1
|
Basak P, Ray Chaudhuri N, Basu D, Ganguly D, Ghosh Dastidar S. Molecular origin of the differential stabilities of the protofilaments in different polymorphs: molecular dynamics simulation and deep learning. J Biomol Struct Dyn 2024:1-17. [PMID: 39552194 DOI: 10.1080/07391102.2024.2427364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/29/2024] [Indexed: 11/19/2024]
Abstract
Fragments of α-synuclein, an intrinsically disordered protein, whose misfolding and aggregation are responsible for diseases like Parkinson's disease and others, can co-exist in different polymorphs like 'rod' and 'twister'. Their apparently stable structures have different degrees of tolerance to perturbations like point mutations. The molecular basis of this is investigated using molecular dynamics-based conformational sampling. A charge-swapping mutation, E46K, known to be a reason for the early onset of Parkinson's disease, has differential impact on two polymorphs, and its molecular reason has been probed by investigating the intra-fibril interaction network that is responsible for stabilizing the aggregates. Two different quaternary level arrangement of the peptides in two polymorphs, establishing two different types of interrelations between residues of the peptide monomers, form the basis of their differential stabilities; a Deep Neural Network (DNN)-based analysis has extracted different pairs of residues and their spatial proximities as features to distinguish the states of two polymorphs. It has revealed that difference in these molecular arrangements intrinsically assigns key roles to different sets of residues in two different forms, like a feedback loop from quaternary structure to sequence level; an important insight into the sequence-structure relationship in general. Such atomic level insights were substantiated with the proof of differences in the dynamic correlation between residue pairs, altered mobilities of the sidechains that affects packing and redistribution of the weightage of different principal modes of internal motions in different systems. The identification of key residues with altered significance in different polymorphs is likely to benefit the planned design of fibril breaking molecules.
Collapse
Affiliation(s)
| | | | | | - Debabani Ganguly
- JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, India
| | | |
Collapse
|
2
|
Choudhury S, Dasmahapatra AK. Destabilisation of Alzheimer's amyloid-β protofibrils by Baicalein: mechanistic insights from all-atom molecular dynamics simulations. Mol Divers 2024:10.1007/s11030-024-11001-9. [PMID: 39379662 DOI: 10.1007/s11030-024-11001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and the fifth leading cause of death globally. Aggregation and deposition of neurotoxic Aβ fibrils in the neural tissues of the brain is a key hallmark in AD pathogenesis. Destabilisation studies of the amyloid-peptide by various natural molecules are highly relevant due to their neuroprotective and therapeutic potential for AD. We performed molecular dynamics (MD) simulation to investigate the destabilisation mechanism of amyloidogenic protofilament intermediate by Baicalein (BCL), a naturally occurring flavonoid. We found that the BCL molecule formed strong hydrophobic contacts with non-polar residues, specifically F19, A21, V24, and I32 of Chain A and B of the pentameric protofibril. Upon binding, it competed with the native hydrophobic contacts of the Aβ protein. BCL loosened the tight packing of the hydrophobic core by disrupting the hydrogen bonds and the prominent D23-K28 inter-chain salt bridges of the protofibril. The decrease in the structural stability of Aβ protofibrils was confirmed by the increased RMSD, radius of gyration, solvent accessible surface area (SASA), and reduced β-sheet content. PCA indicated that the presence of the BCL molecule intensified protofibril motions, particularly affecting residues in Chain A and B regions. Our findings propose that BCL would be a potent destabiliser of Aβ protofilament, and may be considered as a therapeutic agent in treating AD.
Collapse
Affiliation(s)
- Sadika Choudhury
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Carrazoni GS, Garces NB, Cadore CR, Sosa PM, Cattaneo R, Mello-Carpes PB. Supplementation with Manihot esculenta Crantz (Cassava) leaves' extract prevents recognition memory deficits and hippocampal antioxidant dysfunction induced by Amyloid-β. Nutr Neurosci 2024; 27:942-950. [PMID: 37948133 DOI: 10.1080/1028415x.2023.2280815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The Manihot esculenta Crantz (Cassava) is a typical South American plant rich in nutrients and energetic compounds. Lately, our group has shown that non-pharmacological interventions with natural antioxidants present different neuroprotective effects on oxidative balance and memory deficits in AD-like animal models. Here, our objective was to evaluate the neuroprotective effects of Cassava leaves' extract (CAS) in an AD-like model induced by amyloid-beta (Aβ) 25-35 peptide. METHODS Male Wistar rats (n = 40; 60 days old) were subjected to 10 days of CAS supplementation; then, we injected 2 μL Aβ 25-35 in the hippocampus by stereotaxic surgery. Ten days later, we evaluated object recognition (OR) memory. Cassavas' total polyphenols, flavonoids, and condensed tannins content were measured, as well as hippocampal lipid peroxidation and total antioxidant capacity. RESULTS CAS protected against Aβ-induced OR memory deficits. In addition, Aβ promoted antioxidant capacity decrease, while CAS was able to prevent it, in addition to diminishing lipoperoxidation compared to Aβ. DISCUSSION We show that treatment with Cassava leaves' extract before AD induction prevents recognition memory deficits related to Aβ hippocampal injection. At least part of these effects can be related to the Cassava leaves' extract supplementation effects on diminishing lipid peroxidation and preventing a decrease in the hippocampal total antioxidant capacity in the hippocampus of AD-like animals without adverse effects. Once cassavais a plant of warm and dry ground that can adapt to growon various soil types and seems to resist several insects, our results enable Cassava to be considered asa potential preventive intervention to avoid or minimizeAD-induced memory deficits worldwide.
Collapse
Affiliation(s)
- Guilherme Salgado Carrazoni
- Physiology Research Group, Stress, Memory and Behavior Lab, Universidade Federal do Pampa, Uruguaiana, Brazil
| | | | - Caroline Ramires Cadore
- Physiology Research Group, Stress, Memory and Behavior Lab, Universidade Federal do Pampa, Uruguaiana, Brazil
| | - Priscila Marques Sosa
- Physiology Research Group, Stress, Memory and Behavior Lab, Universidade Federal do Pampa, Uruguaiana, Brazil
| | | | - Pâmela Billig Mello-Carpes
- Physiology Research Group, Stress, Memory and Behavior Lab, Universidade Federal do Pampa, Uruguaiana, Brazil
| |
Collapse
|
4
|
Kaku T, Ikebukuro K, Tsukakoshi K. Structure of cytotoxic amyloid oligomers generated during disaggregation. J Biochem 2024; 175:575-585. [PMID: 38430131 PMCID: PMC11155694 DOI: 10.1093/jb/mvae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024] Open
Abstract
Amyloidosis is characterized by the abnormal accumulation of amyloid proteins. The causative proteins aggregate from monomers to oligomers and fibrils, among which some intermediate oligomers are considered as major toxins. Cytotoxic oligomers are generated not only by aggregation but also via fibril disaggregation. However, little is known about the structural characteristics and generation conditions of cytotoxic oligomers produced during disaggregation. Herein, we summarized the structural commonalities of cytotoxic oligomers formed under various disaggregation conditions, including the addition of heat shock proteins or small compounds. In vitro experimental data demonstrated the presence of high-molecular-weight oligomers (protofibrils or protofilaments) that exhibited a fibrous morphology and β-sheet structure. Molecular dynamics simulations indicated that the distorted β-sheet structure contributed to their metastability. The tendency of these cytotoxic oligomers to appear under mild disaggregation conditions, implied formation during the early stages of disaggregation. This review will aid researchers in exploring the characteristics of highly cytotoxic oligomers and developing drugs that target amyloid aggregates.
Collapse
Affiliation(s)
- Toshisuke Kaku
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
5
|
Kumar N, Khatua P, Sinha SK. Can local heating and molecular crowders disintegrate amyloid aggregates? Chem Sci 2024; 15:6095-6105. [PMID: 38665536 PMCID: PMC11040654 DOI: 10.1039/d4sc00103f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
The present study employs a blend of molecular dynamics simulations and a theoretical model to explore the potential disintegration mechanism of a matured Aβ octamer, aiming to offer a strategy to combat Alzheimer's disease. We investigate local heating and crowding effects on Aβ disintegration by selectively heating key Aβ segments and varying the concentration of sodium dodecyl sulphate (SDS), respectively. Despite initiation of disruption, Aβ aggregates resist complete disintegration during local heating due to rapid thermal energy distribution to the surrounding water. Conversely, although SDS molecules effectively inhibit Aβ aggregation at higher concentration through micelle formation, they fail to completely disintegrate the aggregate due to the exceedingly high energy barrier. To address the sampling challenge posed by the formidable energy barrier, we have performed well-tempered metadynamics simulations. Simulations reveal a multi-step disintegration mechanism for the Aβ octamer, suggesting a probable sequence: octamer → pentamer/hexamer ⇌ tetramer → monomer, with a rate-determining step constituting 45 kJ mol-1 barrier during the octamer to pentamer/hexamer transition. Additionally, we have proposed a novel two-state mean-field model based on Ising spins that offers an insight into the kinetics of the Aβ growth process and external perturbation effects on disintegration. Thus, the current simulation study, coupled with the newly introduced mean-field model, offers an insight into the detailed mechanisms underlying the Aβ aggregation process, guiding potential strategies for effective disintegration of Aβ aggregates.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Chemistry, Theoretical and Computational Biophysical Chemistry Group, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India +91-01881-232066
| | - Prabir Khatua
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University) Bengaluru 562163 India
| | - Sudipta Kumar Sinha
- Department of Chemistry, Theoretical and Computational Biophysical Chemistry Group, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India +91-01881-232066
| |
Collapse
|
6
|
Zhang D, Zhang J, Ma Z, Wu Q, Liu M, Fan T, Ding L, Ren D, Wen A, Wang J. Luteoloside inhibits Aβ1-42 fibrillogenesis, disintegrates preformed fibrils, and alleviates amyloid-induced cytotoxicity. Biophys Chem 2024; 306:107171. [PMID: 38194817 DOI: 10.1016/j.bpc.2023.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Abnormal aggregation and fibrillogenesis of amyloid-β protein (Aβ) can cause Alzheimer's disease (AD). Thus, the discovery of effective drugs that inhibit Aβ fibrillogenesis in the brain is crucial for the treatment of AD. Luteoloside, as one of the polyphenolic compounds, is found to have a certain therapeutic effect on nervous system diseases. However, it remains unknown whether luteoloside is a potential drug for treating AD by modulating Aβ aggregation pathway. In this study, we performed diverse biophysical and biochemical methods to explore the inhibition of luteoloside on Aβ1-42 which is linked to AD. The results demonstrated that luteoloside efficiently prevented amyloid oligomerization and cross-β-sheet formation, reduced the rate of amyloid growth and the length of amyloid fibrils in a dose-dependent manner. Moreover, luteoloside was able to influence aggregation and conformation of Aβ1-42 during different fiber-forming phases, and it could disintegrate already preformed fibrils of Aβ1-42 and convert them into nontoxic aggregates. Furthermore, luteoloside protected cells from amyloid-induced cytotoxicity and hemolysis, and attenuated the level of reactive oxygen species (ROS). The molecular docking study showed that luteoloside interacted with Aβ1-42 mainly via Conventional Hydrogen Bond, Carbon Hydrogen Bond, Pi-Pi T-shaped, Pi-Alkyl and Pi-Anion, thereby possibly preventing it from forming the aggregates. These observations indicate that luteoloside, a natural anti-oxidant molecule, may be applicable as an effective inhibitor of Aβ, and promote further exploration of the therapeutic strategy against AD.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juanli Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhongying Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qianwen Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Meiyou Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tingting Fan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Danjun Ren
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
Nam Y, Prajapati R, Kim S, Shin SJ, Cheong DY, Park YH, Park HH, Lim D, Yoon Y, Lee G, Jung HA, Park I, Kim DH, Choi JS, Moon M. Dual regulatory effects of neferine on amyloid-β and tau aggregation studied by in silico, in vitro, and lab-on-a-chip technology. Biomed Pharmacother 2024; 172:116226. [PMID: 38301421 DOI: 10.1016/j.biopha.2024.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of two critical pathogenic factors: amyloid-β (Aβ) and tau. Aβ and tau become neurotoxic aggregates via self-assembly, and these aggregates contribute to the pathogenesis of AD. Therefore, there has been growing interest in therapeutic strategies that simultaneously target Aβ and tau aggregates. Although neferine has attracted attention as a suitable candidate agent for alleviating AD pathology, there has been no study investigating whether neferine affects the modulation of Aβ or tau aggregation/dissociation. Herein, we investigated the dual regulatory effects of neferine on Aβ and tau aggregation/dissociation. We predicted the binding characteristics of neferine to Aβ and tau using molecular docking simulations. Next, thioflavin T and atomic force microscope analyses were used to evaluate the effects of neferine on the aggregation or dissociation of Aβ42 and tau K18. We verified the effect of neferine on Aβ fibril degradation using a microfluidic device. In addition, molecular dynamics simulation was used to predict a conformational change in the Aβ42-neferine complex. Moreover, we examined the neuroprotective effect of neferine against neurotoxicity induced by Aβ and tau and their fibrils in HT22 cells. Finally, we foresaw the pharmacokinetic properties of neferine. These results demonstrated that neferine, which has attracted attention as a potential treatment for AD, can directly affect Aβ and tau pathology.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Ritu Prajapati
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Danyou Lim
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Republic of Korea
| | - Yoojeong Yoon
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Insu Park
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Republic of Korea.
| | - Dong-Hyun Kim
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea.
| |
Collapse
|
8
|
Martínez‐Coria H, Serrano‐García N, López‐Valdés HE, López‐Chávez GS, Rivera‐Alvarez J, Romero‐Hernández Á, Valverde FF, Orozco‐Ibarra M, Torres‐Ramos MA. Morin improves learning and memory in healthy adult mice. Brain Behav 2024; 14:e3444. [PMID: 38409930 PMCID: PMC10897355 DOI: 10.1002/brb3.3444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/26/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Morin is a flavonoid found in many edible fruits. The hippocampus and entorhinal cortex play crucial roles in memory formation and consolidation. This study aimed to characterize the effect of morin on recognition and space memory in healthy C57BL/6 adult mice and explore the underlying molecular mechanism. METHODS Morin was administered i.p. at 1, 2.5, and 5 mg/kg/24 h for 10 days. The Morris water maze (MWM), novel object recognition, novel context recognition, and tasks were conducted 1 day after the last administration. The mice's brains underwent histological characterization, and their protein expression was examined using immunohistochemistry and Western blot techniques. RESULTS In the MWM and novel object recognition tests, mice treated with 1 mg/kg of morin exhibited a significant recognition index increase compared to the control group. Besides, they demonstrated faster memory acquisition during MWM training. Additionally, the expression of pro-brain-derived neurotrophic factor (BDNF), BDNF, and postsynaptic density protein 95 proteins in the hippocampus of treated mice showed a significant increase. In the entorhinal cortex, only the pro-BDNF increased. Morin-treated mice exhibited a significant increase in the hippocampus's number and length of dendrites. CONCLUSION This study shows that morin improves recognition memory and spatial memory in healthy adult mice.
Collapse
Affiliation(s)
- Hilda Martínez‐Coria
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Norma Serrano‐García
- Laboratorio de NeurofisiologíaInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Héctor E. López‐Valdés
- Departamento de Fisiología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Gabriela Sinaí López‐Chávez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - José Rivera‐Alvarez
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Ángeles Romero‐Hernández
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Francisca Fernández Valverde
- Laboratorio de Patología ExperimentalInstituto Nacional de Neurología y Neurocirugía Manuel Velasco SuárezCiudad de MéxicoMéxico
| | - Marisol Orozco‐Ibarra
- Departamento de BioquímicaInstituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMéxico
| | - Mónica Adriana Torres‐Ramos
- Ciencia Traslacional, laboratorio 4. Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados; Dirección de investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
9
|
Sahraei A, Shamsoddini MJ, Mohammadi F, Hassani L. Interaction of gallium, indium, and vanadyl curcumin complexes with hen egg-white lysozyme (HEWL): Mechanistic aspects and evaluation of antiamyloidogenic activity. Biochem Biophys Res Commun 2024; 691:149307. [PMID: 38011821 DOI: 10.1016/j.bbrc.2023.149307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Many proteins and peptides can aggregate into amyloid fibrils with high-ordered and cross-β rich structure characteristics. Amyloid deposition is a common feature of neurodegenerative diseases called amyloidosis. Various natural polyphenolic compounds such as curcumin exhibited antiamyloidogenic activities, but less researches were focused on the metal complexes of these compounds. In this study, the inhibitory effects of gallium curcumin (Ga(cur)3), indium curcumin (In(cur)3), and vanadyl curcumin (VO(cur)2) on the amyloid fibrillation of hen egg white lysozyme (HEWL) have been investigated. Moreover, the details of binding interactions of these metal complexes with HEWL have been explored. The results of fluorescence quenching analyses revealed that In(cur)3 and VO(cur)2 have much higher binding affinities than Ga(cur)3 toward HEWL. The interactions of these metal complexes were accompanied by partial conformational changes in the tertiary structure of HEWL. The kinetic curves of the fibrillation process demonstrated that In(cur)3 and VO(cur)2 have higher inhibitory effects than Ga(cur)3 on the amyloid fibrillation of HEWL. The strength of binding to HEWL is completely in accordance with inhibitory activities of these metal complexes of curcumin.
Collapse
Affiliation(s)
- Amin Sahraei
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan, 45137-66731, Iran
| | - Mohammad Javad Shamsoddini
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan, 45137-66731, Iran
| | - Fakhrossadat Mohammadi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan, 45137-66731, Iran.
| | - Leila Hassani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), 444 Prof. Sobouti Blvd., Gava Zang, Zanjan, 45137-66731, Iran
| |
Collapse
|
10
|
Chen Y, Zhan C, Li X, Pan T, Yao Y, Tan Y, Wei G. Five similar anthocyanidin molecules display distinct disruptive effects and mechanisms of action on Aβ 1-42 protofibril: A molecular dynamic simulation study. Int J Biol Macromol 2024; 256:128467. [PMID: 38035959 DOI: 10.1016/j.ijbiomac.2023.128467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Alzheimer's disease (AD) is associated with the deposition of amyloid-β (Aβ) fibrillary aggregates. Disaggregation of Aβ fibrils is considered as one of the promising AD treatments. Recent experimental studies showed that anthocyanidins, one type of flavonoids abundant in fruits/vegetables, can disaggregate Aβ fibrillary aggregates. However, their relative disruptive capacities and underlying mechanisms are largely unknown. Herein, we investigated the detailed interactions between five most common anthocyanidins (cyanidin, aurantinidin, peonidin, delphinidin, and pelargonidin) and Aβ protofibril (an intermediate of Aβ fibrillization) by performing microsecond molecular dynamic simulations. We found that all five anthocyanidins can destroy F4-L34-V36 hydrophobic core and K28-A42 salt bridge, leading to Aβ protofibril destabilization. Aurantinidin exhibits the strongest damage to Aβ protofibril (with the most severe disruption on K28-A42 salt bridges), followed by cyanidin (with the most destructive effect on F4-L34-V36 core). Detailed analyses reveal that the protofibril-destruction capacities of anthocyanidins are subtly modulated by the interplay of anthocyanidin-protofibril hydrogen bonding, hydrophobic, aromatic stacking interactions, which are dictated by the number or location of hydroxyl/methyl groups of anthocyanidins. These findings provide important mechanistic insights into Aβ protofibril disaggregation by anthocyanidins, and suggest that aurantinidin/cyanidin may serve as promising starting-points for the development of new drug candidates against AD.
Collapse
Affiliation(s)
- Yujie Chen
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chendi Zhan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tong Pan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yifei Yao
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yuan Tan
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
11
|
Nie RZ, Zhang SS, Yan XK, Feng K, Lao YJ, Bao YR. Molecular insights into the structure destabilization effects of ECG and EC on the Aβ protofilament: An all-atom molecular dynamics simulation study. Int J Biol Macromol 2023; 253:127002. [PMID: 37729983 DOI: 10.1016/j.ijbiomac.2023.127002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The formation of Aβ into amyloid fibrils was closely connected to AD, therefore, the Aβ aggregates were the primary therapeutic targets against AD. Previous studies demonstrated that epicatechin-3-gallate (ECG), which possessed a gallate moiety, exhibited a greater ability to disrupt the preformed Aβ amyloid fibrils than epicatechin (EC), indicating that the gallate moiety was crucial. In the present study, the molecular mechanisms were investigated. Our results demonstrated that ECG had more potent disruptive impacts on the β-sheet structure and K28-A42 salt bridges than EC. We found that ECG significantly interfered the interactions between Peptide-4 and Peptide-5. However, EC could not. The disruption of K28-A42 salt bridges by ECG was mainly due to the interactions between ECG and the hydrophobic residues located at C-terminus. Interestingly, EC disrupted the K28-A42 salt bridges by the interactions with C-terminal hydrophobic residues and the cation-π interactions with K28. Moreover, our results indicated that hydrophobic interactions, H-bonds, π-π interactions and cation-π interactions between ECG and the bend of L-shaped region caused the disaggregation of interactions between Peptide-4 and Peptide-5. Significantly, gallate moiety in ECG had contributed tremendously to the disaggregation. We believed that our findings could be useful for designing prospective drug candidates targeting AD.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shan-Shuo Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xiao-Ke Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yan-Jing Lao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ya-Ru Bao
- Science and Technology Division, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| |
Collapse
|
12
|
Jerom JP, Madhukumar S, Nair RH, Narayanan SP. Anti-amyloid potential of some phytochemicals against Aβ-peptide and α-synuclein, tau, prion, and Huntingtin protein. Drug Discov Today 2023; 28:103802. [PMID: 37858630 DOI: 10.1016/j.drudis.2023.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Some molecules self-assemble to create complex structures through molecular self-assembly. Hydrogel preparation, tissue repair, and therapeutic drug delivery are a few applications of molecular self-assembly. However, the self-assembly of amino acids, peptides, and proteins forms amyloid fibrils, resulting in various disorders, most notably neurodegenerative ailments. Examples include the self-assembly of phenylalanine, which causes phenylketonuria; Aβ, which causes Alzheimer's disease; the tau protein, which causes both Alzheimer's and Parkinson's diseases; and α-synuclein, which causes Parkinson's illness. This review provides information related to phytochemicals of great significance that can prevent the formation of, or destabilize, amino acid, peptide, and protein self-assemblies.
Collapse
Affiliation(s)
| | - Sooryalekshmi Madhukumar
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Sunilkumar Puthenpurackal Narayanan
- NMR Facility, Institute for Integrated Programmes and Research in Basic Sciences. Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| |
Collapse
|
13
|
Han YL, Yin HH, Xiao C, Bernards MT, He Y, Guan YX. Understanding the Molecular Mechanisms of Polyphenol Inhibition of Amyloid β Aggregation. ACS Chem Neurosci 2023; 14:4051-4061. [PMID: 37890131 DOI: 10.1021/acschemneuro.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is highly associated with self-aggregation of amyloid β (Aβ) proteins into fibrils. Inhibition of Aβ aggregation by polyphenols is one of the major therapeutic strategies for AD. Among them, four polyphenols (brazilin, resveratrol, hematoxylin, and rosmarinic acid) have been reported to be effective at inhibiting Aβ aggregation, but the inhibition mechanisms are still unclear. In this work, these four polyphenols were selected to explore their interactions with the Aβ17-42 pentamer by molecular dynamics simulation. All four polyphenols can bind to the pentamer tightly but prefer different binding sites. Conversion of the β-sheet to the random coil, fewer interchain hydrogen bonds, and weaker salt bridges were observed after binding. Interestingly, different Aβ17-42 pentamer destabilizing mechanisms for resveratrol and hematoxylin were found. Resveratrol inserts into the hydrophobic core of the pentamer by forming hydrogen bonds with Asp23 and Lys28, while hematoxylin prefers to bind beside chain A of the pentamer, which leads to β-sheet offset and dissociation of the β1 sheet of chain E. This work reveals the interactions between the Aβ17-42 pentamer and four polyphenols and discusses the relationship between inhibitor structures and their inhibition mechanisms, which also provides useful guidance for screening effective Aβ aggregation inhibitors and drug design against AD.
Collapse
Affiliation(s)
- Yin-Lei Han
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Huan-Huan Yin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Chao Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Matthew T Bernards
- Department of Chemical and Biological Engineering, University of Idaho, Moscow 83844, Idaho, United States
| | - Yi He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Chemical Engineering, University of Washington, Seattle 98195, Washington, United States
| | - Yi-Xin Guan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Saini R, Navale GR, Singh S, Singh HK, Chauhan R, Agrawal S, Sarkar D, Sarma M, Ghosh K. Inhibition of amyloid β 1-42 peptide aggregation by newly designed cyclometallated palladium complexes. Int J Biol Macromol 2023; 248:125847. [PMID: 37460075 DOI: 10.1016/j.ijbiomac.2023.125847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/16/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Uncontrolled amyloid aggregation is a frequent cause of neurodegenerative disorders such as prions and Alzheimer's disease (AD). As a result, many drug development approaches focus on evaluating novel molecules that can alter self-recognition pathways. Herein, we designed and synthesized the cyclometallated pyrene (Pd-1 and Pd-3) and anthracene (Pd-2) based palladium complexes ([Pd((L1)Cl] Pd-1, [Pd(L2)Cl](Pd-2), and [Pd(L3)Cl] (Pd-3)). This study explores the effect of these complexes on the aggregation, fibrillation, and amyloid formation of bovine serum albumin (BSA) and Aβ1-42 peptide. Several spectroscopic methods were used to characterize all the Pd-complexes, and the molecular structure of Pd-3 was determined by X-ray crystallography. The secondary structures were studied using circular dichroism (CD) and transmission electron microscopy (TEM), while amyloid aggregation and inhibitory activities were investigated using the Thioflavin-T (ThT) fluorescence assay. Molecular docking of the Pd-complex (Pd-3) was done using fibril (PDB: 2BEG) and monomeric (PDB: 1IYT) peptides using Auto-dock Vina. As a result, the hydrogen bonding and hydrophobic interaction between the aromatic rings of the Pd-complexes and the amino acids of amyloid-β peptides significantly reduced the production of ordered β-sheets of amyloid fibrils and protein aggregation in the presence of Pd-2 and Pd-3 complexes.
Collapse
Affiliation(s)
- Rahul Saini
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Rahul Chauhan
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
15
|
Gupta S, Dasmahapatra AK. Lycopene destabilizes preformed Aβ fibrils: Mechanistic insights from all-atom molecular dynamics simulation. Comput Biol Chem 2023; 105:107903. [PMID: 37320982 DOI: 10.1016/j.compbiolchem.2023.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The therapeutic strategy employing destabilization of the preformed Aβ fibril by various natural compounds, as studied by experimental and computational methods, has been reported significant in curing Alzheimer's disease (AD). However, lycopene (a carotenoid), from terpenes family, needs investigation for its destabilization potential of Aβ fibril. The highest antioxidant potential and ability to cross blood brain barrier makes lycopene a preferred choice as drug lead for treating AD. The current study focuses on investigating the destabilization potential and underpinning mechanism of lycopene on different polymorphic forms of Aβ fibril via Molecular Dynamics (MD) simulation. The key findings highlight binding of lycopene to the outer surface of the chain F of the fibril (2NAO). Herein G9, K16 and V18 residues were found to be involved in van der Waals with the methyl groups of the lycopene. Additionally, Y10 and F20 residues were observed to interact via π-π interactions with CC bonds of the lycopene. The surface mediated binding of lycopene to the fibril is attributed to the large size and structural rigidity of lycopene along with the bulky size of 2NAO and narrow space of fibrillar cavity. The destabilization of the fibril is evident by breakage of inherent H-bonds and hydrophobic interactions in the presence of one lycopene molecule. The lesser β-sheet content explains disorganization of the fibril and bars the higher order aggregation curbing neurotoxicity of the fibril. The higher concentration of the lycopene is not found to be linearly correlated with the extent of destabilization of the fibril. Lycopene is also observed to destabilize the other polymorphic form of Aβ fibril (2BEG), by accessing the fibrillar cavity and lowering the β-sheet content. The destabilization observed by lycopene on two major polymorphs of Aβ fibril explains its potency towards developing an effective therapeutic approach in treating AD.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
16
|
De Gaetano F, Celesti C, Paladini G, Venuti V, Cristiano MC, Paolino D, Iannazzo D, Strano V, Gueli AM, Tommasini S, Ventura CA, Stancanelli R. Solid Lipid Nanoparticles Containing Morin: Preparation, Characterization, and Ex Vivo Permeation Studies. Pharmaceutics 2023; 15:1605. [PMID: 37376054 DOI: 10.3390/pharmaceutics15061605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, bioactive compounds have been the focus of much interest in scientific research, due to their low toxicity and extraordinary properties. However, they possess poor solubility, low chemical stability, and unsustainable bioavailability. New drug delivery systems, and among them solid lipid nanoparticles (SLNs), could minimize these drawbacks. In this work, morin (MRN)-loaded SLNs (MRN-SLNs) were prepared using a solvent emulsification/diffusion method, using two different lipids, Compritol® 888 ATO (COM) or Phospholipon® 80H (PHO). SLNs were investigated for their physical-chemical, morphological, and technological (encapsulation parameters and in vitro release) properties. We obtained spherical and non-aggregated nanoparticles with hydrodynamic radii ranging from 60 to 70 nm and negative zeta potentials (about -30 mV and -22 mV for MRN-SLNs-COM and MRN-SLNs-PHO, respectively). The interaction of MRN with the lipids was demonstrated via μ-Raman spectroscopy, X-ray diffraction, and DSC analysis. High encapsulation efficiency was obtained for all formulations (about 99%, w/w), particularly for the SLNs prepared starting from a 10% (w/w) theoretical MRN amount. In vitro release studies showed that about 60% of MRN was released within 24 h and there was a subsequent sustained release within 10 days. Finally, ex vivo permeation studies with excised bovine nasal mucosa demonstrated the ability of SLNs to act as a penetration enhancer for MRN due to the intimate contact and interaction of the carrier with the mucosa.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Giuseppe Paladini
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, V.le Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100 Catanzaro, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Vincenza Strano
- National Council of Research, Institute of Microelectronics and Microsystems (CNR-IMM), University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Anna M Gueli
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Silvana Tommasini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosanna Stancanelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
17
|
Mohammed AA, Barale SS, Kamble SA, Paymal SB, Sonawane KD. Molecular insights into the inhibition of early stage of Aβ peptide aggregation and destabilization of Alzheimer's Aβ protofibril by dipeptide D-Trp-Aib: A molecular modelling approach. Int J Biol Macromol 2023; 242:124880. [PMID: 37217059 DOI: 10.1016/j.ijbiomac.2023.124880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Amyloid beta (Aβ) peptide aggregates rapidly into the soluble oligomers, protofibrils and fibrils to form senile plaques, a neurotoxic component and pathological hallmark of Alzheimer's disease (AD). Experimentally, it has been demonstrated the inhibition of an early stages of Aβ aggregation by a dipeptide D-Trp-Aib inhibitor, but its molecular mechanism is still unclear. Hence, in the present study, we used molecular docking and molecular dynamics (MD) simulations to explore the molecular mechanism of inhibition of an early oligomerization and destabilization of preformed Aβ protofibril by D-Trp-Aib. Molecular docking study showed that the D-Trp-Aib binds at the aromatic (Phe19, Phe20) region of Aβ monomer, Aβ fibril and hydrophobic core of Aβ protofibril. MD simulations revealed the binding of D-Trp-Aib at the aggregation prone region (Lys16-Glu22) resulted in the stabilization of Aβ monomer by π-π stacking interactions between Tyr10 and indol ring of D-Trp-Aib, which decreases the β-sheet content and increases the α-helices. The interaction between Lys28 of Aβ monomer to D-Trp-Aib could be responsible to block the initial nucleation and may impede the fibril growth and elongation. The loss of hydrophobic contacts between two β-sheets of Aβ protofibril upon binding of D-Trp-Aib at the hydrophobic cavity resulted in the partial opening of β-sheets. This also disrupts a salt bridge (Asp23-Lys28) leading to the destabilization of Aβ protofibril. Binding energy calculations revealed that van der Waals and electrostatic interactions maximally favours the binding of D-Trp-Aib to Aβ monomer and Aβ protofibril respectively. The residues Tyr10, Phe19, Phe20, Ala21, Glu22, Lys28 of Aβ monomer, whereas Leu17, Val18, Phe19, Val40, Ala42 of protofibril contributing for the interactions with D-Trp-Aib. Thus, the present study provides structural insights into the inhibition of an early oligomerization of Aβ peptides and destabilization of Aβ protofibril, which could be useful to design novel inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Ali Abdulmawjood Mohammed
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, Maharashtra, (M.S.), India
| | - Sagar S Barale
- Department of Microbiology, Shivaji University, Kolhapur 416004, Maharashtra (MS), India
| | - Subodh Ashok Kamble
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, Maharashtra, (M.S.), India
| | - Sneha B Paymal
- Department of Microbiology, Shivaji University, Kolhapur 416004, Maharashtra (MS), India
| | - Kailas D Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur 416004, Maharashtra, (M.S.), India; Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra (M.S.), India.
| |
Collapse
|
18
|
Zhou Y, Yao Y, Yang Z, Tang Y, Wei G. Naphthoquinone-dopamine hybrids disrupt α-synuclein fibrils by their intramolecular synergistic interactions with fibrils and display a better effect on fibril disruption. Phys Chem Chem Phys 2023; 25:14471-14483. [PMID: 37190853 DOI: 10.1039/d3cp00340j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
α-Synuclein (αSyn) is an intrinsically disordered protein and its abnormal aggregation into amyloid fibrils is the main hallmark of Parkinson's disease (PD). The disruption of preformed αSyn fibrils using small molecules is considered as a potential strategy for PD treatment. Recent experiments have reported that naphthoquinone-dopamine hybrids (NQDA), synthesized by naphthoquinone (NQ) and dopamine (DA) molecules, can significantly disrupt αSyn fibrils and cross the blood-brain barrier. To unravel the fibril-disruptive mechanisms at the atomic level, we performed microsecond molecular dynamics simulations of αSyn fibrils in the absence and presence of NQDA, NQ, DA, or NQ+DA molecules. Our simulations showed that NQDA reduces the β-sheet content, disrupts K45-E57 and E46-K80 salt-bridges, weakens the inter-protofibril interaction, and thus destabilizes the αSyn fibril structure. NQDA has the ability to form cation-π and H-bonding interactions with K45/K80, and form π-π stacking interactions with Y39/F94. Those interactions between NQDA and αSyn fibrils play a crucial role in disaggregating αSyn fibrils. Moreover, we found that NQDA has a better fibril destabilization effect than that of NQ, DA, and NQ+DA molecules. This is attributed to the synergistic fibril-binding effect between NQ and DA groups in NQDA molecules. The DA group can form strong π-π stacking interactions with aromatic residues Y39/F94 of the αSyn fibril, while the DA molecule cannot. In addition, NQDA can form stronger cation-π interactions with residues K45/K80 than those of both NQ and DA molecules. Our results provide the molecular mechanism underlying the disaggregation of the αSyn fibril by NQDA and its better performance in fibril disruption than NQ, DA, and NQ+DA molecules, which offers new clues for the screening and development of promising drug candidates to treat PD.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Zhongyuan Yang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
19
|
Gupta S, Dasmahapatra AK. Enhanced stability of a disaggregated Aβ fibril on removal of ligand inhibits refibrillation: An all atom Molecular Dynamics simulation study. Int J Biol Macromol 2023; 240:124481. [PMID: 37076062 DOI: 10.1016/j.ijbiomac.2023.124481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The extraneuronally deposited senile plaques, composed of neurotoxic aggregates of Aβ fibril, define Alzheimer's disease (AD). Natural compounds have been tested for their destabilization potential on Aβ fibril, thereby curing AD. However, the resultant destabilized Aβ fibril, needs to be checked for its irreversibility to the native organized state after removal of the ligand. Herein, we assessed the stability of a destabilized fibril after the ligand (ellagic acid represented as REF) is removed from the complex. The study has been conducted via Molecular Dynamics (MD) simulation of 1 μs for both Aβ-Water (control) and Aβ-REF″ (test or REF removed) system. The increased value of RMSD, Rg, SASA, lower β-sheet content and reduced number of H-bonds explains enhanced destabilization observed in Aβ-REF″ system. The increased inter-chain distance demonstrates breaking of the residual contacts, testifying the drift of terminal chains from the pentamer. The increased SASA along with the ∆Gps(polar solvation energy) accounts for the reduced interaction amongst residues, and more with solvent molecules, governing irreversibility to native state. The higher Gibb's free energy of the misaligned structure of Aβ-REF″ ensures irreversibility to the organized structure due to its inability to cross such high energy barrier. The observed stability of the disaggregated structure, despite ligand elimination, establishes the effectiveness of the destabilization technique as a promising therapeutic approach towards treating AD.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
20
|
Gupta S, Dasmahapatra AK. Destabilization of Aβ fibrils by omega-3 polyunsaturated fatty acids: a molecular dynamics study. J Biomol Struct Dyn 2023; 41:581-598. [PMID: 34856889 DOI: 10.1080/07391102.2021.2009915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The senile plaques of neurotoxic aggregates of Aβ protein, deposited extraneuronally, mark the pathological hallmark of Alzheimer's disease (AD). The natural compounds such as omega-3 (ω-3) polyunsaturated fatty acids (PUFAs), which can access blood-brain barrier, are believed to be potential disruptors of preformed Aβ fibrils to cure AD with unknown mechanism. Herein, we present the destabilization potential of three ω-3 PUFAs, viz. Eicosapentaenoic acid (EPA), Docosahexaenoic acid (HXA), and α-linolenic acid (LNL) by molecular dynamics simulation. After an initial testing of 300 ns, EPA and HXA have been considered further for extended production run time, 500 ns. The increased value of root mean square deviation (RMSD), radius of gyration, and solvent-accessible surface area (SASA), the reduced number of H-bonds and β-sheet content, and disruption of salt bridges and hydrophobic contacts establish the binding of these ligands to Aβ fibril leading to destabilization. The polar head was found to interact with positively charged lysine (K28) residue in the fibril. However, the hydrophobicity of the long aliphatic tail competes with the intrinsic hydrophobic interactions of Aβ fibril. This amphiphilic nature of EPA and HXA led to the breaking of inherent hydrophobic contacts and formation of new bonds between the tail of PUFA and hydrophobic residues of Aβ fibril, leading to the destabilization of fibril. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) results explain the binding of EPA and HXA to Aβ fibril by interacting with different residues. The destabilization potential of EPA and HXA establishes them as promising drug leads to cure AD, and encourages prospecting of other fatty acids for therapeutic intervention in AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
21
|
Kalhor S, Fattahi A. Design of amino acid- and carbohydrate-based anticancer drugs to inhibit polymerase η. Sci Rep 2022; 12:18461. [PMID: 36323739 PMCID: PMC9630280 DOI: 10.1038/s41598-022-22810-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase η (polη) is of significant value for designing new families of anticancer drugs. This protein takes a role in many stages of the cell cycle, including DNA replication, translesion DNA synthesis, and the repairing process of DNA. According to many studies, a high level of expression of polη in most cases has been associated with low rates of patients' survival, regardless of considering the stage of tumor cells. Thus, the design of new drugs with fewer side effects to inhibit polη in cancerous cells has attracted attention in recent years. This project aims to design and explore the alternative inhibitors for polη, which are based on carbohydrates and amino acids. In terms of physicochemical properties, they are similar to the traditional anticancer drugs such as Cytarabine (cytosine arabinose). These alternative inhibitors are supposed to disrupt the DNA replication process in cancerous cells and prevent the tumor cells from mitosis. These newly designed structures, which are based on natural products, are expected to be non-toxic and to have the same chemotherapeutic impact as the traditional agents. The combinatorial use of quantum mechanics studies and molecular dynamic simulation has enabled us to precisely predict the inhibition mechanism of the newly designed structure, which is based on carbohydrates and amino acids, and compare it with that of the traditional chemotherapeutic drugs such as Cytarabine. Our results suggest that the inhibitors containing the natural building blocks of amino acid and carbohydrate could be considered alternative drugs for Cytarabine to block polη.
Collapse
Affiliation(s)
- Sepideh Kalhor
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Alireza Fattahi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
22
|
Fang M, Zhang Q, Guan P, Su K, Wang X, Hu X. Insights into Molecular Mechanisms of EGCG and Apigenin on Disrupting Amyloid-Beta Protofibrils Based on Molecular Dynamics Simulations. J Phys Chem B 2022; 126:8155-8165. [PMID: 36219848 DOI: 10.1021/acs.jpcb.2c04230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The fibrillization and deposition of amyloid-beta (Aβ) protofibrils are one of the important factors leading to Alzheimer's disease. Molecular dynamics simulations can offer information on intermolecular interaction mechanisms between Aβ protofibrils and Aβ fibrillization inhibitors. Here, in this work, we explore the early molecular mechanisms of (-)-epigallocatechin-3-gallate (EGCG) and apigenin on disrupting Aβ42 protofibrils based on molecular simulations. The binding modes of EGCG and apigenin with the Aβ42 protofibril are obtained. Furthermore, we compare the behavioral mechanisms of EGCG and apigenin on disturbing the Aβ42 protofibril. Both EGCG and apigenin are able to decrease the proportion of the β-sheet and bend structures of the Aβ42 protofibril while inducing random coil structures. The results of hydrogen bonds and D23-K28 salt bridges illustrate that EGCG and apigenin have the ability of destabilizing the Aβ42 protofibril. Meanwhile, the van der Waals interactions between the EGCG and Aβ42 protofibril are shown to be larger than that of apigenin with the Aβ42 protofibril, but the electrostatic interactions between apigenin and the Aβ42 protofibril are dominant in the binding affinity. Our findings may help in designing effective drug candidates for disordering the Aβ protofibril and impeding Aβ fibrillization.
Collapse
Affiliation(s)
- Mei Fang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Quan Zhang
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kehe Su
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
23
|
Li F, Chen Y, Liu X, Tang Y, Dong X, Wei G. Atomistic Insights into A315E Mutation-Enhanced Pathogenicity of TDP-43 Core Fibrils. ACS Chem Neurosci 2022; 13:2743-2754. [PMID: 36053560 DOI: 10.1021/acschemneuro.2c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) into fibrillary deposits is implicated in amyotrophic lateral sclerosis (ALS), and some hereditary mutations localized in the low complexity domain (LCD) facilitate the formation of pathogenic TDP-43 fibrils. A recent cryo-EM study reported the atomic-level structures of the A315E TDP-43 LCD (residues 288-319, TDP-43288-319) core fibril in which the protofilaments have R-shaped structures and hypothesized that A315E U-shaped protofilaments can readily convert to R-shaped protofilaments compared to the wild-type (WT) ones. There are no atomic structures of WT protofilaments available yet. Herein, we performed extensive all-atom explicit-solvent molecular dynamics simulations on A315E and WT protofilaments starting from both the cryo-EM-determined R-shaped and our constructed U-shaped structures. Our simulations show that WT protofilaments also adopt the R-shaped structures but are less stable than their A315E counterparts. Except for R293-E315 salt bridges, N312-F316 hydrophobic interactions and F316-F316 π-π stacking interactions are also crucial for the stabilization of the neck region of the R-shaped A315E protofilaments. The loss of R293-E315 salt bridges and the weakened interactions of N312-F316 and F316-F316 result in the reduced stability of the R-shaped WT protofilaments. Simulations starting from U-shaped folds reveal that A315E protofilaments can spontaneously convert to the cryo-EM-derived R-shaped protofilaments, whereas WT protofilaments convert to R-shape-like structures with remodeled neck regions. The R-shape-like WT protofilaments could act as intermediate states slowing down the U-to-R transition. This study reveals that A315E mutation can not only enhance the structural stability of the R-shaped TDP-43288-319 protofilaments but also promote the U-to-R transition, which provides atomistic insights into the A315E mutation-enhanced TDP-43 pathogenicity in ALS.
Collapse
Affiliation(s)
- Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, China
| |
Collapse
|
24
|
Li J, Sun M, Cui X, Li C. Protective Effects of Flavonoids against Alzheimer's Disease: Pathological Hypothesis, Potential Targets, and Structure-Activity Relationship. Int J Mol Sci 2022; 23:ijms231710020. [PMID: 36077418 PMCID: PMC9456554 DOI: 10.3390/ijms231710020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with high morbidity and mortality, for which there is no available cure. Currently, it is generally believed that AD is a disease caused by multiple factors, such as amyloid-beta accumulation, tau protein hyperphosphorylation, oxidative stress, and inflammation. Multitarget prevention and treatment strategies for AD are recommended. Interestingly, naturally occurring dietary flavonoids, a class of polyphenols, have been reported to have multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this review, we summarize and discuss the existing multiple pathogenic factors of AD. Moreover, we further elaborate on the biological activities of natural flavonoids and their potential mode of action and targets in managing AD by presenting a wide range of experimental evidence. The gathered data indicate that flavonoids can be regarded as prophylactics to slow the advancement of AD or avert its onset. Different flavonoids have different activities and varying levels of activity. Further, this review summarizes the structure–activity relationship of flavonoids based on the existing literature and can provide guidance on the design and selection of flavonoids as anti-AD drugs.
Collapse
Affiliation(s)
- Jiao Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.L.); (C.L.); Tel.: +86-351-701-9371 (J.L.); Fax: +86-351-701-1499 (J.L. & C.L.)
| | - Min Sun
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiaodong Cui
- Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Chen Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Correspondence: (J.L.); (C.L.); Tel.: +86-351-701-9371 (J.L.); Fax: +86-351-701-1499 (J.L. & C.L.)
| |
Collapse
|
25
|
Nie RZ, Cai S, Yu B, Fan WY, Li HH, Tang SW, Huo YQ. Molecular insights into the very early steps of Aβ1-42 pentameric protofibril disassembly by PGG: A molecular dynamics simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Yao Y, Tang Y, Zhou Y, Yang Z, Wei G. Baicalein exhibits differential effects and mechanisms towards disruption of α-synuclein fibrils with different polymorphs. Int J Biol Macromol 2022; 220:316-325. [PMID: 35981677 DOI: 10.1016/j.ijbiomac.2022.08.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative diseases with no cure yet and its major hallmark is α-synuclein fibrillary aggregates. The crucial role of α-synuclein aggregation in PD makes it an attractive target for potential disease-modifying therapies. Disaggregation of α-synuclein fibrils is considered as one of the promising therapeutic strategies to treat PD. The wild type (WT) and mutant α-synuclein fibrils exhibit different polymorphs and provide therapeutic targets for PD. Recent experiments reported that a flavonoid baicalein can disrupt WT α-synuclein fibrils. However, the underlying disruptive mechanism remains largely elusive, and whether BAC is capable of disrupting mutant α-synuclein fibrils is also unknown. Herein, we performed microsecond molecular dynamics simulations on cryo-EM-determined WT and two familial PD-associated mutant (E46K and H50Q) α-synuclein fibrils with and without baicalein. We find that baicalein destructs WT fibril by disrupting E46-K80 salt-bridge and β-sheets, and by remodeling the inter-protofilament interface. And baicalein can also damage E46K and H50Q mutant fibrils, but to different extents and via different mechanisms. The E46K fibril disruption is initiated from E61-K80 salt-bridge and N-terminal β-sheet, while the H50Q fibril disruption starts from the inter-protofilament interface and N-terminal β-sheet. These results reveal that disruptive effects and modes of baicalein on α-synuclein fibrils are polymorphism-dependent. This study suggests that baicalein may be a potential drug candidate to disrupt both WT and E46K/H50Q mutant α-synuclein fibrils and alleviate the pathological process of PD.
Collapse
Affiliation(s)
- Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yun Zhou
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Zhongyuan Yang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
27
|
Srinivasan E, Chandrasekhar G, Rajasekaran R. Probing the polyphenolic flavonoid, morin as a highly efficacious inhibitor against amyloid(A4V) mutant SOD1 in fatal amyotrophic lateral sclerosis. Arch Biochem Biophys 2022; 727:109318. [PMID: 35690129 DOI: 10.1016/j.abb.2022.109318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
Deposition of misfolded protein aggregates in key areas of human brain is the quintessential trait of various pertinent neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). Genetic point mutations in Cu/Zn superoxide dismutase (SOD1) are found to be the most important contributing factor behind familial ALS. Especially, single nucleotide polymorphism (SNP) A4V is the most nocuous since it substantially decreases life expectancy of patients. Besides, the use of naturally occurring polyphenolic flavonoids is profoundly being advocated for palliating amyloidogenic behavior of proteopathic proteins. In the present analysis, through proficient computational tools, we have attempted to ascertain a pharmacodynamically promising flavonoid compound that effectively curbs the pathogenic behavior of A4V SOD1 mutant. Initial screening of flavonoids that exhibit potency against amyloids identified morin, myricetin and epigallocatechin gallate as promising leads. Further, with the help of feasible and yet adept protein-ligand interaction studies and stalwart molecular simulation analyses, we were able to observe that aforementioned flavonoids were able to considerably divert mutant A4V SOD1 from its distinct pathogenic behavior. Among which, morin showed the most curative potential against A4V SOD1. Therefore, morin holds a great therapeutic potential in contriving highly efficacious inhibitors in mitigating fatal and insuperable ALS.
Collapse
Affiliation(s)
- E Srinivasan
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, 632014, India; Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - G Chandrasekhar
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, 632014, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
28
|
King KM, Bevan DR, Brown AM. Molecular Dynamics Simulations Indicate Aromaticity as a Key Factor in the Inhibition of IAPP (20-29) Aggregation. ACS Chem Neurosci 2022; 13:1615-1626. [PMID: 35587203 DOI: 10.1021/acschemneuro.2c00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Islet amyloid polypeptide (IAPP) is a 37-residue amyloidogenic hormone implicated in the progression of Type II Diabetes (T2D). T2D affects an estimated 422 million people yearly and is a comorbidity with numerous diseases. IAPP forms toxic oligomers and amyloid fibrils that reduce pancreatic β-cell mass and exacerbate the T2D disease state. Toxic oligomer formation is attributed, in part, to the formation of interpeptide β-strands comprised of residues 20-29 (IAPP(20-29)). Flavonoids, a class of polyphenolic natural products, have been found experimentally to inhibit IAPP aggregate formation. Many of these small flavonoids differ structurally only slightly; the influence of functional group placement on inhibiting the aggregation of the IAPP(20-29) has yet to be explored. To probe the role of small-molecule structural features that impede IAPP aggregation, molecular dynamics simulations were performed to observe trimer formation on a model fragment of IAPP(20-29) in the presence of morin, quercetin, dihydroquercetin, epicatechin, and myricetin. Contacts between Phe23 residues were critical to oligomer formation, and small-molecule contacts with Phe23 were a key predictor of β-strand reduction. Structural properties influencing the ability of compounds to disrupt Phe23-Phe23 contacts included aromaticity and carbonyl and hydroxyl group placement. This work provides key information on design considerations for T2D therapeutics that target IAPP aggregation.
Collapse
Affiliation(s)
- Kelsie M King
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David R Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Research and Informatics, University Libraries, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
29
|
Khan MS, Althobaiti MS, Almutairi GS, Alokail MS, Altwaijry N, Alenad AM, Al-Bagmi MS, Alafaleq NO. Elucidating the binding and inhibitory potential of p-Coumaric acid against amyloid fibrillation and their cytotoxicity: Biophysical and docking analysis. Biophys Chem 2022; 291:106823. [DOI: 10.1016/j.bpc.2022.106823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022]
|
30
|
Cytotoxic Aβ Protofilaments Are Generated in the Process of Aβ Fibril Disaggregation. Int J Mol Sci 2021; 22:ijms222312780. [PMID: 34884584 PMCID: PMC8657853 DOI: 10.3390/ijms222312780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Significant research on Alzheimer's disease (AD) has demonstrated that amyloid β (Aβ) oligomers are toxic molecules against neural cells. Thus, determining the generation mechanism of toxic Aβ oligomers is crucial for understanding AD pathogenesis. Aβ fibrils were reported to be disaggregated by treatment with small compounds, such as epigallocatechin gallate (EGCG) and dopamine (DA), and a loss of fibril shape and decrease in cytotoxicity were observed. However, the characteristics of intermediate products during the fibril disaggregation process are poorly understood. In this study, we found that cytotoxic Aβ aggregates are generated during a moderate disaggregation process of Aβ fibrils. A cytotoxicity assay revealed that Aβ fibrils incubated with a low concentration of EGCG and DA showed higher cytotoxicity than Aβ fibrils alone. Atomic force microscopy imaging and circular dichroism spectrometry showed that short and narrow protofilaments, which were highly stable in the β-sheet structure, were abundant in these moderately disaggregated samples. These results indicate that toxic Aβ protofilaments are generated during disaggregation from amyloid fibrils, suggesting that disaggregation of Aβ fibrils by small compounds may be one of the possible mechanisms for the generation of toxic Aβ aggregates in the brain.
Collapse
|
31
|
Chen Y, Li X, Zhan C, Lao Z, Li F, Dong X, Wei G. A Comprehensive Insight into the Mechanisms of Dopamine in Disrupting Aβ Protofibrils and Inhibiting Aβ Aggregation. ACS Chem Neurosci 2021; 12:4007-4019. [PMID: 34472835 DOI: 10.1021/acschemneuro.1c00306] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fibrillary aggregates of amyloid-β (Aβ) are the pathological hallmark of Alzheimer's disease (AD). Clearing Aβ deposition or inhibiting Aβ aggregation is a promising approach to treat AD. Experimental studies reported that dopamine (DA), an important neurotransmitter, can inhibit Aβ aggregation and disrupt Aβ fibrils in a dose-dependent manner. However, the underlying molecular mechanisms still remain mostly elusive. Herein, we investigated the effect of DA on Aβ42 protofibrils at three different DA-to-Aβ molar ratios (1:1, 2:1, and 10:1) using all-atom molecular dynamics simulations. Our simulations demonstrate that protonated DA at a DA-to-Aβ ratio of 2:1 exhibits stronger Aβ protofibril disruptive capacity than that at a molar-ratio of 1:1 by mostly disrupting the F4-L34-V36 hydrophobic core. When the ratio of DA-to-Aβ increases to 10:1, DA has a high probability to bind to the outer surface of protofibril and has negligible effect on the protofibril structure. Interestingly, at the same DA-to-Aβ ratio (10:1), a mixture of protonated (DA+) and deprotonated (DA0) DA molecules significantly disrupts Aβ protofibrils by the binding of DA0 to the F4-L34-V36 hydrophobic core. Replica-exchange molecular dynamics simulations of Aβ42 dimer show that DA+ inhibits the formation of β-sheets, K28-A42/K28-D23 salt-bridges, and interpeptide hydrophobic interactions and results in disordered coil-rich Aβ dimers, which would inhibit the subsequent fibrillization of Aβ. Further analyses reveal that DA disrupts Aβ protofibril and prevents Aβ dimerization mostly through π-π stacking interactions with residues F4, H6, and H13, hydrogen bonding interactions with negatively charged residues D7, E11, E22 and D23, and cation-π interactions with residues R5. This study provides a complete picture of the molecular mechanisms of DA in disrupting Aβ protofibril and inhibiting Aβ aggregation, which could be helpful for the design of potent drug candidates for the treatment/intervention of AD.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People’s Republic of China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Chendi Zhan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People’s Republic of China
| | - Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People’s Republic of China
| | - Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People’s Republic of China
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People’s Republic of China
| |
Collapse
|
32
|
Pachetti M, D'Amico F, Pascolo L, Pucciarelli S, Gessini A, Parisse P, Vaccari L, Masciovecchio C. UV Resonance Raman explores protein structural modification upon fibrillation and ligand interaction. Biophys J 2021; 120:4575-4589. [PMID: 34474016 PMCID: PMC8553600 DOI: 10.1016/j.bpj.2021.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022] Open
Abstract
Amyloids are proteinaceous deposits considered an underlying pathological hallmark of several degenerative diseases. The mechanism of amyloid formation and its inhibition still represent challenging issues, especially when protein structure cannot be investigated by classical biophysical techniques as for the intrinsically disordered proteins (IDPs). In this view, the need to find an alternative way for providing molecular and structural information regarding IDPs prompted us to set a novel, to our knowledge, approach focused on UV Resonance Raman (UVRR) spectroscopy. To test its applicability, we study the fibrillation of hen-egg white lysozyme (HEWL) and insulin as well as their interaction with resveratrol, employing also intrinsic fluorescence spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The increasing of the β-sheet structure content at the end of protein fibrillation probed by FTIR occurs simultaneously with a major solvent exposure of tryptophan (Trp) and tyrosine (Tyr) residues of HEWL and insulin, respectively, as revealed by UVRR and intrinsic fluorescence spectroscopy. However, because the latter technique is successfully used when proteins naturally contain Trp residues, it shows poor performances in the case of insulin, and the information regarding its tertiary structure is exclusively provided by UVRR spectroscopy. The presence of an increased concentration of resveratrol induces mild changes in the secondary structure of both protein fibrils while remodeling HEWL fibril length and promoting the formation of amorphous aggregates in the case of insulin. Although the intrinsic fluorescence spectra of proteins are hidden by resveratrol signal, UVRR Trp and Tyr bands are resonantly enhanced, showing a good sensitivity to the presence of resveratrol and marking a modification in the noncovalent interactions in which they are involved. Our findings demonstrate that UVRR is successfully employed in the study of aggregation-prone proteins and of their interaction with ligands, especially in the case of Trp-lacking proteins.
Collapse
Affiliation(s)
- Maria Pachetti
- Elettra - Sincrotrone Trieste, Trieste, Italy; Department of Physics, University of Trieste, Trieste, Italy; Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| | | | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Stefania Pucciarelli
- University of Camerino, School of Biosciences and Veterinary Medicine, Camerino, Italy
| | | | - Pietro Parisse
- Elettra - Sincrotrone Trieste, Trieste, Italy; Istituto Officina dei Materiali - CNR (IOM-CNR), Trieste, Italy
| | | | | |
Collapse
|
33
|
Li F, Zhan C, Dong X, Wei G. Molecular mechanisms of resveratrol and EGCG in the inhibition of Aβ 42 aggregation and disruption of Aβ 42 protofibril: similarities and differences. Phys Chem Chem Phys 2021; 23:18843-18854. [PMID: 34612422 DOI: 10.1039/d1cp01913a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aggregation of amyloid-β protein (Aβ) into fibrillary deposits is implicated in Alzheimer's disease (AD), and inhibiting Aβ aggregation and clearing Aβ fibrils are considered as promising strategies to treat AD. It has been reported that resveratrol (RSV) and epigallocatechin-3-gallate (EGCG), two of the most extensively studied natural polyphenols, are able to inhibit Aβ fibrillization and remodel the preformed fibrillary aggregates into amorphous, non-toxic species. However, the mechanisms by which RSV inhibits Aβ42 aggregation and disrupts Aβ42 protofibril, as well as the inhibitory/disruptive mechanistic similarities and differences between RSV and EGCG, remain mostly elusive. Herein, we performed extensive all-atom molecular dynamics (MD) simulations on Aβ42 dimers (the early aggregation state of Aβ42) and protofibrils (the intermediate of Aβ42 fibril formation and elongation) in the absence/presence of RSV or EGCG molecules. Our simulations show that both RSV and EGCG can bind with Aβ42 monomers and inhibit the dimerization of Aβ42. The binding of RSV with Aβ42 peptide is mostly viaπ-π stacking interactions, while the binding of EGCG with Aβ42 is mainly through hydrophobic, π-π stacking, and hydrogen-bonding interactions. Moreover, both RSV and EGCG disrupt the β-sheet structure and K28-A42 salt bridges, leading to a disruption of Aβ42 protofibril structure. RSV mainly binds with residues whose side-chains point inwards from the surface of the protofibril, while EGCG mostly binds with residues whose side-chains point outwards from the surface of the protofibril. Furthermore, RSV interacts with Aβ42 protofibrils mostly viaπ-π stacking interactions, while EGCG interacts with Aβ42 protofibrils mainly via hydrogen-bonding and hydrophobic interactions. For comparison, we also explore the effects of RSV/EGCG molecules on the aggregation inhibition and protofibril disruption of the Iowa mutant (D23N) Aβ. Our findings may pave the way for the design of more effective drug candidates as well as the utilization of cocktail therapy using RSV and EGCG for the treatment of AD.
Collapse
Affiliation(s)
- Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, 200438, People's Republic of China.
| | | | | | | |
Collapse
|
34
|
Adewole KE, Gyebi GA, Ibrahim IM. Amyloid β fibrils disruption by kolaviron: Molecular docking and extended molecular dynamics simulation studies. Comput Biol Chem 2021; 94:107557. [PMID: 34371370 DOI: 10.1016/j.compbiolchem.2021.107557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022]
Abstract
Garcinia kola (GK) produces notable effects against neurodegenerative conditions, including experimentally-induced Alzheimer's disease (AD). These remarkable effects are basically attributable to kolaviron (KV), a bioflavonoid constituent of this seed. Specifically, it has been reported that in AD models, KV produces interesting neuroprotective effects, being able to diminish associated neurotoxicity, via modulation of antioxidative, inflammatory and other disease modifying processes. Intriguingly, the effect of KV on amyloid-beta (Aβ) aggregation and disruption of preformed Aβ fibrils have not been studied. In this study, we have described a thorough computational study on the mechanism of action of KV as an Aβ fibrils disruptor at molecular level. We used comprehensive in silico docking evaluations and extended molecular dynamics simulation to mimic KV/Aβ fibrils system. Results indicate that KV was able to move within the Aβ fibrils, binding with important residues and components in the Aβ peptide identified to be vital for stabilizing preformed fibrils. KV destabilized the assembled Aβ fibrils, indicating the ability KV as a potential anti-amyloidogenic agent. Furthermore, this work highlighted the possibility of identifying new multifunctional phytocompounds as potent AD drugs.
Collapse
Affiliation(s)
- Kayode Ezekiel Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria.
| | - Gideon A Gyebi
- Department of Biochemistry, Faculty of Science and Technology, Bingham University, Karu, Nasarawa, Nigeria
| | - Ibrahim M Ibrahim
- Department of Biophysics, Faculty of Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
35
|
Issac PK, Guru A, Velayutham M, Pachaiappan R, Arasu MV, Al-Dhabi NA, Choi KC, Harikrishnan R, Arockiaraj J. Oxidative stress induced antioxidant and neurotoxicity demonstrated in vivo zebrafish embryo or larval model and their normalization due to morin showing therapeutic implications. Life Sci 2021; 283:119864. [PMID: 34358548 DOI: 10.1016/j.lfs.2021.119864] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022]
Abstract
AIMS The study examined that morin as possible antioxidant and neuroprotective due to oxidative stress (H2O2) in zebrafish larval model. MATERIALS AND METHODS Zebrafish larvae were induced with oxidative stress using H2O2 at 1 mM; their behavioural changes were assessed through partition preference and horizontal compartment test. The head section without eyes and yolk sac of zebrafish larvae were employed for enzyme assays such as SOD, CAT, Thiobarbituric acid reactive substances assay, reduced glutathione, glutathione peroxidase activity, glutathione S transferase, Acetylcholinesterase activity and nitrate levels. Also, intracellular ROS and apoptosis in larval head was detected by DCFDA and acridine orange staining followed by gene expression studies. KEY FINDINGS Morin exposure was not harmful to the larvae at concentration between 20 and 60 μM, but it caused non-lethal deformity between 80 and 100 μM. In the partition test, zebrafish embryos treated with H2O2 showed cognitive impairment, whereas the morin-treated groups showed an improved behavioural activity. The study also found that restoring antioxidant enzymes and reduced lipid peroxidation which had a neuroprotective impact. Inhibition of NO overproduction and increased AChE activity were also shown to reduce the neuronal damage. Apoptosis and intracellular ROS levels were reduced in larvae when it was co-incubated with morin. Morin treatment up regulated the antioxidant enzymes against oxidative stress. SIGNIFICANCE Morin provides protection against H2O2 induced oxidative stress through a cellular antioxidant defence mechanism by up-regulating gene expression, thus increasing the antioxidant activity at cellular or organismal stage.
Collapse
Affiliation(s)
- Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Manikandan Velayutham
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, Seonghwan-Eup, Cheonan-Si, Chungnam 330-801, Republic of Korea
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India; Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
36
|
Kalhor HR, Taghikhani E. Probe into the Molecular Mechanism of Ibuprofen Interaction with Warfarin Bound to Human Serum Albumin in Comparison to Ascorbic and Salicylic Acids: Allosteric Inhibition of Anticoagulant Release. J Chem Inf Model 2021; 61:4045-4057. [PMID: 34292735 DOI: 10.1021/acs.jcim.1c00352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The release of anticoagulant drugs such as warfarin from human serum albumin (HSA) has been important not only mechanistically but also clinically for patients who take multiple drugs simultaneously. In this study, the role of some commonly used drugs, including s-ibuprofen, ascorbic acid, and salicylic acid, was investigated in the release of warfarin bound to HSA in silico. The effects of the aforementioned drugs on the HSA-warfarin complex were investigated with molecular dynamics (MD) simulations using two approaches; in the first perspective, molecular docking was used to model the interaction of each drug with the HSA-warfarin complex, and in the second approach, drugs were positioned randomly and distant from the binary complex (HSA-warfarin) in a physiologically relevant concentration. The results obtained from both approaches indicated that s-ibuprofen and ascorbic acid both displayed allosteric effects on the release of warfarin from HSA. Although ascorbic acid aided in warfarin release, leading to destabilization of HSA, ibuprofen demonstrated a stabilizing effect on releasing the anticoagulant drug through several noncovalent interactions, including hydrophobic, electrostatic, and hydrogen-bonding interactions with the protein. The calculated binding free energy and energy contribution of involved residues using the molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) method, along with root mean square deviation (RMSD) values, protein gyration, and free energy surface (FES) mapping of the protein, provided valuable details on the nature of the interactions of each drug on the release of warfarin from HSA. These results can provide important information on the mechanisms of anticoagulant release that has not been revealed in molecular details previously.
Collapse
Affiliation(s)
- Hamid Reza Kalhor
- Biochemistry Research Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Elham Taghikhani
- Biochemistry Research Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| |
Collapse
|
37
|
Jani V, Sonavane U, Joshi R. Destabilization potential of beta sheet breaker peptides on Abeta fibril structure: an insight from molecular dynamics simulation study. RSC Adv 2021; 11:23557-23573. [PMID: 35479797 PMCID: PMC9036544 DOI: 10.1039/d1ra03609b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease is characterized by amyloid-β aggregation. Currently, all the approved medications are to treat the symptoms but there is no clinically approved treatment for the cure or to prevent the progression of Alzheimer's disease (AD). Earlier reports suggest the use of small molecules and peptides to target and destabilize the amyloid fibril. The use of Beta Sheet Breaker (BSB) peptides seems to be a promising and attractive therapeutic approach as it can strongly bind and destabilize the preformed amyloid fibril. There are experimental studies describing the destabilization role of various BSB peptides, but the exact mechanism remains elusive. In the current work, an attempt is made to study the destabilization mechanism of different BSB peptides on preformed amyloid protofibril using molecular docking and simulations. Molecular docking of eight different BSB peptides of varying length (5-mer to 10-mer) on the Abeta protofibril was done. Docking was followed by multiple sets of molecular simulations for the Abeta protofibril–BSB peptide complex for each of the top ranked poses of the eight BSB peptides. As a control, multiple sets of simulations for the Abeta protofibril (APO) were also carried out. An increase in the RMSD, decrease in the number of interchain hydrogen bonds, destabilization of important salt bridge interactions (D23–K28), and destabilization of interchain hydrophobic interactions suggested the destabilization of Abeta protofibril by BSB peptides. The MM-GBSA free energy of binding for each of the BSB peptides was calculated to measure the binding affinity of BSB peptides to Abeta protofibril. Further residue wise contribution of free energy of binding was also calculated. The study showed that 7-mer peptides tend to bind strongly to Abeta protofibril as compared to other BSB peptides. The KKLVFFA peptide showed better destabilization potential as compared to the other BSB peptides. The details about the destabilization mechanism of BSB peptides will help in the design of other peptides for the therapeutic intervention for AD. Destabilzation of Abeta protofibril by Beta Sheet Breaker (BSB) peptides.![]()
Collapse
Affiliation(s)
- Vinod Jani
- Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Uddhavesh Sonavane
- Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| | - Rajendra Joshi
- Centre for Development of Advanced Computing (C-DAC) Panchavati, Pashan Pune India
| |
Collapse
|
38
|
Lee J, Lee K, Lim CT. Surface Plasmon Resonance Assay for Identification of Small Molecules Capable of Inhibiting Aβ Aggregation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27845-27855. [PMID: 34110774 DOI: 10.1021/acsami.1c04833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Toxic aggregates of amyloid-beta (Aβ) have importance in the pathology of Alzheimer's disease, and inhibition of aggregate formation is considered to be a promising strategy for drug development. Here, we report a simple and rapid surface plasmon resonance (SPR) assay method that can identify potential Aβ aggregation inhibitors. Our assay is based on the SPR shifting of the Aβ-gold nanoparticle (Aβ-GNP) aggregates by size under the influence of an Aβ aggregation inhibitor. This user-friendly assay features a short assay time with a low reagent consumption that can be easily adapted as a high-throughput screen. We demonstrated that an effective Aβ aggregation inhibitor induces the blue-shifted SPR peaks of the Aβ-GNP aggregates by hindering the formation of long fibrillar aggregates. Moreover, the blue shifting was correlated to the efficacy and concentrations of an Aβ aggregation inhibitor. Overall, our findings suggest that our simple SPR assay can be a powerful tool to screen small molecules targeting Aβ aggregation.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Kwan Lee
- Department of Advanced Materials Engineering, College of Engineering, Kyungsung University, Busan 48434, Republic of Korea
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
39
|
Saini S, Sharma T, Jain A, Kaur H, Katare OP, Singh B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer's disease: A preclinical evidence. Colloids Surf B Biointerfaces 2021; 205:111838. [PMID: 34022704 DOI: 10.1016/j.colsurfb.2021.111838] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
Ferulic acid (FA) is a ubiquitous natural plant bioactive with distinctive promise in neurodegenerative disorders. However, its therapeutic efficacy gets compromised owing to its poor aqueous solubility, inadequate permeability across lipophilic barriers, and extensive first-pass metabolism. The current studies, therefore, were undertaken to systematically develop chitosan-coated solid lipid nanoparticles (SLNs) using QbD paradigms for improved efficacy of FA in the management of Alzheimer's disease (AD). SLNs of FA were formulated employing Compritol as lipid and polysorbate 80 as surfactant and optimised using a 32 Central Composite Design (CCD). The optimized formulation, surface-coated with chitosan using ionic gelation, exhibited particle size of 185 nm, entrapment efficiency of 51.2 % and zeta potential of 12.4 mV. FTIR and DSC studies verified the compatibility of FA with formulation excipients, PXRD construed significant loss of drug crystallinity, while FESEM depicted existence of uniform spherical nanoparticles with little aggregation. Notable improvement in ex vivo mucoadhesion and permeation studies using goat nasal mucosa, coupled with extension in in vitro drug release, was obtained with SLNs. Substantial improvement with SLNs in cognitive ability through the reduction in escape latency time during behavioural studies, together with significant improvement in various biochemical parameters and body weight gain was observed in AD-induced rats. Histopathological images of different rat organs showed no perceptible change(s) in tissue morphology. Overall, these preclinical findings successfully demonstrate improved anti-AD efficacy, superior nasal mucoadhesion and permeation, extended drug release, improved patient compliance potential, safety and robustness of the developed lipidic nanoconstructs of FA through intranasal route.
Collapse
Affiliation(s)
- Sumant Saini
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Teenu Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Atul Jain
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, 160014, India
| | - Harmanjot Kaur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India; UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
40
|
Gaudreault R, Hervé V, van de Ven TGM, Mousseau N, Ramassamy C. Polyphenol-Peptide Interactions in Mitigation of Alzheimer's Disease: Role of Biosurface-Induced Aggregation. J Alzheimers Dis 2021; 81:33-55. [PMID: 33749653 DOI: 10.3233/jad-201549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder, responsible for nearly two-thirds of all dementia cases. In this review, we report the potential AD treatment strategies focusing on natural polyphenol molecules (green chemistry) and more specifically on the inhibition of polyphenol-induced amyloid aggregation/disaggregation pathways: in bulk and on biosurfaces. We discuss how these pathways can potentially alter the structure at the early stages of AD, hence delaying the aggregation of amyloid-β (Aβ) and tau. We also discuss multidisciplinary approaches, combining experimental and modelling methods, that can better characterize the biochemical and biophysical interactions between proteins and phenolic ligands. In addition to the surface-induced aggregation, which can occur on surfaces where protein can interact with other proteins and polyphenols, we suggest a new concept referred as "confinement stability". Here, on the contrary, the adsorption of Aβ and tau on biosurfaces other than Aβ- and tau-fibrils, e.g., red blood cells, can lead to confinement stability that minimizes the aggregation of Aβ and tau. Overall, these mechanisms may participate directly or indirectly in mitigating neurodegenerative diseases, by preventing protein self-association, slowing down the aggregation processes, and delaying the progression of AD.
Collapse
Affiliation(s)
- Roger Gaudreault
- Department of Physics, Université de Montréal, Montreal, QC, Canada
| | - Vincent Hervé
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | | | - Normand Mousseau
- Department of Physics, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
41
|
Kanchi PK, Dasmahapatra AK. Destabilization of the Alzheimer's amyloid-β protofibrils by THC: A molecular dynamics simulation study. J Mol Graph Model 2021; 105:107889. [PMID: 33725642 DOI: 10.1016/j.jmgm.2021.107889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease is a leading cause of dementia in the elderly population for which there is no cure at present. Deposits of neurotoxic plaques are found in the brains of patients which are composed of fibrils of the amyloid-β peptide. Molecules which can disrupt these fibrils have gained attention as potential therapeutic agents. Δ-tetrahydrocannabidiol (THC) is a cannabinoid, which can bind to the receptors in the brain, and has shown promise in reducing the fibril content in many experimental studies. In our present study, by employing all atom molecular dynamics simulations, we have investigated the mechanism of the interaction of the THC molecules with the amyloid-β protofibrils. Our results show that the THC molecules disrupt the protofibril structure by binding strongly to them. The driving force for the binding was the hydrophobic interactions with the hydrophobic residues in the fibrils. As a result of these interactions, the tight packing of the hydrophobic core of the protofibrils was made loose, and salt bridges, which were important for stability were disrupted. Hydrogen bonds between the chains of the protofibrils which are important for stability were disrupted, as a result of which the β-sheet content was reduced. The destabilization of the protofibrils by the THC molecules leads to the conclusion that THC molecules may be considered for the therapy in treating Alzheimer's disease.
Collapse
Affiliation(s)
- Pavan Krishna Kanchi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
42
|
Gong Y, Zhan C, Zou Y, Qian Z, Wei G, Zhang Q. Serotonin and Melatonin Show Different Modes of Action on Aβ 42 Protofibril Destabilization. ACS Chem Neurosci 2021; 12:799-809. [PMID: 33533252 DOI: 10.1021/acschemneuro.1c00038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is associated with the aberrant self-assembly of amyloid-β (Aβ) protein into fibrillar deposits. The disaggregation of Aβ fibril is believed as one of the major therapeutic strategies for treating AD. Previous experimental studies reported that serotonin (Ser), one of the indoleamine neurotransmitters, and its derivative melatonin (Mel) are able to disassemble preformed Aβ fibrils. However, the fibril-disruption mechanisms are unclear. As the first step to understand the underlying mechanism, we investigated the interactions of Ser and Mel molecules with the LS-shaped Aβ42 protofibril by performing a total of nine individual 500 ns all-atom molecular dynamics (MD) simulations. The simulations demonstrate that both Ser and Mel molecules disrupt the local β-sheet structure, destroy the salt bridges between K28 side chain and A42 COO-, and consequently destabilize the global structure of Aβ42 protofibril. The Mel molecule exhibits a greater binding capacity than the Ser molecule. Intriguingly, we find that Ser and Mel molecules destabilize Aβ42 protofibril through different modes of action. Ser preferentially binds with the aromatic residues in the N-terminal region through π-π stacking interactions, while Mel binds not only with the N-terminal aromatic residues but also with the C-terminal hydrophobic residues via π-π and hydrophobic interactions. This work reveals the disruptive mechanisms of Aβ42 protofibril by Ser and Mel molecules and provides useful information for designing drug candidates against AD.
Collapse
Affiliation(s)
- Yehong Gong
- College of Physical Education and Training, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People’s Republic of China
| | - Chendi Zhan
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People’s Republic of China
| | - Yu Zou
- Department Sport and Exercise Science, College of Education, Zhejiang University, 148 Tianmenshan Road, Hangzhou, 310007 Zhejiang People’s Republic of China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People’s Republic of China
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Chang Hai Road, Shanghai 200438, People’s Republic of China
| |
Collapse
|
43
|
Hole KL, Williams RJ. Flavonoids as an Intervention for Alzheimer's Disease: Progress and Hurdles Towards Defining a Mechanism of Action. Brain Plast 2021; 6:167-192. [PMID: 33782649 PMCID: PMC7990465 DOI: 10.3233/bpl-200098] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Attempts to develop a disease modifying intervention for Alzheimer's disease (AD) through targeting amyloid β (Aβ) have so far been unsuccessful. There is, therefore, a need for novel therapeutics against alternative targets coupled with approaches which may be suitable for early and sustained use likely required for AD prevention. Numerous in vitro and in vivo studies have shown that flavonoids can act within processes and pathways relevant to AD, such as Aβ and tau pathology, increases in BDNF, inflammation, oxidative stress and neurogenesis. However, the therapeutic development of flavonoids has been hindered by an ongoing lack of clear mechanistic data that fully takes into consideration metabolism and bioavailability of flavonoids in vivo. With a focus on studies that incorporate these considerations into their experimental design, this review will evaluate the evidence for developing specific flavonoids as therapeutics for AD. Given the current lack of success of anti-Aβ targeting therapeutics, particular attention will be given to flavonoid-mediated regulation of tau phosphorylation and aggregation, where there is a comparable lack of study. Reflecting on this evidence, the obstacles that prevent therapeutic development of flavonoids will be examined. Finally, the significance of recent advances in flavonoid metabolomics, modifications and influence of the microbiome on the therapeutic capacity of flavonoids in AD are explored. By highlighting the potential of flavonoids to target multiple aspects of AD pathology, as well as considering the hurdles, this review aims to promote the efficient and effective identification of flavonoid-based approaches that have potential as therapeutic interventions for AD.
Collapse
Affiliation(s)
- Katriona L. Hole
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| | - Robert J. Williams
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
44
|
Investigation on the Linear and Nonlinear Properties of Morin in Presence of Reverse Micelle and Different Oil Content in Reverse Micelle. J Fluoresc 2021; 31:373-383. [PMID: 33398675 DOI: 10.1007/s10895-020-02665-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
We investigate the linear and nonlinear optical property of Morin (MN) at different concentration (1 × 10-6 and 5 × 10-6 M) within AOT reversed micelle prepared by water-in-decane microemulsion having a constant molar ratio of water-to-surfactant molecules of 40 (W = [H2O]/[AOT] = 40) as well as the function of mass fraction of nano-droplet (MFD) values of 0.01,0.04, 0.07, and 0.1 by using UV-Visible, Fluorescence, FTIR, and Z-scan techniques. The steady-state measurement indicates that the presence of microenvironment can greatly affect the tautomeric structure of morin and also Morin property in microenvironment depends upon the amount of oil and Morin concentration. The increase in dipole moment from the ground state to excited state in microenvironment indicate the change in the molecular structure on morin. Morin does not show any nonlinear absorption property but the nonlinear refractive index is observed as a function of Morin concentration as well as MFD values which are due to the thermal agitation of formed dimers. Morin nonlinearity.
Collapse
|
45
|
Jahan I, Nayeem SM. Destabilization of Alzheimer's Aβ 42 protofibrils with acyclovir, carmustine, curcumin, and tetracycline: insights from molecular dynamics simulations. NEW J CHEM 2021. [DOI: 10.1039/d1nj04453b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Among the neurodegenerative diseases, one of the most common dementia is Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Shahid M. Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| |
Collapse
|
46
|
Yao Y, Tang Y, Wei G. Epigallocatechin Gallate Destabilizes α-Synuclein Fibril by Disrupting the E46-K80 Salt-Bridge and Inter-protofibril Interface. ACS Chem Neurosci 2020; 11:4351-4361. [PMID: 33186020 DOI: 10.1021/acschemneuro.0c00598] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The accumulation and deposition of fibrillar aggregates of α-synuclein (α-syn) into Lewy bodies are the major hallmarks of Parkinson's disease (PD) for which there is no cure yet. Disrupting preformed α-syn fibrils is considered one of the rational therapeutic strategies to combat PD. Experimental studies reported that epigallocatechin gallate (EGCG), a polyphenol extracted from green tea, can disrupt α-syn fibrils into benign amorphous aggregates. However, the molecular mechanism of action is poorly understood. Herein, we performed molecular dynamics simulations on a newly released Greek-key-like α-syn fibril with or without EGCG to investigate the influence of EGCG on α-syn fibril. Our simulations show that EGCG disrupts the local β-sheet structure, E46-K80 salt-bridge crucial for the stabilization of the Greek-key-like structure, and hydrophobic interactions stabilizing the inter-protofibril interface and destabilizes the global structure of the α-syn fibril. Interaction analyses reveal that hydrophobic and hydrogen-bonding interactions between EGCG and α-syn fibrils play important roles in the destabilization of the fibril. We find that the disruption of the E46-K80 salt-bridge closely correlates with the formation of hydrogen-bonds (H-bonds) between EGCG and E46/K80. Our results provide mechanistic insights into the disruption modes of α-syn fibril by EGCG, which may pave the way for designing drug candidates targeting α-syn fibrillization to treat PD.
Collapse
Affiliation(s)
- Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| |
Collapse
|
47
|
Simulations on the dual effects of flavonoids as suppressors of Aβ42 fibrillogenesis and destabilizers of mature fibrils. Sci Rep 2020; 10:16636. [PMID: 33024142 PMCID: PMC7538952 DOI: 10.1038/s41598-020-72734-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/02/2020] [Indexed: 01/19/2023] Open
Abstract
Structural studies of the aggregation inhibition of the amyloid-β peptide (Aβ) by different natural compounds are of the utmost importance due to their great potential as neuroprotective and therapeutic agents for Alzheimer’s disease. We provided the simulation of molecular dynamics for two different states of Aβ42, including “monomeric aggregation-prone state (APS)” and “U-shaped pentamers of amyloidogenic protofilament intermediates” in the absence and presence of polyphenolic flavonoids (Flvs, myricetin and morin) in order to verify the possible mechanism of Flvs fibrillogenesis suppression. Data showed that Flvs directly bind into Aβ42 species in both states of “monomeric APS β-sheets” and “pentameric amyloidogenic intermediates”. Binding of Flvs with amyloidogenic protofilament intermediates caused the attenuation of some inter-chains H-bonds, salt bridges, van der Waals and interpeptide interaction energies without interfering with their secondary β-sheets. Therefore, Flvs redirect oligomeric amyloidogenic intermediates into unstructured aggregates by significant disruption of the "steric zipper" motif of fibrils—pairs of self-complementary β-sheets—without changing the amount of β-sheets. It is while Flvs completely destruct the disadvantageous secondary β-sheets of monomeric APS conformers by converting them into coil/helix structures. It means that Flvs suppress the fibrillogenesis process of the monomeric APS structures by converting their β-sheets into proper soluble coil/helices structures. The different actions of Flvs in contact with two different states of Aβ conformers are related to high interaction tendency of Flvs with additional H-bonds for monomeric APS β-sheet, rather than oligomeric protofilaments. Linear interaction energy (LIE) analysis confirmed the strong binding of monomeric Aβ-Flvs with more negative ∆Gbinding, rather than oligomeric Aβ-Flvs system. Therefore, atomic scale computational evaluation of Flvs actions demonstrated different dual functions of Flvs, concluded from the application of two different monomeric and pentameric Aβ42 systems. The distinct dual functions of Flvs are proposed as suppressing the aggregation by converting β-sheets of monomeric APS to proper soluble structures and disrupting the "steric zipper" fibril motifs of oligomeric intermediate by converting on-pathway into off-pathway. Taken together, our data propose that Flvs exert dual and more effective functions against monomeric APS (fibrillogenesis suppression) and remodel the Aβ aggregation pathway (fibril destabilization).
Collapse
|
48
|
Hao S, Li X, Han A, Yang Y, Luo X, Fang G, Wang H, Liu J, Wang S. Hydroxycinnamic Acid from Corncob and Its Structural Analogues Inhibit Aβ40 Fibrillation and Attenuate Aβ40-Induced Cytotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8788-8796. [PMID: 32700906 DOI: 10.1021/acs.jafc.0c01841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The aggregation of amyloid-β protein (Aβ) is deemed a vital pathological feature of Alzheimer's disease (AD). Hence, inhibiting Aβ aggregation is noticed as a major tactic for the prevention and therapy of AD. Hydroxycinnamic acid, as a natural phenolic compound, is widely present in plant foods and has several biological activities including anti-inflammation, antioxidation, and neuroprotective effects. Here, it was found that hydroxycinnamic acid and its structural analogues (3-hydroxycinnamic acid, 2-hydroxycinnamic acid, cinnamic acid, 3,4-dihydroxycinnamic acid, 2,4-dihydroxycinnamic acid, and 3,4,5-trihydroxycinnamic acid) could inhibit Aβ40 fibrillogenesis and reduce Aβ40-induced cytotoxicity in a dose-dependent manner. Among these small molecules investigated, 3,4,5-trihydroxycinnamic acid is considered to be the most effective inhibitor, which reduces the ThT fluorescence intensity to 30.79% and increases cell viability from 49.47 to 84.78% at 200 μM. Also, the results with Caenorhabditis elegans verified that these small molecules can ameliorate AD-like symptoms of worm paralysis. Moreover, molecular docking studies showed that these small molecules interact with the Aβ40 mainly via hydrogen bonding. These results suggest that hydroxycinnamic acid and its structural analogues could inhibit Aβ40 fibrillogenesis and the inhibition activity is enhanced with the increase of phenolic hydroxyl groups of inhibitors. These small molecules have huge potential to be developed into novel aggregation inhibitors in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xia Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaoyu Luo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
49
|
Chaari A, Abdellatif B, Nabi F, Khan RH. Date palm (Phoenix dactylifera L.) fruit's polyphenols as potential inhibitors for human amylin fibril formation and toxicity in type 2 diabetes. Int J Biol Macromol 2020; 164:1794-1808. [PMID: 32795580 DOI: 10.1016/j.ijbiomac.2020.08.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND β-Cell death is the key feature of type 2 diabetes mellitus (T2DM). The misfolding of human Islet Amyloid Polypeptide (hIAPP) is regarded as one of the causative factors of T2DM. Recent studies suggested that a diet based on date fruits presents various health benefits, as these fruits are naturally enriched in plant polyphenols. METHOD In this study, we used a broad biophysical approach, using cell biology techniques and bioinformatic tools, to demonstrate that various polyphenols from date palm (Phoenix dactylifera L.) fruit significantly inhibited hIAPP aggregation and cytotoxicity. RESULT Our results suggest that all of the polyphenols showed inhibitory effects, albeit varied, on the formation of toxic hIAPP amyloids. Correlation between cell viability assay, permeabilization of synthetic phospholipid vesicles tests, and ANS florescence measurements, revealed that both classes of polyphenols protected INS-1E cells from the toxicity of amylin aggregates. Docking results showed that the used polyphenols physically interacted with both hIAPP amyloidogenic region (residues Ser20-Ser29) and the non-amyloidogenic regions via hydrophobic and hydrogen interactions, thus reducing aggregation levels. CONCLUSION These findings highlight the benefits of consuming dates and the great potential of its polyphenols as a potential therapy for the prevention and treatment of T2DM as well as for many other amyloid-related diseases.
Collapse
Affiliation(s)
- Ali Chaari
- Premedical Division, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| | - Basma Abdellatif
- Premedical Division, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| |
Collapse
|
50
|
Jokar S, Erfani M, Bavi O, Khazaei S, Sharifzadeh M, Hajiramezanali M, Beiki D, Shamloo A. Design of peptide-based inhibitor agent against amyloid-β aggregation: Molecular docking, synthesis and in vitro evaluation. Bioorg Chem 2020; 102:104050. [PMID: 32663672 DOI: 10.1016/j.bioorg.2020.104050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Formation of the amyloid beta (Aβ) peptide aggregations represents an indispensable role in appearing and progression of Alzheimer disease. β-sheet breaker peptides can be designed and modified with different amino acids in order to improve biological properties and binding affinity to the amyloid beta peptide. In the present study, three peptide sequences were designed based on the hopeful results of LIAIMA peptide and molecular docking studies were carried out onto the monomer and fibril structure of amyloid beta peptide using AutoDock Vina software. According to the obtained interactions and binding energy from docking, the best-designed peptide (d-GABA-FPLIAIMA) was chosen and synthesized in great yield (%96) via the Fmoc solid-phase peptide synthesis. The synthesis and purity of the resulting peptide were estimated and evaluated by Mass spectroscopy and Reversed-phase high-performance liquid chromatography (RP-HPLC) methods, respectively. Stability studies in plasma and Thioflavin T (ThT) assay were performed in order to measure the binding affinity and in vitro aggregation inhibition of Aβ peptide. The d-GABA-FPLIAIMA peptide showed good binding energy and affinity to Aβ fibrils, high stability (more than 90%) in human serum, and a reduction of 20% in inhibition of the Aβ aggregation growth. Finally, the favorable characteristics of our newly designed peptide make it a promising candidate β-sheet breaker agent for further in vivo studies.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Erfani
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy; Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Hajiramezanali
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|