 s-1, respectively. The amino acid sequence identity to the phosphotriesterase (PTE) from Pseudomonas diminuta is 30%. The eight substrate specificity loops were transplanted from PTE to Dr0930, but no phosphotriesterase activity could be detected in the chimeric PTE-Dr0930 hybrid. Mutation of Phe-26 and Cys-72 in Dr0930 to residues found in the active site of PTE enhanced the kinetic constants for the hydrolysis of paraoxon. The F26G/C72I mutant catalyzed the hydrolysis of paraoxon with a kcat of 1.14 min-1, an increase of 16-fold over the wild-type enzyme. These results support previous proposals that phosphotriesterase activity evolved from an ancestral parent enzyme possessing lactonase activity.
Collapse
Affiliation(s)
- Dao Feng Xiang
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, University of California, San Francisco, MC 2550 1700 4 Street, San Francisco, California 94158-2330
| | - Alexander A. Fedorov
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Monika M. Meier
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D93053 Regensburg, Germany
| | - Elena V. Fedorov
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Tinh T. Nguyen
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D93053 Regensburg, Germany
| | - Steven C. Almo
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, MC 2550 1700 4 Street, San Francisco, California 94158-2330
| | - Frank M. Raushel
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| |
Collapse
|
19
|
Target selection and annotation for the structural genomics of the amidohydrolase and enolase superfamilies. ACTA ACUST UNITED AC 2009; 10:107-25. [PMID: 19219566 PMCID: PMC2693957 DOI: 10.1007/s10969-008-9056-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/12/2008] [Indexed: 10/25/2022]
Abstract
To study the substrate specificity of enzymes, we use the amidohydrolase and enolase superfamilies as model systems; members of these superfamilies share a common TIM barrel fold and catalyze a wide range of chemical reactions. Here, we describe a collaboration between the Enzyme Specificity Consortium (ENSPEC) and the New York SGX Research Center for Structural Genomics (NYSGXRC) that aims to maximize the structural coverage of the amidohydrolase and enolase superfamilies. Using sequence- and structure-based protein comparisons, we first selected 535 target proteins from a variety of genomes for high-throughput structure determination by X-ray crystallography; 63 of these targets were not previously annotated as superfamily members. To date, 20 unique amidohydrolase and 41 unique enolase structures have been determined, increasing the fraction of sequences in the two superfamilies that can be modeled based on at least 30% sequence identity from 45% to 73%. We present case studies of proteins related to uronate isomerase (an amidohydrolase superfamily member) and mandelate racemase (an enolase superfamily member), to illustrate how this structure-focused approach can be used to generate hypotheses about sequence-structure-function relationships.
Collapse
|
20
|
Tyagi R, Eswaramoorthy S, Burley SK, Raushel FM, Swaminathan S. A common catalytic mechanism for proteins of the HutI family. Biochemistry 2008; 47:5608-15. [PMID: 18442260 DOI: 10.1021/bi800180g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Imidazolonepropionase (HutI) (imidazolone-5-propanote hydrolase, EC 3.5.2.7) is a member of the amidohydrolase superfamily and catalyzes the conversion of imidazolone-5-propanoate to N-formimino-L-glutamate in the histidine degradation pathway. We have determined the three-dimensional crystal structures of HutI from Agrobacterium tumefaciens (At-HutI) and an environmental sample from the Sargasso Sea Ocean Going Survey (Es-HutI) bound to the product [ N-formimino-L-glutamate (NIG)] and an inhibitor [3-(2,5-dioxoimidazolidin-4-yl)propionic acid (DIP)], respectively. In both structures, the active site is contained within each monomer, and its organization displays the landmark feature of the amidohydrolase superfamily, showing a metal ligand (iron), four histidines, and one aspartic acid. A catalytic mechanism involving His265 is proposed on the basis of the inhibitor-bound structure. This mechanism is applicable to all HutI forms.
Collapse
Affiliation(s)
- Rajiv Tyagi
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | | | |
Collapse
|
21
|
Hall RS, Xiang DF, Xu C, Raushel FM. N-Acetyl-D-glucosamine-6-phosphate deacetylase: substrate activation via a single divalent metal ion. Biochemistry 2007; 46:7942-52. [PMID: 17567047 PMCID: PMC2533526 DOI: 10.1021/bi700543x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NagA is a member of the amidohydrolase superfamily and catalyzes the deacetylation of N-acetyl-d-glucosamine-6-phosphate. The catalytic mechanism of this enzyme was addressed by the characterization of the catalytic properties of metal-substituted derivatives of NagA from Escherichia coli with a variety of substrate analogues. The reaction mechanism is of interest since NagA from bacterial sources is found with either one or two divalent metal ions in the active site. This observation indicates that there has been a divergence in the evolution of NagA and suggests that there are fundamental differences in the mechanistic details for substrate activation and hydrolysis. NagA from E. coli was inactivated by the removal of the zinc bound to the active site and the apoenzyme reactivated upon incubation with 1 equiv of Zn2+, Cd2+, Co2+, Mn2+, Ni2+, or Fe2+. In the proposed catalytic mechanism the reaction is initiated by the polarization of the carbonyl group of the substrate via a direct interaction with the divalent metal ion and His-143. The invariant aspartate (Asp-273) found at the end of beta-strand 8 in all members of the amidohydrolase superfamily abstracts a proton from the metal-bound water molecule (or hydroxide) to promote the hydrolytic attack on the carbonyl group of the substrate. A tetrahedral intermediate is formed and then collapses with cleavage of the C-N bond after proton transfer to the leaving group amine by Asp-273. The lack of a solvent isotope effect by D2O and the absence of any changes to the kinetic constants with increases in solvent viscosity indicate that net product formation is not limited to any significant extent by proton-transfer steps or the release of products. N-Trifluoroacetyl-d-glucosamine-6-phosphate is hydrolyzed by NagA 26-fold faster than the corresponding N-acetyl derivative. This result is consistent with the formation or collapse of the tetrahedral intermediate as the rate limiting step in the catalytic mechanism of NagA.
Collapse
Affiliation(s)
- Richard S Hall
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012, USA
| | | | | | | |
Collapse
|