1
|
Maurel MC, Leclerc F, Hervé G. Ribozyme Chemistry: To Be or Not To Be under High Pressure. Chem Rev 2019; 120:4898-4918. [DOI: 10.1021/acs.chemrev.9b00457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, EPHE, F-75005 Paris, France
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Guy Hervé
- Laboratoire BIOSIPE, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Campus Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
2
|
Keller H, Weickhmann AK, Bock T, Wöhnert J. Adenine protonation enables cyclic-di-GMP binding to cyclic-GAMP sensing riboswitches. RNA (NEW YORK, N.Y.) 2018; 24:1390-1402. [PMID: 30006500 PMCID: PMC6140456 DOI: 10.1261/rna.067470.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/09/2018] [Indexed: 05/22/2023]
Abstract
In certain structural or functional contexts, RNA structures can contain protonated nucleotides. However, a direct role for stably protonated nucleotides in ligand binding and ligand recognition has not yet been demonstrated unambiguously. Previous X-ray structures of c-GAMP binding riboswitch aptamer domains in complex with their near-cognate ligand c-di-GMP suggest that an adenine of the riboswitch either forms two hydrogen bonds to a G nucleotide of the ligand in the unusual enol tautomeric form or that the adenine in its N1 protonated form binds the G nucleotide of the ligand in its canonical keto tautomeric state. By using NMR spectroscopy we demonstrate that the c-GAMP riboswitches bind c-di-GMP using a stably protonated adenine in the ligand binding pocket. Thereby, we provide novel insights into the putative biological functions of protonated nucleotides in RNA, which in this case influence the ligand selectivity in a riboswitch.
Collapse
Affiliation(s)
- Heiko Keller
- Institute for Molecular Biosciences and Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - A Katharina Weickhmann
- Institute for Molecular Biosciences and Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Thomas Bock
- Institute for Molecular Biosciences and Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences and Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Nakano SI, Watabe T, Sugimoto N. Modulation of Ribozyme and Deoxyribozyme Activities Using Tetraalkylammonium Ions. Chemphyschem 2017; 18:3614-3619. [DOI: 10.1002/cphc.201700882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry; Faculty of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20, Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| | - Takaaki Watabe
- Department of Nanobiochemistry; Faculty of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20, Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
- Department of Chemistry; Faculty of Science and Engineering; Konan University; 8-9-1, Okamoto, Higashinada-ku Kobe 658-8501 Japan
| | - Naoki Sugimoto
- Department of Nanobiochemistry; Faculty of Frontiers of Innovative Research in Science and Technology (FIRST); Konan University; 7-1-20, Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
- Frontier Institute for Biomolecular Engineering Research (FIBER); Konan University; 7-1-20, Minatojima-minamimachi, Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
4
|
Frankel EA, Strulson CA, Keating CD, Bevilacqua PC. Cooperative Interactions in the Hammerhead Ribozyme Drive pK a Shifting of G12 and Its Stacked Base C17. Biochemistry 2017; 56:2537-2548. [PMID: 28485924 DOI: 10.1021/acs.biochem.7b00174] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
General acid-base catalysis is a key mechanistic strategy in protein and RNA enzymes. Ribozymes use hydrated metal ions, nucleobases, and organic cofactors to carry this out. In most small ribozymes, a guanosine is positioned to participate in proton transfer with the nucleophilic 2'-OH. The unshifted pKa values for nucleobases and solvated metal ions are far from neutrality, however, and thus nonideal for general acid-base catalysis. Herein, evidence is provided for cooperative interaction in the hammerhead ribozyme among the guanine that interacts with the nucleophilic 2'-OH, G12, the -1 nucleobase C17, and Mg2+ ions. We introduce global fitting for analyzing ribozyme rate-pH data parametric in Mg2+ concentration and benchmark this method on data from the hepatitis delta virus ribozyme. We then apply global fitting to new rate-pH data for the hammerhead ribozyme using a minimal three-dimensional, four-channel cooperative model. The value for the pKa of G12 that we obtain is channel-dependent and varies from 8.1 to 9.9, shifting closest toward neutrality in the presence of two cationic species: C17H+ and a Mg2+ ion. The value for the pKa of the -1 nucleotide, C17, is increased a remarkable 3.5-5 pKa units toward neutrality. Shifting of the pKa of C17 appears to be driven by an electrostatic sandwich of C17 between carbonyl groups of the 5'-neighboring U and of G12 and involves cation-π interactions. Rate-pH profiles reveal that the major reactive channel under biological Mg2+ and pH involves a cationic C17 rather than a second metal ion. Substitution of a cationic base for a metal underscores the versatility of RNA.
Collapse
Affiliation(s)
- Erica A Frankel
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Center for RNA Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christopher A Strulson
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Center for RNA Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christine D Keating
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Center for RNA Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States.,Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Lee TS, Radak BK, Harris ME, York DM. A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation. ACS Catal 2016; 6:1853-1869. [PMID: 27774349 DOI: 10.1021/acscatal.5b02158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA enzymes serve as a potentially powerful platform from which to design catalysts and engineer new biotechnology. A fundamental understanding of these systems provides insight to guide design. The hepatitis delta virus ribozyme (HDVr) is a small, self-cleaving RNA motif widely distributed in nature, that has served as a paradigm for understanding basic principles of RNA catalysis. Nevertheless, questions remain regarding the precise roles of divalent metal ions and key nucleotides in catalysis. In an effort to establish a reaction mechanism model consistent with available experimental data, we utilize molecular dynamics simulations to explore different conformations and metal ion binding modes along the HDVr reaction path. Building upon recent crystallographic data, our results provide a dynamic model of the HDVr reaction mechanism involving a conformational switch between multiple non-canonical G25:U20 base pair conformations in the active site. These local nucleobase dynamics play an important role in catalysis by modulating the metal binding environments of two Mg2+ ions that support catalysis at different steps of the reaction pathway. The first ion plays a structural role by inducing a base pair flip necessary to obtain the catalytic fold in which C75 moves towards to the scissile phosphate in the active site. Ejection of this ion then permits a second ion to bind elsewhere in the active site and facilitate nucleophile activation. The simulations collectively describe a mechanistic scenario that is consistent with currently available experimental data from crystallography, phosphorothioate substitutions, and chemical probing studies. Avenues for further experimental verification are suggested.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Brian K. Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United State
| | - Michael E. Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Darrin M. York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
6
|
Radak BK, Lee TS, Harris ME, York DM. Assessment of metal-assisted nucleophile activation in the hepatitis delta virus ribozyme from molecular simulation and 3D-RISM. RNA (NEW YORK, N.Y.) 2015; 21:1566-1577. [PMID: 26170378 PMCID: PMC4536318 DOI: 10.1261/rna.051466.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
The hepatitis delta virus ribozyme is an efficient catalyst of RNA 2'-O-transphosphorylation and has emerged as a key experimental system for identifying and characterizing fundamental features of RNA catalysis. Recent structural and biochemical data have led to a proposed mechanistic model whereby an active site Mg(2+) ion facilitates deprotonation of the O2' nucleophile, and a protonated cytosine residue (C75) acts as an acid to donate a proton to the O5' leaving group as noted in a previous study. This model assumes that the active site Mg(2+) ion forms an inner-sphere coordination with the O2' nucleophile and a nonbridging oxygen of the scissile phosphate. These contacts, however, are not fully resolved in the crystal structure, and biochemical data are not able to unambiguously exclude other mechanistic models. In order to explore the feasibility of this model, we exhaustively mapped the free energy surfaces with different active site ion occupancies via quantum mechanical/molecular mechanical (QM/MM) simulations. We further incorporate a three-dimensional reference interaction site model for the solvated ion atmosphere that allows these calculations to consider not only the rate associated with the chemical steps, but also the probability of observing the system in the presumed active state with the Mg(2+) ion bound. The QM/MM results predict that a pathway involving metal-assisted nucleophile activation is feasible based on the rate-controlling transition state barrier departing from the presumed metal-bound active state. However, QM/MM results for a similar pathway in the absence of Mg(2+) are not consistent with experimental data, suggesting that a structural model in which the crystallographically determined Mg(2+) is simply replaced with Na(+) is likely incorrect. It should be emphasized, however, that these results hinge upon the assumption of the validity of the presumed Mg(2+)-bound starting state, which has not yet been definitively verified experimentally, nor explored in depth computationally. Thus, further experimental and theoretical study is needed such that a consensus view of the catalytic mechanism emerges.
Collapse
Affiliation(s)
- Brian K Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Darrin M York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| |
Collapse
|
7
|
Thaplyal P, Ganguly A, Hammes-Schiffer S, Bevilacqua PC. Inverse thio effects in the hepatitis delta virus ribozyme reveal that the reaction pathway is controlled by metal ion charge density. Biochemistry 2015; 54:2160-75. [PMID: 25799319 PMCID: PMC4824481 DOI: 10.1021/acs.biochem.5b00190] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The
hepatitis delta virus (HDV) ribozyme self-cleaves in the presence
of a wide range of monovalent and divalent ions. Prior theoretical
studies provided evidence that self-cleavage proceeds via a concerted
or stepwise pathway, with the outcome dictated by the valency of the
metal ion. In the present study, we measure stereospecific thio effects
at the nonbridging oxygens of the scissile phosphate under a wide
range of experimental conditions, including varying concentrations
of diverse monovalent and divalent ions, and combine these with quantum
mechanical/molecular mechanical (QM/MM) free energy simulations on
the stereospecific thio substrates. The RP substrate gives large normal thio effects in the presence of all
monovalent ions. The SP substrate also
gives normal or no thio effects, but only for smaller monovalent and
divalent cations, such as Li+, Mg2+, Ca2+, and Sr2+; in contrast, sizable inverse thio
effects are found for larger monovalent and divalent cations, including
Na+, K+, NH4+, and Ba2+. Proton inventories are found to be unity in the presence
of the larger monovalent and divalent ions, but two in the presence
of Mg2+. Additionally, rate–pH profiles are inverted
for the low charge density ions, and only imidazole plus ammonium
ions rescue an inactive C75Δ variant in the absence of Mg2+. Results from the thio effect experiments, rate–pH
profiles, proton inventories, and ammonium/imidazole rescue experiments,
combined with QM/MM free energy simulations, support a change in the
mechanism of HDV ribozyme self-cleavage from concerted and metal ion-stabilized
to stepwise and proton transfer-stabilized as the charge density of
the metal ion decreases.
Collapse
Affiliation(s)
- Pallavi Thaplyal
- †Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Abir Ganguly
- ‡Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sharon Hammes-Schiffer
- ‡Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Philip C Bevilacqua
- †Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Ganguly A, Thaplyal P, Rosta E, Bevilacqua PC, Hammes-Schiffer S. Quantum mechanical/molecular mechanical free energy simulations of the self-cleavage reaction in the hepatitis delta virus ribozyme. J Am Chem Soc 2014; 136:1483-96. [PMID: 24383543 PMCID: PMC3954522 DOI: 10.1021/ja4104217] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The
hepatitis delta virus (HDV) ribozyme catalyzes a self-cleavage
reaction using a combination of nucleobase and metal ion catalysis.
Both divalent and monovalent ions can catalyze this reaction, although
the rate is slower with monovalent ions alone. Herein, we use quantum
mechanical/molecular mechanical (QM/MM) free energy simulations to
investigate the mechanism of this ribozyme and to elucidate the roles
of the catalytic metal ion. With Mg2+ at the catalytic
site, the self-cleavage mechanism is observed to be concerted with
a phosphorane-like transition state and a free energy barrier of ∼13
kcal/mol, consistent with free energy barrier values extrapolated
from experimental studies. With Na+ at the catalytic site,
the mechanism is observed to be sequential, passing through a phosphorane
intermediate, with free energy barriers of 2–4 kcal/mol for
both steps; moreover, proton transfer from the exocyclic amine of
protonated C75 to the nonbridging oxygen of the scissile phosphate
occurs to stabilize the phosphorane intermediate in the sequential
mechanism. To explain the slower rate observed experimentally with
monovalent ions, we hypothesize that the activation of the O2′
nucleophile by deprotonation and orientation is less favorable with
Na+ ions than with Mg2+ ions. To explore this
hypothesis, we experimentally measure the pKa of O2′ by kinetic and NMR methods and find it to be
lower in the presence of divalent ions rather than only monovalent
ions. The combined theoretical and experimental results indicate that
the catalytic Mg2+ ion may play three key roles: assisting
in the activation of the O2′ nucleophile, acidifying the general
acid C75, and stabilizing the nonbridging oxygen to prevent proton
transfer to it.
Collapse
Affiliation(s)
- Abir Ganguly
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
9
|
Abstract
RNA and DNA carry out diverse functions in biology including catalysis, splicing, gene regulation, and storage of genetic information. Interest has grown in understanding how nucleic acids perform such sophisticated functions given their limited molecular repertoire. RNA can fold into diverse shapes that often perturb pKa values and allow it to ionize appreciably under biological conditions, thereby extending its molecular diversity. The goal of this chapter is to enable experimental measurement of pKa's in RNA and DNA. A number of experimental methods for measuring pKa values in RNA and DNA have been developed over the last 10 years, including RNA cleavage kinetics; UV-, fluorescence-, and NMR-detected pH titrations; and Raman crystallography. We begin with general considerations for choosing a pKa assay and then describe experimental conditions, advantages, and disadvantages for these assays. Potential pitfalls in measuring a pKa are provided including the presence of apparent pKa's due to a kinetic pKa or coupled acid- and alkali-promoted RNA unfolding, as well as degradation of RNA, precipitation of metal hydroxides and poor baselines. Use of multiple data fitting procedures and the study of appropriate mutants are described as ways to avoid some of these pitfalls. Application of these experimental methods to RNA and DNA will increase the number of available nucleic acid pKa values in the literature, which should deepen insight into biology and provide benchmarks for pKa calculations. Future directions for measuring pKa's in nucleic acids are discussed.
Collapse
Affiliation(s)
- Pallavi Thaplyal
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Philip C Bevilacqua
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
10
|
Wilcox JL, Bevilacqua PC. pKa shifting in double-stranded RNA is highly dependent upon nearest neighbors and bulge positioning. Biochemistry 2013; 52:7470-6. [PMID: 24099082 DOI: 10.1021/bi400768q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Shifting of pKa's in RNA is important for many biological processes; however, the driving forces responsible for shifting are not well understood. Herein, we determine how structural environments surrounding protonated bases affect pKa shifting in double-stranded RNA (dsRNA). Using (31)P NMR, we determined the pKa of the adenine in an A(+)·C base pair in various sequence and structural environments. We found a significant dependence of pKa on the base pairing strength of nearest neighbors and the location of a nearby bulge. Increasing nearest neighbor base pairing strength shifted the pKa of the adenine in an A(+)·C base pair higher by an additional 1.6 pKa units, from 6.5 to 8.1, which is well above neutrality. The addition of a bulge two base pairs away from a protonated A(+)·C base pair shifted the pKa by only ~0.5 units less than a perfectly base paired hairpin; however, positioning the bulge just one base pair away from the A(+)·C base pair prohibited formation of the protonated base pair as well as several flanking base pairs. Comparison of data collected at 25 °C and 100 mM KCl to biological temperature and Mg(2+) concentration revealed only slight pKa changes, suggesting that similar sequence contexts in biological systems have the potential to be protonated at biological pH. We present a general model to aid in the determination of the roles protonated bases may play in various dsRNA-mediated processes including ADAR editing, miRNA processing, programmed ribosomal frameshifting, and general acid-base catalysis in ribozymes.
Collapse
Affiliation(s)
- Jennifer L Wilcox
- Department of Chemistry and Center for RNA Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
11
|
Thaplyal P, Ganguly A, Golden BL, Hammes-Schiffer S, Bevilacqua PC. Thio effects and an unconventional metal ion rescue in the genomic hepatitis delta virus ribozyme. Biochemistry 2013; 52:6499-514. [PMID: 24001219 DOI: 10.1021/bi4000673] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Metal ion and nucleobase catalysis are important for ribozyme mechanism, but the extent to which they cooperate is unclear. A crystal structure of the hepatitis delta virus (HDV) ribozyme suggested that the pro-RP oxygen at the scissile phosphate directly coordinates a catalytic Mg(2+) ion and is within hydrogen bonding distance of the amine of the general acid C75. Prior studies of the genomic HDV ribozyme, however, showed neither a thio effect nor metal ion rescue using Mn(2+). Here, we combine experiment and theory to explore phosphorothioate substitutions at the scissile phosphate. We report significant thio effects at the scissile phosphate and metal ion rescue with Cd(2+). Reaction profiles with an SP-phosphorothioate substitution are indistinguishable from those of the unmodified substrate in the presence of Mg(2+) or Cd(2+), supporting the idea that the pro-SP oxygen does not coordinate metal ions. The RP-phosphorothioate substitution, however, exhibits biphasic kinetics, with the fast-reacting phase displaying a thio effect of up to 5-fold and the slow-reacting phase displaying a thio effect of ~1000-fold. Moreover, the fast- and slow-reacting phases give metal ion rescues in Cd(2+) of up to 10- and 330-fold, respectively. The metal ion rescues are unconventional in that they arise from Cd(2+) inhibiting the oxo substrate but not the RP substrate. This metal ion rescue suggests a direct interaction of the catalytic metal ion with the pro-RP oxygen, in line with experiments with the antigenomic HDV ribozyme. Experiments without divalent ions, with a double mutant that interferes with Mg(2+) binding, or with C75 deleted suggest that the pro-RP oxygen plays at most a redundant role in positioning C75. Quantum mechanical/molecular mechanical (QM/MM) studies indicate that the metal ion contributes to catalysis by interacting with both the pro-RP oxygen and the nucleophilic 2'-hydroxyl, supporting the experimental findings.
Collapse
Affiliation(s)
- Pallavi Thaplyal
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | |
Collapse
|
12
|
Wilcox JL, Bevilacqua PC. A Simple Fluorescence Method for pKa Determination in RNA and DNA Reveals Highly Shifted pKa’s. J Am Chem Soc 2013; 135:7390-3. [DOI: 10.1021/ja3125299] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer L. Wilcox
- Department of Chemistry
and Center for RNA Molecular
Biology, Pennsylvania State University,
University Park, Pennsylvania 16802, United States
| | - Philip C. Bevilacqua
- Department of Chemistry
and Center for RNA Molecular
Biology, Pennsylvania State University,
University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Chen J, Ganguly A, Miswan Z, Hammes-Schiffer S, Bevilacqua PC, Golden BL. Identification of the catalytic Mg²⁺ ion in the hepatitis delta virus ribozyme. Biochemistry 2013; 52:557-67. [PMID: 23311293 DOI: 10.1021/bi3013092] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hepatitis delta virus ribozyme catalyzes an RNA cleavage reaction using a catalytic nucleobase and a divalent metal ion. The catalytic base, C75, serves as a general acid and has a pK(a) shifted toward neutrality. Less is known about the role of metal ions in the mechanism. A recent crystal structure of the precleavage ribozyme identified a Mg²⁺ ion that interacts through its partial hydration sphere with the G25·U20 reverse wobble. In addition, this Mg²⁺ ion is in position to directly coordinate the nucleophile, the 2'-hydroxyl of U(-1), suggesting it can serve as a Lewis acid to facilitate deprotonation of the 2'-hydroxyl. To test the role of the active site Mg²⁺ ion, we replaced the G25·U20 reverse wobble with an isosteric A25·C20 reverse wobble. This change was found to significantly reduce the negative potential at the active site, as supported by electrostatics calculations, suggesting that active site Mg²⁺ binding could be adversely affected by the mutation. The kinetic analysis and molecular dynamics of the A25·C20 double mutant suggest that this variant stably folds into an active structure. However, pH-rate profiles of the double mutant in the presence of Mg²⁺ are inverted relative to the profiles for the wild-type ribozyme, suggesting that the A25·C20 double mutant has lost the active site metal ion. Overall, these studies support a model in which the partially hydrated Mg²⁺ positioned at the G25·U20 reverse wobble is catalytic and could serve as a Lewis acid, a Brønsted base, or both to facilitate deprotonation of the nucleophile.
Collapse
Affiliation(s)
- Ji Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
14
|
Wilcox JL, Ahluwalia AK, Bevilacqua PC. Charged nucleobases and their potential for RNA catalysis. Acc Chem Res 2011; 44:1270-9. [PMID: 21732619 DOI: 10.1021/ar2000452] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Catalysis in living cells is carried out by both proteins and RNA. Protein enzymes have been known for over 200 years, but RNA enzymes, or "ribozymes", were discovered only 30 years ago. Developing insight into RNA enzyme mechanisms is invaluable for better understanding both extant biological catalysis as well as the primitive catalysis envisioned in an early RNA-catalyzed life. Natural ribozymes include large RNAs such as the group I and II introns; small RNAs such as the hepatitis delta virus and the hairpin, hammerhead, VS, and glmS ribozymes; and the RNA portion of the ribosome and spliceosome. RNA enzymes use many of the same catalytic strategies as protein enzymes, but do so with much simpler side chains. Among these strategies are metal ion, general acid-base, and electrostatic catalysis. In this Account, we examine evidence for participation of charged nucleobases in RNA catalysis. Our overall approach is to integrate direct measurements on catalytic RNAs with thermodynamic studies on oligonucleotide model systems. The charged amino acids make critical contributions to the mechanisms of nearly all protein enzymes. Ionized nucleobases should be critical for RNA catalysis as well. Indeed, charged nucleobases have been implicated in RNA catalysis as general acid-bases and oxyanion holes. We provide an overview of ribozyme studies involving nucleobase catalysis and the complications involved in developing these mechanisms. We also consider driving forces for perturbation of the pK(a) values of the bases. Mechanisms for pK(a) values shifting toward neutrality involve electrostatic stabilization and the addition of hydrogen bonding. Both mechanisms couple protonation with RNA folding, which we treat with a thermodynamic formalism and conceptual models. Furthermore, ribozyme reaction mechanisms can be multichannel, which demonstrates the versatility of ribozymes but makes analysis of experimental data challenging. We examine advances in measuring and analyzing perturbed pK(a) values in RNA. Raman crystallography and fluorescence spectroscopy have been especially important for pK(a) measurement. These methods reveal pK(a) values for the nucleobases A or C equal to or greater than neutrality, conferring potential histidine- and lysine/arginine-like behavior on them. Structural support for ionization of the nucleobases also exists: an analysis of RNA structures in the databases conducted herein suggests that charging of the bases is neither especially uncommon nor difficult to achieve under cellular conditions. Our major conclusions are that cationic and anionic charge states of the nucleobases occur in RNA enzymes and that these states make important catalytic contributions to ribozyme activity. We conclude by considering outstanding questions and possible experimental and theoretical approaches for further advances.
Collapse
Affiliation(s)
- Jennifer L. Wilcox
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amarpreet K. Ahluwalia
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C. Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Ganguly A, Bevilacqua PC, Hammes-Schiffer S. Quantum Mechanical/Molecular Mechanical Study of the HDV Ribozyme: Impact of the Catalytic Metal Ion on the Mechanism. J Phys Chem Lett 2011; 2:2906-2911. [PMID: 22163069 PMCID: PMC3233192 DOI: 10.1021/jz2013215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A recent crystal structure of the precleaved HDV ribozyme along with biochemical data support a mechanism for phosphodiester bond self-cleavage in which C75 acts as a general acid and bound Mg(2+) ion acts as a Lewis acid. Herein this precleaved crystal structure is used as the basis for quantum mechanical/molecular mechanical calculations. These calculations indicate that the self-cleavage reaction is concerted with a phosphorane-like transition state when a divalent ion, Mg(2+) or Ca(2+), is bound at the catalytic site but is sequential with a phosphorane intermediate when a monovalent ion, such as Na(+), is at this site. Electrostatic potential calculations suggest that the divalent metal ion at the catalytic site lowers the pK(a) of C75, leading to the concerted mechanism in which the proton is partially transferred to the leaving group in the phosphorane-like transition state. These observations are consistent with experimental data, including pK(a) measurements, reaction kinetics, and proton inventories with divalent and monovalent ions.
Collapse
|
16
|
Lee TS, Giambaşu G, Harris ME, York DM. Characterization of the Structure and Dynamics of the HDV Ribozyme at Different Stages Along the Reaction Path. J Phys Chem Lett 2011; 2:2538-2543. [PMID: 22200005 PMCID: PMC3244300 DOI: 10.1021/jz201106y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The structure and dynamics of the hepatitis delta virus ribozyme (HDVr) are studies using molecular dynamics simulations at several stages along its catalytic reaction path, including reactant, activated precursor, transition state mimic and product states, departing from an initial structure based on the C75U mutant crystal structure (PDB: 1VC7). Results of five 350 ns molecular dynamics simulations reveal a spontaneous rotation of U-1 that leads to an in-line conformation and support the role of protonated C75 as the general acid in the transition state. Our results provide rationale for the interpretation of several important experimental results, and make experimentally testable predictions regarding the roles of key active site residues that are not obvious from any available crystal structures.
Collapse
|
17
|
Golden BL. Two distinct catalytic strategies in the hepatitis δ virus ribozyme cleavage reaction. Biochemistry 2011; 50:9424-33. [PMID: 22003985 DOI: 10.1021/bi201157t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme and related RNAs are widely dispersed in nature. This RNA is a small nucleolytic ribozyme that self-cleaves to generate products with a 2',3'-cyclic phosphate and a free 5'-hydroxyl. Although small ribozymes are dependent on divalent metal ions under biologically relevant buffer conditions, they function in the absence of divalent metal ions at high ionic strengths. This characteristic suggests that a functional group within the covalent structure of small ribozymes is facilitating catalysis. Structural and mechanistic analyses have demonstrated that the HDV ribozyme active site contains a cytosine with a perturbed pK(a) that serves as a general acid to protonate the leaving group. The reaction of the HDV ribozyme in monovalent cations alone never approaches the velocity of the Mg(2+)-dependent reaction, and there is significant biochemical evidence that a Mg(2+) ion participates directly in catalysis. A recent crystal structure of the HDV ribozyme revealed that there is a metal binding pocket in the HDV ribozyme active site. Modeling of the cleavage site into the structure suggested that this metal ion can interact directly with the scissile phosphate and the nucleophile. In this manner, the Mg(2+) ion can serve as a Lewis acid, facilitating deprotonation of the nucleophile and stabilizing the conformation of the cleavage site for in-line attack of the nucleophile at the scissile phosphate. This catalytic strategy had previously been observed only in much larger ribozymes. Thus, in contrast to most large and small ribozymes, the HDV ribozyme uses two distinct catalytic strategies in its cleavage reaction.
Collapse
Affiliation(s)
- Barbara L Golden
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063, United States.
| |
Collapse
|
18
|
Veeraraghavan N, Ganguly A, Golden BL, Bevilacqua PC, Hammes-Schiffer S. Mechanistic strategies in the HDV ribozyme: chelated and diffuse metal ion interactions and active site protonation. J Phys Chem B 2011; 115:8346-57. [PMID: 21644800 PMCID: PMC3144556 DOI: 10.1021/jp203202e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The crystal structure of the precleaved form of the hepatitis delta virus (HDV) ribozyme reveals two G•U wobbles near the active site: a rare reverse G•U wobble involving a syn G base, and a standard G•U wobble at the cleavage site. The catalytic mechanism for this ribozyme has been proposed to involve a Mg(2+) ion bound to the reverse G•U wobble, as well as a protonated C75 base. We carried out molecular dynamics simulations to analyze metal ion interaction with the reverse and standard G•U wobbles and to investigate the impact of C75 protonation on the structure and motions of the ribozyme. We identified two types of Mg(2+) ions associated with the ribozyme, chelated and diffuse, at the reverse and standard G•U wobbles, respectively, which appear to contribute to catalysis and stability, respectively. These two metal ion sites exhibit relatively independent behavior. Protonation of C75 was observed to locally organize the active site in a manner that facilitates the catalytic mechanism, in which C75(+) acts as a general acid and Mg(2+) as a Lewis acid. The simulations also indicated that the overall structure and thermal motions of the ribozyme are not significantly influenced by the catalytic Mg(2+) interaction or C75 protonation. This analysis suggests that the reaction pathway of the ribozyme is dominated by small local motions at the active site rather than large-scale global conformational changes. These results are consistent with a wealth of experimental data.
Collapse
Affiliation(s)
- Narayanan Veeraraghavan
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | | | | |
Collapse
|
19
|
Veeraraghavan N, Ganguly A, Chen JH, Bevilacqua PC, Hammes-Schiffer S, Golden BL. Metal binding motif in the active site of the HDV ribozyme binds divalent and monovalent ions. Biochemistry 2011; 50:2672-82. [PMID: 21348498 PMCID: PMC3068245 DOI: 10.1021/bi2000164] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme uses both metal ion and nucleobase catalysis in its cleavage mechanism. A reverse G·U wobble was observed in a recent crystal structure of the precleaved state. This unusual base pair positions a Mg(2+) ion to participate in catalysis. Herein, we used molecular dynamics (MD) and X-ray crystallography to characterize the conformation and metal binding characteristics of this base pair in product and precleaved forms. Beginning with a crystal structure of the product form, we observed formation of the reverse G·U wobble during MD trajectories. We also demonstrated that this base pair is compatible with the diffraction data for the product-bound state. During MD trajectories of the product form, Na(+) ions interacted with the reverse G·U wobble in the RNA active site, and a Mg(2+) ion, introduced in certain trajectories, remained bound at this site. Beginning with a crystal structure of the precleaved form, the reverse G·U wobble with bound Mg(2+) remained intact during MD simulations. When we removed Mg(2+) from the starting precleaved structure, Na(+) ions interacted with the reverse G·U wobble. In support of the computational results, we observed competition between Na(+) and Mg(2+) in the precleaved ribozyme crystallographically. Nonlinear Poisson-Boltzmann calculations revealed a negatively charged patch near the reverse G·U wobble. This anionic pocket likely serves to bind metal ions and to help shift the pK(a) of the catalytic nucleobase, C75. Thus, the reverse G·U wobble motif serves to organize two catalytic elements, a metal ion and catalytic nucleobase, within the active site of the HDV ribozyme.
Collapse
Affiliation(s)
- Narayanan Veeraraghavan
- Huck Institutes of Life Sciences, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Abir Ganguly
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907
| | - Philip C. Bevilacqua
- Huck Institutes of Life Sciences, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802,Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802,To whom correspondence should be addressed. B.L.G.: telephone (765) 496-6165; fax (765) 494-7897; . S.H.-S. telephone (814) 865-6442; fax (814) 865-2927; . P.C.B. telephone (814) 863-3812; fax (814) 865-2927.
| | - Sharon Hammes-Schiffer
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802,To whom correspondence should be addressed. B.L.G.: telephone (765) 496-6165; fax (765) 494-7897; . S.H.-S. telephone (814) 865-6442; fax (814) 865-2927; . P.C.B. telephone (814) 863-3812; fax (814) 865-2927.
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907,To whom correspondence should be addressed. B.L.G.: telephone (765) 496-6165; fax (765) 494-7897; . S.H.-S. telephone (814) 865-6442; fax (814) 865-2927; . P.C.B. telephone (814) 863-3812; fax (814) 865-2927.
| |
Collapse
|
20
|
Chen JH, Yajima R, Chadalavada DM, Chase E, Bevilacqua PC, Golden BL. A 1.9 Å Crystal Structure of the HDV Ribozyme Precleavage Suggests both Lewis Acid and General Acid Mechanisms Contribute to Phosphodiester Cleavage. Biochemistry 2010; 49:6508-18. [DOI: 10.1021/bi100670p] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| | - Rieko Yajima
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Durga M. Chadalavada
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Elaine Chase
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| |
Collapse
|
21
|
Veeraraghavan N, Bevilacqua PC, Hammes-Schiffer S. Long-distance communication in the HDV ribozyme: insights from molecular dynamics and experiments. J Mol Biol 2010; 402:278-91. [PMID: 20643139 DOI: 10.1016/j.jmb.2010.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 11/18/2022]
Abstract
The hepatitis delta virus ribozyme is a small, self-cleaving RNA with a compact tertiary structure and buried active site that is important in the life cycle of the virus. The ribozyme's function in nature is to cleave an internal phosphodiester bond and linearize concatemers during rolling circle replication. Crystal structures of the ribozyme have been solved in both pre-cleaved and post-cleaved (product) forms and reveal an intricate network of interactions that conspire to catalyze bond cleavage. In addition, extensive biochemical studies have been performed to work out a mechanism for bond cleavage in which C75 and a magnesium ion catalyze the reaction by general acid-base chemistry. One issue that has remained unclear in this ribozyme and in other ribozymes is the nature of long-distance communication between peripheral regions of the RNA and the buried active site. We performed molecular dynamics simulations on the hepatitis delta virus ribozyme in the product form and assessed communication between a distal structural portion of the ribozyme-the protonated C41 base triple-and the active site containing the critical C75. We varied the ionization state of C41 in both the wild type and a C41 double mutant variant and determined the impact on the active site. In all four cases, effects at the active site observed in the simulations agree with experimental studies on ribozyme activity. Overall, these studies indicate that small functional RNAs have the potential to communicate interactions over long distances and that wild-type RNAs may have evolved ways to prevent such interactions from interfering with catalysis.
Collapse
Affiliation(s)
- Narayanan Veeraraghavan
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
22
|
Siegfried NA, O'Hare B, Bevilacqua PC. Driving forces for nucleic acid pK(a) shifting in an A(+).C wobble: effects of helix position, temperature, and ionic strength. Biochemistry 2010; 49:3225-36. [PMID: 20337429 DOI: 10.1021/bi901920g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secondary structure plays critical roles in nucleic acid function. Mismatches in DNA can lead to mutation and disease, and some mismatches involve a protonated base. Among protonated mismatches, A(+).C wobble pairs form near physiological pH and have relatively minor effects on helix geometry, making them especially important in biology. Herein, we investigate effects of helix position, temperature, and ionic strength on pK(a) shifting in A(+).C wobble pairs in DNA. We observe that pK(a) shifting is favored by internal A(+).C wobbles, which have low cooperativities of folding and make large contributions to stability, and disfavored by external A(+).C wobbles, which have high folding cooperativities but make small contributions to stability. An inverse relationship between pK(a) shifting and temperature is also found, which supports a model in which protonation is enthalpically favored overall and entropically correlated with cooperativity of folding. We also observe greater pK(a) shifts as the ionic strength decreases, consistent with anticooperativity between proton binding and counterion-condensed monovalent cation. Under the most favorable temperature and ionic strength conditions tested, a pK(a) of 8.0 is observed for the A(+).C wobble pair, which represents an especially large shift ( approximately 4.5 pK(a) units) from the unperturbed pK(a) value of adenosine. This study suggests that protonated A(+).C wobble pairs exist in DNA under biologically relevant conditions, where they can drive conformational changes and affect replication and transcription fidelity.
Collapse
Affiliation(s)
- Nathan A Siegfried
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
23
|
Cao S, Giedroc DP, Chen SJ. Predicting loop-helix tertiary structural contacts in RNA pseudoknots. RNA (NEW YORK, N.Y.) 2010; 16:538-52. [PMID: 20100813 PMCID: PMC2822919 DOI: 10.1261/rna.1800210] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 11/24/2009] [Indexed: 05/28/2023]
Abstract
Tertiary interactions between loops and helical stems play critical roles in the biological function of many RNA pseudoknots. However, quantitative predictions for RNA tertiary interactions remain elusive. Here we report a statistical mechanical model for the prediction of noncanonical loop-stem base-pairing interactions in RNA pseudoknots. Central to the model is the evaluation of the conformational entropy for the pseudoknotted folds with defined loop-stem tertiary structural contacts. We develop an RNA virtual bond-based conformational model (Vfold model), which permits a rigorous computation of the conformational entropy for a given fold that contains loop-stem tertiary contacts. With the entropy parameters predicted from the Vfold model and the energy parameters for the tertiary contacts as inserted parameters, we can then predict the RNA folding thermodynamics, from which we can extract the tertiary contact thermodynamic parameters from theory-experimental comparisons. These comparisons reveal a contact enthalpy (DeltaH) of -14 kcal/mol and a contact entropy (DeltaS) of -38 cal/mol/K for a protonated C(+)*(G-C) base triple at pH 7.0, and (DeltaH = -7 kcal/mol, DeltaS = -19 cal/mol/K) for an unprotonated base triple. Tests of the model for a series of pseudoknots show good theory-experiment agreement. Based on the extracted energy parameters for the tertiary structural contacts, the model enables predictions for the structure, stability, and folding pathways for RNA pseudoknots with known or postulated loop-stem tertiary contacts from the nucleotide sequence alone.
Collapse
Affiliation(s)
- Song Cao
- Department of Physics, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
24
|
Gong B, Chen JH, Bevilacqua PC, Golden BL, Carey PR. Competition between Co(NH(3)(6)3+ and inner sphere Mg2+ ions in the HDV ribozyme. Biochemistry 2010; 48:11961-70. [PMID: 19888753 DOI: 10.1021/bi901091v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg(2+) are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH(3))(6)(3+), an analogue of Mg(H(2)O)(6)(2+). Here, the binding of Mg(2+) and Co(NH(3))(6)(3+) to the HDV ribozyme is studied by Raman microscopic analysis of crystals. Raman difference spectra acquired at different metal ion conditions reveal changes in the ribozyme. When Mg(2+) alone is introduced to the ribozyme, inner sphere coordination of Mg(H(2)O)(x)(2+) (x </= 5) to nonbridging PO(2)(-) oxygen and changes in base stretches and phosphodiester group conformation are observed. In addition, binding of Mg(2+) induces deprotonation of a cytosine assigned to the general acid C75, consistent with solution studies. When Co(NH(3))(6)(3+) alone is introduced, deprotonation of C75 is again observed, as are distinctive changes in base vibrational ring modes and phosphodiester backbone conformation. In contrast to Mg(2+) binding, Co(NH(3))(6)(3+) binding does not perturb PO(2)(-) group vibrations, consistent with its ability to make only outer sphere contacts. Surprisingly, competitive binding studies reveal that Co(NH(3))(6)(3+) ions displace some inner sphere-coordinated magnesium species, including ions coordinated to PO(2)(-) groups or the N7 of a guanine, likely G1 at the active site. These observations contrast with the tenet that Co(NH(3))(6)(3+) ions displace only outer sphere magnesium ions. Overall, our data support two classes of inner sphere Mg(2+)-PO(2)(-) binding sites: sites that Co(NH(3))(6)(3+) can displace and others it cannot.
Collapse
Affiliation(s)
- Bo Gong
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
25
|
Frederiksen JK, Piccirilli JA. Identification of catalytic metal ion ligands in ribozymes. Methods 2009; 49:148-66. [PMID: 19651216 DOI: 10.1016/j.ymeth.2009.07.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/20/2009] [Accepted: 07/29/2009] [Indexed: 01/05/2023] Open
Abstract
Site-bound metal ions participate in the catalytic mechanisms of many ribozymes. Understanding these mechanisms therefore requires knowledge of the specific ligands on both substrate and ribozyme that coordinate these catalytic metal ions. A number of different structural and biochemical strategies have been developed and refined for identifying metal ion binding sites within ribozymes, and for assessing the catalytic contributions of the metal ions bound at those sites. We review these approaches and provide examples of their application, focusing in particular on metal ion rescue experiments and their roles in the construction of the transition state models for the Tetrahymena group I and RNase P ribozymes.
Collapse
Affiliation(s)
- John K Frederiksen
- The Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
26
|
Chen JH, Gong B, Bevilacqua PC, Carey PR, Golden BL. A catalytic metal ion interacts with the cleavage Site G.U wobble in the HDV ribozyme. Biochemistry 2009; 48:1498-507. [PMID: 19178151 DOI: 10.1021/bi8020108] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HDV ribozyme self-cleaves by a chemical mechanism involving general acid-base catalysis to generate 2',3'-cyclic phosphate and 5'-hydroxyl termini. Biochemical studies from several laboratories have implicated C75 as the general acid and hydrated magnesium as the general base. We have previously shown that C75 has a pK(a) shifted >2 pH units toward neutrality [Gong, B., Chen, J. H., Chase, E., Chadalavada, D. M., Yajima, R., Golden, B. L., Bevilacqua, P. C., and Carey, P. R. (2007) J. Am. Chem. Soc. 129, 13335-13342], while in crystal structures, it is well-positioned for proton transfer. However, no evidence for a hydrated magnesium poised to serve as a general base in the reaction has been observed in high-resolution crystal structures of various reaction states and mutants. Herein, we use solution kinetic experiments and parallel Raman crystallographic studies to examine the effects of pH on the rate and Mg(2+) binding properties of wild-type and 7-deazaguanosine mutants of the HDV ribozyme. These data suggest that a previously unobserved hydrated magnesium ion interacts with N7 of the cleavage site G.U wobble base pair. Integrating this metal ion binding site with the available crystal structures provides a new three-dimensional model for the active site of the ribozyme that accommodates all available biochemical data and appears competent for catalysis. The position of this metal is consistent with a role of a magnesium-bound hydroxide as a general base as dictated by biochemical data.
Collapse
Affiliation(s)
- Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
27
|
Walter NG, Perumal S. The Small Ribozymes: Common and Diverse Features Observed through the FRET Lens. SPRINGER SERIES IN BIOPHYSICS 2009; 13:103-127. [PMID: 21796234 DOI: 10.1007/978-3-540-70840-7_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hammerhead, hairpin, HDV, VS and glmS ribozymes are the five known, naturally occurring catalytic RNAs classified as the "small ribozymes". They share common reaction chemistry in cleaving their own backbone by phosphodiester transfer, but are diverse in their secondary and tertiary structures, indicating that Nature has found at least five independent solutions to a common chemical task. Fluorescence resonance energy transfer (FRET) has been extensively used to detect conformational changes in these ribozymes and dissect their reaction pathways. Common and diverse features are beginning to emerge that, by extension, highlight general biophysical properties of non-protein coding RNAs.
Collapse
Affiliation(s)
- Nils G Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
28
|
Cerrone-Szakal AL, Siegfried NA, Bevilacqua PC. Mechanistic characterization of the HDV genomic ribozyme: solvent isotope effects and proton inventories in the absence of divalent metal ions support C75 as the general acid. J Am Chem Soc 2008; 130:14504-20. [PMID: 18842044 DOI: 10.1021/ja801816k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme uses the nucleobase C75 and a hydrated Mg(2+) ion as the general acid-base catalysts in phosphodiester bond cleavage at physiological salt. A mechanistic framework has been advanced that involves one Mg(2+)-independent and two Mg(2+)-dependent channels. The rate-pH profile for wild-type (WT) ribozyme in the Mg(2+)-free channel is inverted relative to the fully Mg(2+)-dependent channel, with each having a near-neutral pKa. Inversion of the rate-pH profile was used as the crux of a mechanistic argument that C75 serves as general acid both in the presence and absence of Mg(2+). However, subsequent studies on a double mutant (DM) ribozyme suggested that the pKa observed for WT in the absence of Mg(2+) arises from ionization of C41, a structural nucleobase. To investigate this further, we acquired rate-pH/pD profiles and proton inventories for WT and DM in the absence of Mg(2+). Corrections were made for effects of ionic strength on hydrogen ion activity and pH meter readings. Results are accommodated by a model wherein the Mg(2+)-free pKa observed for WT arises from ionization of C75, and DM reactivity is compromised by protonation of C41. The Brønsted base appears to be water or hydroxide ion depending on pH. The observed pKa's are related to salt-dependent pH titrations of a model oligonucleotide, as well as electrostatic calculations, which support the local environment for C75 in the absence of Mg(2+) being similar to that in the presence of Mg(2+) and impervious to bulk ions. Accordingly, the catalytic role of C75 as the general acid does not appear to depend on divalent ions or the identity of the Brønsted base.
Collapse
Affiliation(s)
- Andrea L Cerrone-Szakal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
29
|
Fedoruk-Wyszomirska A, Giel-Pietraszuk M, Wyszko E, Szymański M, Ciesiołka J, Barciszewska MZ, Barciszewski J. The mechanism of acidic hydrolysis of esters explains the HDV ribozyme activity. Mol Biol Rep 2008; 36:1647-50. [PMID: 18810653 DOI: 10.1007/s11033-008-9364-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme is an RNA enzyme that catalyzes the site-specific trans-esterification reaction. Using high hydrostatic pressure (HHP) technique we showed that HDV ribozyme catalyzes the reaction of RNA cleavage in the absence of magnesium ions according to mechanism of acidic hydrolysis of esters. HHP induces changes of water structure, lowering pH and effect ribozyme catalytic site structure formation without magnesium. HHP, similarly to magnesium ion at ambient pressure stabilizes the higher order RNA structure of HDV, but Mg(2+) is not involved in the catalysis. Our results clearly support the new mechanism of HDV hydrolysis and show advantages of using HHP in analysis of macromolecules interaction.
Collapse
|
30
|
Cerrone-Szakal AL, Chadalavada DM, Golden BL, Bevilacqua PC. Mechanistic characterization of the HDV genomic ribozyme: the cleavage site base pair plays a structural role in facilitating catalysis. RNA (NEW YORK, N.Y.) 2008; 14:1746-60. [PMID: 18658121 PMCID: PMC2525964 DOI: 10.1261/rna.1140308] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme occurs in the genomic and antigenomic strands of the HDV RNA and within mammalian transcriptomes. Previous kinetic studies suggested that a wobble pair (G*U or A(+)*C) is preferred at the cleavage site; however, the reasons for this are unclear. We conducted sequence comparisons, which indicated that while G*U is the most prevalent combination at the cleavage site, G-C occurs to a significant extent in genomic HDV isolates, and G*U, G-C, and A-U pairs are present in mammalian ribozymes. We analyzed the folding of genomic HDV ribozymes by free energy minimization and found that variants with purine-pyrimidine combinations at the cleavage site are predicted to form native structures while pyrimidine-purine combinations misfold, consistent with earlier kinetic data and sequence comparisons. To test whether the cleavage site base pair contributes to catalysis, we characterized the pH and Mg(2+)-dependence of reaction kinetics of fast-folding genomic HDV ribozymes with cleavage site base pair purine-pyrimidine combinations: G*U, A-U, G-C, and A(+)*C. Rates for these native-folding ribozymes displayed highly similar pH and Mg(2+) concentration dependencies, with the exception of the A(+)*C ribozyme, which deviated at high pH. None of the four ribozymes underwent miscleavage. These observations support the A(+)*C ribozyme as being more active with a wobble pair at the cleavage site than with no base pair at all. Overall, the data support a model in which the cleavage site base pair provides a structural role in catalysis and does not need to be a wobble pair.
Collapse
Affiliation(s)
- Andrea L Cerrone-Szakal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
31
|
Banás P, Rulísek L, Hánosová V, Svozil D, Walter NG, Sponer J, Otyepka M. General base catalysis for cleavage by the active-site cytosine of the hepatitis delta virus ribozyme: QM/MM calculations establish chemical feasibility. J Phys Chem B 2008; 112:11177-87. [PMID: 18686993 DOI: 10.1021/jp802592z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indicate that C75 acts as the general base that initiates catalysis by deprotonating the 2'-OH nucleophile at the cleavage site, while a hydrated magnesium ion likely protonates the 5'-oxygen leaving group. In contrast, some mechanistic studies support the role of C75 acting as general acid and thus being protonated before the reaction. We report combined quantum chemical/molecular mechanical calculations for the C75 general base pathway, utilizing the available structural data for the wild type HDV genomic ribozyme as a starting point. Several starting configurations differing in magnesium ion placement were considered and both one-dimensional and two-dimensional potential energy surface scans were used to explore plausible reaction paths. Our calculations show that C75 is readily capable of acting as the general base, in concert with the hydrated magnesium ion as the general acid. We identify a most likely position for the magnesium ion, which also suggests it acts as a Lewis acid. The calculated energy barrier of the proposed mechanism, approximately 20 kcal/mol, would lower the reaction barrier by approximately 15 kcal/mol compared with the uncatalyzed reaction and is in good agreement with experimental data.
Collapse
Affiliation(s)
- Pavel Banás
- Department of Physical Chemistry and Center for Biomolecules and Complex Molecular Systems, Palacky University, tr. Svobody 26, 771 46, Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
32
|
Abeysirigunawardena SC, Chow CS. pH-dependent structural changes of helix 69 from Escherichia coli 23S ribosomal RNA. RNA (NEW YORK, N.Y.) 2008; 14:782-92. [PMID: 18268024 PMCID: PMC2271367 DOI: 10.1261/rna.779908] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Helix 69 in 23S rRNA is a region in the ribosome that participates in a considerable number of RNA-RNA and RNA-protein interactions. Conformational flexibility is essential for such a region to interact and accommodate protein factors at different stages of protein biosynthesis. In this study, pH-dependent structural and stability changes were observed for helix 69 through a variety of spectroscopic techniques, such as circular dichroism spectroscopy, UV melting, and nuclear magnetic resonance spectroscopy. In Escherichia coli 23S rRNA, helix 69 contains pseudouridine residues at positions 1911, 1915, and 1917. The presence of these pseudouridines was found to be essential for the pH-induced conformational changes. Some of the pH-dependent changes appear to be localized to the loop region of helix 69, emphasizing the importance of the highly conserved nature of residues in this region.
Collapse
MESH Headings
- Base Sequence
- Circular Dichroism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Hydrogen-Ion Concentration
- Models, Molecular
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Thermodynamics
Collapse
|
33
|
Nelson JA, Uhlenbeck OC. Hammerhead redux: does the new structure fit the old biochemical data? RNA (NEW YORK, N.Y.) 2008; 14:605-615. [PMID: 18287565 PMCID: PMC2271363 DOI: 10.1261/rna.912608] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The cleavage rates of 78 hammerhead ribozymes containing structurally conservative chemical modifications were collected from the literature and compared to the recently determined crystal structure of the Schistosoma mansoni hammerhead. With only a few exceptions, the biochemical data were consistent with the structure, indicating that the new structure closely resembles the transition state of the reaction. Since all the biochemical data were collected on minimal hammerheads that have a very different structure, the minimal hammerhead must be dynamic and occasionally adopt the quite different extended structure in order to cleave.
Collapse
Affiliation(s)
- Jennifer A Nelson
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
34
|
Abstract
Enzymatic catalysis by RNA was discovered 25 years ago, yet mechanistic insights are emerging only slowly. Thought to be metalloenzymes at first, some ribozymes proved more versatile than anticipated when shown to utilize their own functional groups for catalysis. Recent evidence suggests that some may also judiciously place structural water molecules to shuttle protons in acid-base catalyzed reactions.
Collapse
Affiliation(s)
- Nils G Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48019-1055, USA.
| |
Collapse
|
35
|
Lizano E, Scheibe M, Rammelt C, Betat H, Mörl M. A comparative analysis of CCA-adding enzymes from human and E. coli: differences in CCA addition and tRNA 3'-end repair. Biochimie 2008; 90:762-72. [PMID: 18226598 DOI: 10.1016/j.biochi.2007.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 12/27/2007] [Indexed: 11/19/2022]
Abstract
Representing one of the most fascinating RNA polymerases, the CCA-adding enzyme (tRNA nucleotidyltransferase) is responsible for synthesis and repair of the 3'-terminal CCA sequence in tRNA transcripts. As a consequence of this important function, this enzyme is found in all organisms analyzed so far. Here, it is shown that the closely related enzymes of Homo sapiens and Escherichia coli differ substantially in their substrate preferences for the incorporation of CTP and ATP. While both enzymes require helical structures (mimicking the upper part of tRNAs) for C addition, the data indicate that the E. coli enzyme--in contrast to the human version--is quite promiscuous concerning the incorporation of ATP, where any RNA ending with two C residues is accepted. This feature is consistent with the primary function of the E. coli protein as a repair enzyme. Furthermore, even if the amino acid motif that interacts with the incoming nucleotides in the NTP binding pocket of these enzymes is destroyed and does no longer discriminate between individual bases, both nucleotidyltransferases have a back-up mechanism that ensures CCA addition with considerable accuracy and efficiency in order to guarantee functional protein synthesis and, consequently, the survival of the cell.
Collapse
Affiliation(s)
- Esther Lizano
- University of Leipzig, Institute for Biochemistry, Brüderstrasse 34, D-04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
36
|
Gong B, Chen JH, Chase E, Chadalavada DM, Yajima R, Golden BL, Bevilacqua PC, Carey PR. Direct measurement of a pK(a) near neutrality for the catalytic cytosine in the genomic HDV ribozyme using Raman crystallography. J Am Chem Soc 2007; 129:13335-42. [PMID: 17924627 DOI: 10.1021/ja0743893] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hepatitis delta virus (HDV) ribozyme uses a cytosine to facilitate general acid-base catalysis. Biochemical studies suggest that C75 has a pKa perturbed to near neutrality. To measure this pKa directly, Raman spectra were recorded on single ribozyme crystals using a Raman microscope. A spectral feature arising from a single neutral cytosine was identified at 1528 cm(-1). At low pH, this mode was replaced with a new spectral feature. Monitoring these features as a function of pH revealed pKa values for the cytosine that couple anticooperatively with Mg2+ binding, with values of 6.15 and 6.40 in the presence of 20 and 2 mM Mg2+, respectively. These pKa values agree well with those obtained from ribozyme activity experiments in solution. To correlate the observed pKa with a specific nucleotide, crystals of C75U, which is catalytically inactive, were examined. The Raman difference spectra show that this mutation does not affect the conformation of the ribozyme. However, crystals of C75U did not produce a signal from a protonatable cytosine, providing strong evidence that protonation of C75 is being monitored in the wild-type ribozyme. These studies provide the first direct physical measurement of a pKa near neutrality for a catalytic residue in a ribozyme and show that ribozymes, like their protein enzyme counterparts, can optimize the pKa of their side chains for proton transfer.
Collapse
Affiliation(s)
- Bo Gong
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Philip C Bevilacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|