1
|
Paavilainen S, Guidotti G. Interactions between the transmembrane domains of CD39: identification of interacting residues by yeast selection. SCIENCEOPEN RESEARCH 2014; 2014. [PMID: 26258004 DOI: 10.14293/s2199-1006.1.sorlife.aeeerm.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rat CD39, a membrane-bound ectonucleoside triphosphate diphosphohydrolase that hydrolyzes extracellular nucleoside tri- and diphosphates, is anchored to the membrane by two transmembrane domains at the two ends of the molecule. The transmembrane domains are important for enzymatic activity, as mutants lacking one or both of these domains have a fraction of the enzymatic activity of the wild-type CD39. We investigated the interactions between the transmembrane domains by using a strain of yeast that requires surface expression of CD39 for growth. Random mutagenesis of selected amino acid residues in the N-terminal transmembrane domain revealed that the presence of charged amino acids at these positions prevents expression of functional protein. Rescue of the growth of these mutants by complementary mutations on selected residues of the C-terminal transmembrane domain indicates that there is contact between particular faces of the transmembrane domains.
Collapse
Affiliation(s)
- Sari Paavilainen
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Guido Guidotti
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Zebisch M, Krauss M, Schäfer P, Lauble P, Sträter N. Crystallographic snapshots along the reaction pathway of nucleoside triphosphate diphosphohydrolases. Structure 2013; 21:1460-75. [PMID: 23830739 DOI: 10.1016/j.str.2013.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 12/13/2022]
Abstract
In vertebrates, membrane-bound ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) on the cell surface are responsible for signal conversion and termination in purinergic signaling by extracellular nucleotides. Here we present apo and complex structures of the rat NTPDase2 extracellular domain and Legionella pneumophila NTPDase1, including a high-resolution structure with a transition-state analog. Comparison of ATP and ADP binding modes shows how NTPDases engage the same catalytic site for hydrolysis of nucleoside triphosphates and diphosphates. We find that this dual specificity is achieved at the expense of base specificity. Structural and mutational studies indicate that a conserved active-site water is replaced by the phosphate product immediately after phosphoryl transfer. Partial base specificity for purines in LpNTPDase1 is based on a different intersubunit base binding site for pyrimidine bases. A comparison of the bacterial enzyme in six independent crystal forms shows that NTPDases can undergo a domain closure motion of at least 17°.
Collapse
Affiliation(s)
- Matthias Zebisch
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
3
|
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8:437-502. [PMID: 22555564 PMCID: PMC3360096 DOI: 10.1007/s11302-012-9309-4] [Citation(s) in RCA: 778] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Biologicum, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
4
|
Differential macrophage activation alters the expression profile of NTPDase and ecto-5'-nucleotidase. PLoS One 2012; 7:e31205. [PMID: 22348056 PMCID: PMC3278434 DOI: 10.1371/journal.pone.0031205] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 01/03/2012] [Indexed: 12/20/2022] Open
Abstract
Macrophages are key elements in the inflammatory process, whereas depending on the micro-environmental stimulation they exhibit a pro-inflammatory (classical/M1) or an anti-inflammatory/reparatory (alternative/M2) phenotype. Extracellular ATP can act as a danger signal whereas adenosine generally serves as a negative feedback mechanism to limit inflammation. The local increase in nucleotides communication is controlled by ectonucleotidases, such as members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family and ecto-5′-nucleotidase/CD73 (ecto-5′-NT). In the present work we evaluated the presence of these enzymes in resident mice M1 (macrophages stimulated with LPS), and M2 (macrophages stimulated with IL-4) macrophages. Macrophages were collected by a lavage of the mice (6–8 weeks) peritoneal cavity and treated for 24 h with IL-4 (10 ng/mL) or LPS (10 ng/mL). Nitrite concentrations were measured using the Greiss reaction. Supernatants were harvested to determine cytokines and the ATPase, ADPase and AMPase activities were determined by the malachite green method and HPLC analysis. The expression of selected surface proteins was evaluated by flow cytometry. The results reveal that M1 macrophages presented a decreased ATP and AMP hydrolysis in agreement with a decrease in NTPDase1, -3 and ecto-5′-nucleotidase expression compared to M2. In contrast, M2 macrophages showed a higher ATP and AMP hydrolysis and increased NTPDase1, -3 and ecto-5′-nucleotidase expression compared to M1 macrophages. Therefore, macrophages of the M1 phenotype lead to an accumulation of ATP while macrophages of the M2 phenotype may rapidly convert ATP to adenosine. The results also showed that P1 and P2 purinoreceptors present the same mRNA profile in both phenotypes. In addition, M2 macrophages, which have a higher ATPase activity, were less sensitive to cell death. In conclusion, these changes in ectoenzyme activities might allow macrophages to adjust the outcome of the extracellular purinergic cascade in order to fine-tune their functions during the inflammatory set.
Collapse
|
5
|
Crystallographic evidence for a domain motion in rat nucleoside triphosphate diphosphohydrolase (NTPDase) 1. J Mol Biol 2011; 415:288-306. [PMID: 22100451 DOI: 10.1016/j.jmb.2011.10.050] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/28/2011] [Accepted: 10/29/2011] [Indexed: 12/15/2022]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases) are a physiologically important class of membrane-bound ectonucleotidases responsible for the regulation of extracellular levels of nucleotides. CD39 or NTPDase1 is the dominant NTPDase of the vasculature. By hydrolyzing proinflammatory ATP and platelet-activating ADP to AMP, it blocks platelet aggregation and supports blood flow. Thus, great interest exists in understanding the structure and dynamics of this prototype member of the eukaryotic NTPDase family. Here, we report the crystal structure of a variant of soluble NTPDase1 lacking a putative membrane interaction loop identified between the two lobes of the catalytic domain. ATPase and ADPase activities of this variant are determined via a newly established kinetic isothermal titration calorimetry assay and compared to that of the soluble NTPDase1 variant characterized previously. Complex structures with decavanadate and heptamolybdate show that both polyoxometallates bind electrostatically to a loop that is involved in binding of the nucleobase. In addition, a comparison of the domain orientations of the four independent proteins in the crystal asymmetric unit provides the first direct experimental evidence for a domain motion of NTPDases. An interdomain rotation angle of up to 7.4° affects the active site cleft between the two lobes of the protein. Comparison with a previously solved bacterial NTPDase structure indicates that the domains may undergo relative rotational movements of more than 20°. Our data support the idea that the influence of transmembrane helix dynamics on activity is achieved by coupling to a domain motion.
Collapse
|
6
|
Papanikolaou A, Papafotika A, Christoforidis S. CD39 Reveals Novel Insights into the Role of Transmembrane Domains in Protein Processing, Apical Targeting and Activity. Traffic 2011; 12:1148-65. [DOI: 10.1111/j.1600-0854.2011.01224.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Knowles AF. The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 2011; 7:21-45. [PMID: 21484095 DOI: 10.1007/s11302-010-9214-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/21/2010] [Indexed: 01/05/2023] Open
Abstract
The first comprehensive review of the ubiquitous "ecto-ATPases" by Plesner was published in 1995. A year later, a lymphoid cell activation antigen, CD39, that had been cloned previously, was shown to be an ecto-ATPase. A family of proteins, related to CD39 and a yeast GDPase, all containing the canonical apyrase conserved regions in their polypeptides, soon started to expand. They are now recognized as members of the GDA1_CD39 protein family. Because proteins in this family hydrolyze nucleoside triphosphates and diphosphates, a unifying nomenclature, nucleoside triphosphate diphopshohydrolases (NTPDases), was established in 2000. Membrane-bound NTPDases are either located on the cell surface or membranes of intracellular organelles. Soluble NTPDases exist in the cytosol and may be secreted. In the last 15 years, molecular cloning and functional expression have facilitated biochemical characterization of NTPDases of many organisms, culminating in the recent structural determination of the ecto-domain of a mammalian cell surface NTPDase and a bacterial NTPDase. The first goal of this review is to summarize the biochemical, mutagenesis, and structural studies of the NTPDases. Because of their ability in hydrolyzing extracellular nucleotides, the mammalian cell surface NTPDases (the ecto-NTPDases) which regulate purinergic signaling have received the most attention. Less appreciated are the functions of intracellular NTPDases and NTPDases of other organisms, e.g., bacteria, parasites, Drosophila, plants, etc. The second goal of this review is to summarize recent findings which demonstrate the involvement of the NTPDases in multiple and diverse physiological processes: pathogen-host interaction, plant growth, eukaryote cell protein and lipid glycosylation, eye development, and oncogenesis.
Collapse
Affiliation(s)
- Aileen F Knowles
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA,
| |
Collapse
|
8
|
Li CS, Lee Y, Knowles AF. The stability of chicken nucleoside triphosphate diphosphohydrolase 8 requires both of its transmembrane domains. Biochemistry 2010; 49:134-46. [PMID: 20000380 DOI: 10.1021/bi901820c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chicken nucleoside triphosphate diphosphohydrolase 8 (NTPDase8) is a cell surface ectonucleotidase with a large extracellular domain (ECD) containing the active site and is anchored to the membrane by two transmembrane domains (TMDs) at the N- and C-termini. Unlike other cell surface NTPDases that have been characterized, the chicken NTPDase8 is not susceptible to substrate inactivation or agents that cause membrane perturbation. To determine if the stability of the enzyme is inherent in its ECD, the cDNA construct of the soluble chicken NTPDase8 was expressed and the protein purified. The ATPase activity of the purified soluble chicken NTPDase8 was less than 15% of that of the purified full-length enzyme. Strikingly, in contrast to the membrane-bound enzyme, the activity of the soluble chicken NTPDase8 decreased with time in a temperature-dependent manner as a result of inactivation by ATP, ADP, and P(i). Truncated mutants in which the ECD is anchored by a single TMD at either the N- or the C-terminus by the native chicken NTPDase TMDs or a TMD from a different NTPDase, human NTPDase2, also displayed a nonlinear time course of ATP hydrolysis. While removal of the N- or C-terminal TMD affected protein expression differently, the truncated mutants were generally similar to the soluble chicken NTPDase8 with respect to ATP, ADP, and P(i) inactivation. Other biochemical characteristics, e.g., ATPase/ADPase ratios, inhibition by azide, and affinity for ATP, were also altered when one or both of the TMDs were removed from the chicken NTPDase8. These results indicate that (1) both TMDs of the chicken NTPDase8 are required to maintain stability of the enzyme and maximal catalytic activity and (2) the conformations of the ectodomain in the soluble enzyme and the truncated mutants differ from that of the full-length chicken NTPDase8.
Collapse
Affiliation(s)
- Cheryl S Li
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, USA
| | | | | |
Collapse
|
9
|
Bissonnette MLZ, Donald JE, DeGrado WF, Jardetzky TS, Lamb RA. Functional analysis of the transmembrane domain in paramyxovirus F protein-mediated membrane fusion. J Mol Biol 2009; 386:14-36. [PMID: 19121325 PMCID: PMC2750892 DOI: 10.1016/j.jmb.2008.12.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 02/07/2023]
Abstract
To enter cells, enveloped viruses use fusion-mediating glycoproteins to facilitate the merger of the viral and host cell membranes. These glycoproteins undergo large-scale irreversible refolding during membrane fusion. The paramyxovirus parainfluenza virus 5 mediates membrane merger through its fusion protein (F). The transmembrane (TM) domains of viral fusion proteins are typically required for fusion. The TM domain of F is particularly interesting in that it is potentially unusually long; multiple calculations suggest a TM helix length between 25 and 48 residues. Oxidative cross-linking of single-cysteine substitutions indicates the F TM trimer forms a helical bundle within the membrane. To assess the functional role of the paramyxovirus parainfluenza virus 5 F protein TM domain, alanine scanning mutagenesis was performed. Two residues located in the outer leaflet of the bilayer are critical for fusion. Multiple amino acid substitutions at these positions indicate the physical properties of the side chain play a critical role in supporting or blocking fusion. Analysis of intermediate steps in F protein refolding indicated that the mutants were not trapped at the open stalk intermediate or the prehairpin intermediate. Incorporation of a known F protein destabilizing mutation that causes a hyperfusogenic phenotype restored fusion activity to the mutants. Further, altering the curvature of the lipid bilayer by addition of oleic acid promoted fusion of the F protein mutants. In aggregate, these data indicate that the TM domain plays a functional role in fusion beyond merely anchoring the protein in the viral envelope and that it can affect the structures and steady-state concentrations of the various conformational intermediates en route to the final postfusion state. We suggest that the unusual length of this TM helix might allow it to serve as a template for formation of or specifically stabilize the lipid stalk intermediate in fusion.
Collapse
Key Words
- f, fusion protein
- tm, transmembrane
- piv5, paramyxovirus parainfluenza virus 5
- hn, hemagglutinin neuraminidase
- ha, hemagglutinin
- fp, fusion peptide
- hr, heptad repeat
- 6-hb, six-helix bundle
- vsv, vesicular stomatitis virus
- cryoem, cryoelectron microscopy
- cup, cu(ii)(1,10-phenanthroline)3
- 6-cf, 6-carboxyfluorescein
- rbc, red blood cell
- pab, polyclonal antibody
- ltr, long terminal repeat
- lpc, lysophosphatidylcholine
- oa, oleic acid
- cpz, chlorpromazine
- dmem, dulbecco's modified eagle's medium
- fbs, fetal bovine serum
- p.t., posttransfection
- pbs, phosphate-buffered saline
- ripa, radioimmunoprecipitation assay
- viral membrane fusion
- transmembrane domain function
- protein refolding intermediates
- oxidative cross-linking
- modeling a transmembrane domain
Collapse
Affiliation(s)
- Mei Lin Z. Bissonnette
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | - Jason E. Donald
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - William F. DeGrado
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | - Theodore S. Jardetzky
- Department of Structural Biology, Stanford University, Palo Alto, CA 94305-5126, USA
| | - Robert A. Lamb
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500, USA
| |
Collapse
|
10
|
Knowles AF. The single NTPase gene of Drosophila melanogaster encodes an intracellular nucleoside triphosphate diphosphohydrolase 6 (NTPDase6). Arch Biochem Biophys 2009; 484:70-9. [PMID: 19467631 DOI: 10.1016/j.abb.2009.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/05/2009] [Accepted: 01/09/2009] [Indexed: 01/07/2023]
Abstract
I report here the cloning and characterization of a nucleoside triphosphate diphosphohydrolase 6 (NTPDase6) encoded by the single Dmel/NTPase gene of Drosophila melanogaster. S2 cells stably transfected with the Drosophila NTPDase6 cDNA displayed strong UDPase activity only after addition of NP-40, indicating the intracellular location of the enzyme. The enzyme hydrolyzed UDP, GDP, and IDP equally well whereas other NDP and NTP were poor substrates. It was not or only partially inhibited by several modulators of the cell surface NTPDases, but was strongly inhibited upon oxidative cross-linking by copper phenanthroline. The decrease of activity correlated with dimer formation. Mutagenesis studies indicated that dimer formation required C42 in the transmembrane domain and C447 in the exoplasmic domain. Fluorescence microscopy revealed that the protein was located primarily in the ER. The substrate specificity and cellular localization of the Drosophila NTPDase6 suggest that it participates in Drosophila glycoprotein processing.
Collapse
Affiliation(s)
- Aileen F Knowles
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, USA.
| |
Collapse
|
11
|
Effect of capsaicin on ligand binding activity of the hippocampal serotonin1A receptor. Glycoconj J 2008; 26:733-8. [DOI: 10.1007/s10719-008-9185-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/20/2008] [Accepted: 08/26/2008] [Indexed: 11/26/2022]
|
12
|
Krishnakumar SS, London E. Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes. J Mol Biol 2007; 374:671-87. [PMID: 17950311 DOI: 10.1016/j.jmb.2007.09.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
The minimum hydrophobic length necessary to form a transmembrane (TM) helix in membranes was investigated using model membrane-inserted hydrophobic helices. The fluorescence of a Trp at the center of the sequence and its sensitivity to quenching were used to ascertain helix position within the membrane. Peptides with hydrophobic cores composed of poly(Leu) were compared to sequences containing a poly 1:1 Leu:Ala core (which have a hydrophobicity typical of natural TM helices). Studies varying bilayer width revealed that the poly(Leu) core peptides predominately formed a TM state when the bilayer width exceeded hydrophobic sequence length by (i.e. when negative mismatch was) up to approximately 11-12 A (e.g. the case of a 11-12 residue hydrophobic sequence in bilayers with a biologically relevant width, i.e. dioleoylphosphatidylcholine (DOPC) bilayers), while poly(LeuAla) core peptides formed predominantly TM state with negative mismatch of up to 9 A (a 13 residue hydrophobic sequence in DOPC bilayers). This indicates that minimum length necessary to form a predominating amount of a TM state (minimum TM length) is only modestly hydrophobicity-dependent for the sequences studied here, and a formula that defines the minimum TM length as a function of hydrophobicity for moderately-to-highly hydrophobic sequences was derived. The minimum length able to form a stable TM helix for alternating LeuAla sequences, and that for sequences with a Leu block followed by an Ala block, was similar, suggesting that a hydrophobicity gradient along the sequence may not be an important factor in TM stability. TM stability was also similar for sequences flanked by different charged ionizable residues (Lys, His, Asp). However, ionizable flanking residues destabilized the TM configuration much more when charged than when uncharged. The ability of short hydrophobic sequences to form TM helices in membranes in the presence of substantial negative mismatch implies that lipid bilayers have a considerable ability to adjust to negative mismatch, and that short TM helices may be more common than generally believed. Factors that modulate the ability of bilayers to adjust to mismatch may strongly affect the configuration of short hydrophobic helices.
Collapse
Affiliation(s)
- Shyam S Krishnakumar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
13
|
Kittel A, Sperlágh B, Pelletier J, Sévigny J, Kirley TL. Transient changes in the localization and activity of ecto-nucleotidases in rat hippocampus following lipopolysaccharide treatment. Int J Dev Neurosci 2007; 25:275-82. [PMID: 17576046 PMCID: PMC5239665 DOI: 10.1016/j.ijdevneu.2007.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 05/09/2007] [Accepted: 05/09/2007] [Indexed: 11/30/2022] Open
Abstract
The concentrations of extracellularly released nucleotides are controlled by metabolism via ecto-nucleotidases, but the precise physiological roles of the ecto-nucleoside triphosphate diphosphohydrolases in the modulation of purinergic receptor signalling are still unclear. Bacterial endotoxin lipopolysaccharide (LPS) treatment (administered intraperitoneally, 2 mg/kg body weight) of rats resulted in no significant changes in the overall ecto-nucleotidase activities of the hippocampus, however, LPS treatment did cause transient changes in the morphology of endothelial cells and pericytes and in the localization pattern of ecto-ATPase activity in rat hippocampus. The transient decrease in NTPDase1 (ecto-nucleoside triphosphate diphosphohydrolase1) activity, located on the luminal side of the endothelial cells, was balanced by increases in ecto-nucleotidase activities in pericytes and at other sites, consistent with an unchanged overall ecto-ATPase activity of the hippocampus. Since the transient loss of NTPDase1 activity was not accompanied by a loss of NTPDase1 protein, we hypothesize that LPS caused transient alterations in the lipid membranes, since NTPDase1 activity is known to be sensitive to changes in membrane structure via its transmembrane domains. After 2-3 days, the LPS-induced changes in cell morphology and ecto-nucleotidase localization disappeared. We conclude that a low dose of LPS causes transient changes in the localization pattern of ecto-nucleotidases in endothelial cells and pericytes, which, coupled with the observed cellular morphological changes, may indicate modified cellular signalling in the hippocampus.
Collapse
Affiliation(s)
- Agnes Kittel
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
14
|
Musi E, Islam N, Drosopoulos JHF. Constraints imposed by transmembrane domains affect enzymatic activity of membrane-associated human CD39/NTPDase1 mutants. Arch Biochem Biophys 2007; 461:30-9. [PMID: 17374358 DOI: 10.1016/j.abb.2007.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 02/02/2007] [Accepted: 02/03/2007] [Indexed: 01/30/2023]
Abstract
Human CD39/NTPDase1 is an endothelial cell membrane-associated nucleotidase. Its large extracellular domain rapidly metabolizes nucleotides, especially ADP released from activated platelets, inhibiting further platelet activation/recruitment. Previous studies using our recombinant soluble CD39 demonstrated the importance of residues S57, D54, and D213 for enzymatic/biological activity. We now report effects of S57A, D54A, and D213A mutations on full-length (FL)CD39 function. Enzymatic activity of alanine modified FLCD39s was less than wild-type, contrasting the enhanced activity of their soluble counterparts. Furthermore, conservative substitutions D54E and D213E led to enzymes with activities greater than the alanine modified FLCD39s, but less than wild-type. Reductions in mutant activities were primarily associated with reduced catalytic rates. Differences in enzymatic activity were not attributable to gross changes in the nucleotide binding pocket or the enzyme's ability to multimerize. Thus, composition of the active site of wild-type CD39 appears optimized for ADPase function in the context of the transmembrane domains.
Collapse
Affiliation(s)
- Elgilda Musi
- Thrombosis Research Laboratory, Research Service, Room 13026W, VA New York Harbor Healthcare System, 423 East 23rd Street, New York, NY 10010-5050, USA
| | | | | |
Collapse
|