1
|
Wang B, Adamo ME, Zhou X, Wang Z, Gerber SA, Kettenbach AN, Dunlap JC. Acetylation of WCC is dispensable for the core circadian clock but differentially regulates acute light responses in Neurospora. J Biol Chem 2024; 300:107508. [PMID: 38944116 PMCID: PMC11325773 DOI: 10.1016/j.jbc.2024.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
In the Neurospora circadian system, the White Collar Complex (WCC) formed by WC-1 and WC-2 drives expression of the frequency (frq) gene whose product FRQ feedbacks to inhibit transcriptional activity of WCC. Phosphorylation of WCC has been extensively studied, but the extent and significance of other post-translational modifications (PTM) have been poorly studied. To this end, we used mass-spectrometry to study alkylation sites on WCC, resulting in discovery of nine acetylation sites. Mutagenesis analysis showed most of the acetylation events individually do not play important roles in period determination. Moreover, mutating all the lysines falling in either half of WC-1 or all the lysine residues in WC-2 to arginines did not abolish circadian rhythms. In addition, we also found nine mono-methylation sites on WC-1, but like acetylation, individual ablation of most of the mono-methylation events did not result in a significant period change. Taken together, the data here suggest that acetylation or mono-methylation on WCC is not a determinant of the pace of the circadian feedback loop. The finding is consistent with a model in which repression of WCC's circadian activity is mainly controlled by phosphorylation. Interestingly, light-induced expression of some light-responsive genes has been modulated in certain wc-1 acetylation mutants, suggesting that WC-1 acetylation events differentially regulate light responses.
Collapse
Affiliation(s)
- Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
| | - Mark E Adamo
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Xiaoying Zhou
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Ziyan Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Scott A Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Arminja N Kettenbach
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Wang B, Edamo ME, Zhou X, Wang Z, Gerber SA, Kettenbach AN, Dunlap JC. Acetylation of WCC is dispensable for the core circadian clock but differentially regulates acute light responses in Neurospora. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569266. [PMID: 38076981 PMCID: PMC10705461 DOI: 10.1101/2023.11.29.569266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
In the Neurospora circadian system, the White Collar Complex (WCC) formed by WC-1 and WC-2 drives expression of the frequency ( frq ) gene whose product FRQ feedbacks to inhibit transcriptional activity of WCC. Phosphorylation of WCC has been extensively studied, but the extent and significance of other post-translational modifications (PTM) has been poorly studied. To this end, we used mass-spectrometry to study alkylation sites on WCC, resulting in discovery of nine acetylation sites. Mutagenesis analysis showed most of the acetylation events individually do not play important roles in period determination. Moreover, mutating all the lysines falling in either half of WC-1 or all the lysine residues in WC-2 to arginines did not abolish circadian rhythms. In addition, we also found nine mono-methylation sites on WC-1, but like acetylation, individual ablation of most of the mono-methylation events did not result in a significant period change. Taken together, the data here suggest that acetylation or mono-methylation on WCC is not a determinant of the pace of the circadian feedback loop. The finding is consistent with a model in which repression of WCC's circadian activity is controlled mainly by phosphorylation. Interestingly, light-induced expression of some light-responsive genes has been modulated in certain wc-1 acetylation mutants, suggesting that WC-1 acetylation events differentially regulate light responses.
Collapse
|
3
|
Torres DE, Reckard AT, Klocko AD, Seidl MF. Nuclear genome organization in fungi: from gene folding to Rabl chromosomes. FEMS Microbiol Rev 2023; 47:fuad021. [PMID: 37197899 PMCID: PMC10246852 DOI: 10.1093/femsre/fuad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Comparative genomics has recently provided unprecedented insights into the biology and evolution of the fungal lineage. In the postgenomics era, a major research interest focuses now on detailing the functions of fungal genomes, i.e. how genomic information manifests into complex phenotypes. Emerging evidence across diverse eukaryotes has revealed that the organization of DNA within the nucleus is critically important. Here, we discuss the current knowledge on the fungal genome organization, from the association of chromosomes within the nucleus to topological structures at individual genes and the genetic factors required for this hierarchical organization. Chromosome conformation capture followed by high-throughput sequencing (Hi-C) has elucidated how fungal genomes are globally organized in Rabl configuration, in which centromere or telomere bundles are associated with opposite faces of the nuclear envelope. Further, fungal genomes are regionally organized into topologically associated domain-like (TAD-like) chromatin structures. We discuss how chromatin organization impacts the proper function of DNA-templated processes across the fungal genome. Nevertheless, this view is limited to a few fungal taxa given the paucity of fungal Hi-C experiments. We advocate for exploring genome organization across diverse fungal lineages to ensure the future understanding of the impact of nuclear organization on fungal genome function.
Collapse
Affiliation(s)
- David E Torres
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research,Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Andrew T Reckard
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Andrew D Klocko
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, 234 Centennial Hall, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918 USA
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
4
|
Grau-Bové X, Navarrete C, Chiva C, Pribasnig T, Antó M, Torruella G, Galindo LJ, Lang BF, Moreira D, López-Garcia P, Ruiz-Trillo I, Schleper C, Sabidó E, Sebé-Pedrós A. A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution. Nat Ecol Evol 2022; 6:1007-1023. [PMID: 35680998 PMCID: PMC7613034 DOI: 10.1038/s41559-022-01771-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
Histones and associated chromatin proteins have essential functions in eukaryotic genome organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack a phylogenetically-comprehensive understanding of chromatin evolution. Here, we combine comparative proteomics and genomics analysis of chromatin in eukaryotes and archaea. Proteomics uncovers the existence of histone post-translational modifications in Archaea. However, archaeal histone modifications are scarce, in contrast with the highly conserved and abundant marks we identify across eukaryotes. Phylogenetic analysis reveals that chromatin-associated catalytic functions (e.g., methyltransferases) have pre-eukaryotic origins, whereas histone mark readers and chaperones are eukaryotic innovations. We show that further chromatin evolution is characterized by expansion of readers, including capture by transposable elements and viruses. Overall, our study infers detailed evolutionary history of eukaryotic chromatin: from its archaeal roots, through the emergence of nucleosome-based regulation in the eukaryotic ancestor, to the diversification of chromatin regulators and their hijacking by genomic parasites.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Thomas Pribasnig
- Department of Functional and Evolutionary Ecology, Archaea Biology Unit, University of Vienna, Vienna, Austria
| | - Meritxell Antó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Guifré Torruella
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Luis Javier Galindo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Bernd Franz Lang
- Robert Cedergren Centre in Bioinformatics and Genomics, Department of Biochemistry, Université de Montréal, Montréal, Quebec, Canada
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Purificación López-Garcia
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology Unit, University of Vienna, Vienna, Austria
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
5
|
Etier A, Dumetz F, Chéreau S, Ponts N. Post-Translational Modifications of Histones Are Versatile Regulators of Fungal Development and Secondary Metabolism. Toxins (Basel) 2022; 14:toxins14050317. [PMID: 35622565 PMCID: PMC9145779 DOI: 10.3390/toxins14050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Chromatin structure is a major regulator of DNA-associated processes, such as transcription, DNA repair, and replication. Histone post-translational modifications, or PTMs, play a key role on chromatin dynamics. PTMs are involved in a wide range of biological processes in eukaryotes, including fungal species. Their deposition/removal and their underlying functions have been extensively investigated in yeasts but much less in other fungi. Nonetheless, the major role of histone PTMs in regulating primary and secondary metabolisms of filamentous fungi, including human and plant pathogens, has been pinpointed. In this review, an overview of major identified PTMs and their respective functions in fungi is provided, with a focus on filamentous fungi when knowledge is available. To date, most of these studies investigated histone acetylations and methylations, but the development of new methodologies and technologies increasingly allows the wider exploration of other PTMs, such as phosphorylation, ubiquitylation, sumoylation, and acylation. Considering the increasing number of known PTMs and the full range of their possible interactions, investigations of the subsequent Histone Code, i.e., the biological consequence of the combinatorial language of all histone PTMs, from a functional point of view, are exponentially complex. Better knowledge about histone PTMs would make it possible to efficiently fight plant or human contamination, avoid the production of toxic secondary metabolites, or optimize the industrial biosynthesis of certain beneficial compounds.
Collapse
|
6
|
Yang G, Hu Y, Fasoyin OE, Yue Y, Chen L, Qiu Y, Wang X, Zhuang Z, Wang S. The Aspergillus flavus Phosphatase CDC14 Regulates Development, Aflatoxin Biosynthesis and Pathogenicity. Front Cell Infect Microbiol 2018; 8:141. [PMID: 29868497 PMCID: PMC5950752 DOI: 10.3389/fcimb.2018.00141] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
Abstract
Reversible protein phosphorylation is known to play important roles in the regulation of various cellular processes in eukaryotes. Phosphatase-mediated dephosphorylation are integral components of cellular signal pathways by counteracting the phosphorylation action of kinases. In this study, we characterized the functions of CDC14, a dual-specificity phosphatase in the development, secondary metabolism and crop infection of Aspergillus flavus. Deletion of AflCDC14 resulted in a growth defect and abnormal conidium morphology. Inactivation of AflCDC14 caused defective septum and failure to generate sclerotia. Additionally, the AflCDC14 deletion mutant (ΔCDC14) displayed increased sensitivity to osmotic and cell wall integrity stresses. Importantly, it had a significant increase in aflatoxin production, which was consistent with the up-regulation of the expression levels of aflatoxin biosynthesis related genes in ΔCDC14 mutant. Furthermore, seeds infection assays suggested that AflCDC14 was crucial for virulence of A. flavus. It was also found that the activity of amylase was decreased in ΔCDC14 mutant. AflCDC14-eRFP mainly localized to the cytoplasm and vesicles during coidial germination and mycelial development stages. Taken together, these results not only reveal the importance of the CDC14 phosphatase in the regulation of development, aflatoxin biosynthesis and virulence in A. flavus, but may also provide a potential target for controlling crop infections of this fungal pathogen.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yule Hu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Opemipo E Fasoyin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuewei Yue
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijie Chen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Qiu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Starkova TY, Polyanichko AM, Artamonova TO, Khodorkovskii MA, Kostyleva EI, Chikhirzhina EV, Tomilin AN. Post-translational modifications of linker histone H1 variants in mammals. Phys Biol 2017; 14:016005. [PMID: 28000612 DOI: 10.1088/1478-3975/aa551a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The covalent modifications of the linker histone H1 and the core histones are thought to play an important role in the control of chromatin functioning. Histone H1 variants from K562 cell line (hH1), mouse (mH1) and calf (cH1) thymi were studied by matrix-activated laser desorption/ionization fourier transform ion cyclotron resonance mass-spectroscopy (MALDI-FT-ICR-MS). The proteomics analysis revealed novel post-translational modifications of the histone H1, such as meK34-mH1.4, meK35-cH1.1, meK35-mH1.1, meK75-hH1.2, meK75-hH1.3, acK26-hH1.4, acK26-hH1.3 and acK17-hH1.1. The comparison of the hH1, mH1 and cH1 proteins has demonstrated that the types and positions of the post-translational modifications of the globular domains of the H1.2-H1.4 variants are very conservative. However, the post-translational modifications of the N- and C-terminal tails of H1.2, H1.3 and H1.4 are different. The differences of post-translational modifications in the N- and C-terminal tails of H1.2, H1.3 and H1.4 likely lead to the differences in DNA-H1 and H1-protein interactions.
Collapse
Affiliation(s)
- T Yu Starkova
- Institute of Cytology of the Russian Academy of Sciences, St Petersburg, Russia. Saint Petersburg State University, Saint Petersburg, Russia. Author to whom any correspondence should be addressed. The authors made equal contribution to preparation of the manuscript
| | | | | | | | | | | | | |
Collapse
|
8
|
Mahrez W, Arellano MST, Moreno-Romero J, Nakamura M, Shu H, Nanni P, Köhler C, Gruissem W, Hennig L. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes. PLANT PHYSIOLOGY 2016; 170:1566-77. [PMID: 26764380 PMCID: PMC4775133 DOI: 10.1104/pp.15.01744] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/13/2016] [Indexed: 05/07/2023]
Abstract
In eukaryotic cells, histones are subject to a large number of posttranslational modifications whose sequential or combinatorial action affects chromatin structure and genome function. We identified acetylation at Lys-36 in histone H3 (H3K36ac) as a new chromatin modification in plants. The H3K36ac modification is evolutionary conserved in seed plants, including the gymnosperm Norway spruce (Picea abies) and the angiosperms rice (Oryza sativa), tobacco (Nicotiana tabacum), and Arabidopsis (Arabidopsis thaliana). In Arabidopsis, H3K36ac is highly enriched in euchromatin but not in heterochromatin. Genome-wide chromatin immunoprecipitation sequencing experiments revealed that H3K36ac peaks at the 5' end of genes, mainly on the two nucleosomes immediately distal to the transcription start site, independently of gene length. H3K36ac overlaps with H3K4me3 and the H2A.Z histone variant. The histone acetyl transferase GCN5 and the histone deacetylase HDA19 are required for H3K36ac homeostasis. H3K36ac and H3K36me3 show negative crosstalk, which is mediated by GCN5 and the histone methyl transferase SDG8. Although H3K36ac is associated with gene activity, we did not find a linear relationship between H3K36ac and transcript levels, suggesting that H3K36ac is a binary indicator of transcription.
Collapse
Affiliation(s)
- Walid Mahrez
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden (W.M., M.S.T.A., J.M.-R., M.N., C.K., L.H.);Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland (W.M., H.S., W.G.); and Functional Genomics Center Zurich, University of Zurich/ETH Zurich, CH-8057 Zurich, Switzerland (P.N.)
| | - Minerva Susana Trejo Arellano
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden (W.M., M.S.T.A., J.M.-R., M.N., C.K., L.H.);Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland (W.M., H.S., W.G.); and Functional Genomics Center Zurich, University of Zurich/ETH Zurich, CH-8057 Zurich, Switzerland (P.N.)
| | - Jordi Moreno-Romero
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden (W.M., M.S.T.A., J.M.-R., M.N., C.K., L.H.);Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland (W.M., H.S., W.G.); and Functional Genomics Center Zurich, University of Zurich/ETH Zurich, CH-8057 Zurich, Switzerland (P.N.)
| | - Miyuki Nakamura
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden (W.M., M.S.T.A., J.M.-R., M.N., C.K., L.H.);Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland (W.M., H.S., W.G.); and Functional Genomics Center Zurich, University of Zurich/ETH Zurich, CH-8057 Zurich, Switzerland (P.N.)
| | - Huan Shu
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden (W.M., M.S.T.A., J.M.-R., M.N., C.K., L.H.);Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland (W.M., H.S., W.G.); and Functional Genomics Center Zurich, University of Zurich/ETH Zurich, CH-8057 Zurich, Switzerland (P.N.)
| | - Paolo Nanni
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden (W.M., M.S.T.A., J.M.-R., M.N., C.K., L.H.);Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland (W.M., H.S., W.G.); and Functional Genomics Center Zurich, University of Zurich/ETH Zurich, CH-8057 Zurich, Switzerland (P.N.)
| | - Claudia Köhler
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden (W.M., M.S.T.A., J.M.-R., M.N., C.K., L.H.);Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland (W.M., H.S., W.G.); and Functional Genomics Center Zurich, University of Zurich/ETH Zurich, CH-8057 Zurich, Switzerland (P.N.)
| | - Wilhelm Gruissem
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden (W.M., M.S.T.A., J.M.-R., M.N., C.K., L.H.);Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland (W.M., H.S., W.G.); and Functional Genomics Center Zurich, University of Zurich/ETH Zurich, CH-8057 Zurich, Switzerland (P.N.)
| | - Lars Hennig
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden (W.M., M.S.T.A., J.M.-R., M.N., C.K., L.H.);Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092 Zurich, Switzerland (W.M., H.S., W.G.); and Functional Genomics Center Zurich, University of Zurich/ETH Zurich, CH-8057 Zurich, Switzerland (P.N.)
| |
Collapse
|
9
|
Gacek-Matthews A, Noble LM, Gruber C, Berger H, Sulyok M, Marcos AT, Strauss J, Andrianopoulos A. KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans. Mol Microbiol 2015; 96:839-60. [PMID: 25712266 PMCID: PMC4949671 DOI: 10.1111/mmi.12977] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 12/28/2022]
Abstract
Aspergillus nidulans kdmA encodes a member of the KDM4 family of jumonji histone demethylase proteins, highly similar to metazoan orthologues both within functional domains and in domain architecture. This family of proteins exhibits demethylase activity towards lysines 9 and 36 of histone H3 and plays a prominent role in gene expression and chromosome structure in many species. Mass spectrometry mapping of A. nidulans histones revealed that around 3% of bulk histone H3 carried trimethylated H3K9 (H3K9me3) but more than 90% of histones carried either H3K36me2 or H3K36me3. KdmA functions as H3K36me3 demethylase and has roles in transcriptional regulation. Genetic manipulation of KdmA levels is tolerated without obvious effect in most conditions, but strong phenotypes are evident under various conditions of stress. Transcriptome analysis revealed that – in submerged early and late cultures – between 25% and 30% of the genome is under KdmA influence respectively. Transcriptional imbalance in the kdmA deletion mutant may contribute to the lethal phenotype observed upon exposure of mutant cells to low‐density visible light on solid medium. Although KdmA acts as transcriptional co‐repressor of primary metabolism genes, it is required for full expression of several genes involved in biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Agnieszka Gacek-Matthews
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Campus Tulln, Tulln, 3430, Austria
| | - Luke M Noble
- Department of Genetics, University of Melbourne, Victoria, 3010, Australia
| | - Clemens Gruber
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Campus Muthgasse, Vienna, A-1190, Austria
| | - Harald Berger
- Health and Environment Department, AIT - Austrian Institute of Technology GmbH, Campus Tulln, Tulln, 3430, Austria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department IFA Tulln, BOKU-University of Natural Resources and Life Sciences, Campus Tulln, Tulln, 3430, Austria
| | - Ana T Marcos
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, 41012, Spain
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Campus Tulln, Tulln, 3430, Austria.,Health and Environment Department, AIT - Austrian Institute of Technology GmbH, Campus Tulln, Tulln, 3430, Austria
| | | |
Collapse
|
10
|
Cai Q, Fu L, Wang Z, Gan N, Dai X, Wang Y. α-N-methylation of damaged DNA-binding protein 2 (DDB2) and its function in nucleotide excision repair. J Biol Chem 2014; 289:16046-56. [PMID: 24753253 DOI: 10.1074/jbc.m114.558510] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DDB2 exhibits a high affinity toward UV-damaged DNA, and it is involved in the initial steps of global genome nucleotide excision repair. Mutations in the DDB2 gene cause the genetic complementation group E of xeroderma pigmentosum, an autosomal recessive disease manifested clinically by hypersensitivity to sunlight exposure and an increased predisposition to skin cancer. Here we found that, in human cells, the initiating methionine residue in DDB2 was removed and that the N-terminal alanine could be methylated on its α-amino group in human cells, with trimethylation being the major form. We also demonstrated that the α-N-methylation of DDB2 is catalyzed by the N-terminal RCC1 methyltransferase. In addition, a methylation-defective mutant of DDB2 displayed diminished nuclear localization and was recruited at a reduced efficiency to UV-induced cyclobutane pyrimidine dimer foci. Moreover, loss of this methylation conferred compromised ATM (ataxia telangiectasia mutated) activation, decreased efficiency in cyclobutane pyrimidine dimer repair, and elevated sensitivity of cells toward UV light exposure. Our study provides new knowledge about the posttranslational regulation of DDB2 and expands the biological functions of protein α-N-methylation to DNA repair.
Collapse
Affiliation(s)
- Qian Cai
- From the Environmental Toxicology Graduate Program and
| | - Lijuan Fu
- From the Environmental Toxicology Graduate Program and
| | - Zi Wang
- From the Environmental Toxicology Graduate Program and
| | - Nanqin Gan
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Xiaoxia Dai
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- From the Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
11
|
Dai X, Otake K, You C, Cai Q, Wang Z, Masumoto H, Wang Y. Identification of novel α-n-methylation of CENP-B that regulates its binding to the centromeric DNA. J Proteome Res 2013; 12:4167-75. [PMID: 23978223 DOI: 10.1021/pr400498y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eukaryotic centromere is an essential chromatin region required for accurate segregation of sister chromatids during cell division. Centromere protein B (CENP-B) is a highly conserved protein which can bind to the 17-bp CENP-B box on the centromeric DNA. In this study, we found that CENP-B could be α-N-methylated in human cells. We also showed that the level of the α-N-methylation was stimulated in cells in response to a variety of extracellular stimuli, including increased cell density, heat shock, and arsenite treatment, although the methylation level was not altered upon metaphase arrest. We identified N-terminal RCC1 methyltransferase (NRMT) as a major enzyme required for the CENP-B methylation. Additionally, we found that chromatin-bound CENP-B was primarily trimethylated and α-N-trimethylation could enhance CENP-B's binding to CENP-B box in cells. Our study also expands the function of protein α-N-methylation that has been known for decades and whose function remains largely unexplored.
Collapse
Affiliation(s)
- Xiaoxia Dai
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | | | | | | | | | | | | |
Collapse
|
12
|
Britton LMP, Gonzales-Cope M, Zee BM, Garcia BA. Breaking the histone code with quantitative mass spectrometry. Expert Rev Proteomics 2012; 8:631-43. [PMID: 21999833 DOI: 10.1586/epr.11.47] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Histone post-translational modifications (PTMs) comprise one of the most intricate nuclear signaling networks that govern gene expression in a long-term and dynamic fashion. These PTMs are considered to be 'epigenetic' or heritable from one cell generation to the next and help establish genomic expression patterns. While much of the analyses of histones have historically been performed using site-specific antibodies, these methods are replete with technical obstacles (i.e., cross-reactivity and epitope occlusion). Mass spectrometry-based proteomics has begun to play a significant role in the interrogation of histone PTMs, revealing many new aspects of these modifications that cannot be easily determined with standard biological approaches. Here, we review the accomplishments of mass spectrometry in the histone field, and outline the future roadblocks that must be overcome for mass spectrometry-based proteomics to become the method of choice for chromatin biologists.
Collapse
Affiliation(s)
- Laura-Mae P Britton
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
13
|
Činčárová L, Lochmanová G, Nováková K, Šultesová P, Konečná H, Fajkusová L, Fajkus J, Zdráhal Z. A combined approach for the study of histone deacetylase inhibitors. MOLECULAR BIOSYSTEMS 2012; 8:2937-45. [DOI: 10.1039/c2mb25136a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Substitutions in the amino-terminal tail of neurospora histone H3 have varied effects on DNA methylation. PLoS Genet 2011; 7:e1002423. [PMID: 22242002 PMCID: PMC3248561 DOI: 10.1371/journal.pgen.1002423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/27/2011] [Indexed: 12/05/2022] Open
Abstract
Eukaryotic genomes are partitioned into active and inactive domains called euchromatin and heterochromatin, respectively. In Neurospora crassa, heterochromatin formation requires methylation of histone H3 at lysine 9 (H3K9) by the SET domain protein DIM-5. Heterochromatin protein 1 (HP1) reads this mark and directly recruits the DNA methyltransferase, DIM-2. An ectopic H3 gene carrying a substitution at K9 (hH3K9L or hH3K9R) causes global loss of DNA methylation in the presence of wild-type hH3 (hH3WT). We investigated whether other residues in the N-terminal tail of H3 are important for methylation of DNA and of H3K9. Mutations in the N-terminal tail of H3 were generated and tested for effects in vitro and in vivo, in the presence or absence of the wild-type allele. Substitutions at K4, K9, T11, G12, G13, K14, K27, S28, and K36 were lethal in the absence of a wild-type allele. In contrast, mutants bearing substitutions of R2, A7, R8, S10, A15, P16, R17, K18, and K23 were viable. The effect of substitutions on DNA methylation were variable; some were recessive and others caused a semi-dominant loss of DNA methylation. Substitutions of R2, A7, R8, S10, T11, G12, G13, K14, and P16 caused partial or complete loss of DNA methylation in vivo. Only residues R8-G12 were required for DIM-5 activity in vitro. DIM-5 activity was inhibited by dimethylation of H3K4 and by phosphorylation of H3S10, but not by acetylation of H3K14. We conclude that the H3 tail acts as an integrating platform for signals that influence DNA methylation, in part through methylation of H3K9. DNA methylation is a common feature of eukaryotic genomes. Methylation is typically associated with silenced chromosomal domains and is essential for development of plants and animals. Although the control of DNA methylation is not well understood, recent findings with model organisms, including the fungus Neurospora crassa, revealed connections between modifications of histones and DNA. DNA methylation is dispensable in Neurospora, facilitating genetic studies. Isolation of mutants defective in DNA methylation revealed that a histone H3 methyltransferase, DIM-5, is required for DNA methylation. DIM-5 trimethylates H3K9, which is then recognized by Heterochromatin Protein 1 (HP1), which recruits the DNA methyltransferase DIM-2. We investigated the possibility that H3 provides a platform to integrate information relevant to whether the associated DNA should be methylated. Indeed, we found that DIM-5 is sensitive to methylation of H3K4 and phosphorylation of H3S10. Our analyses further revealed that H3K14 is critical in vivo, but not because acetyl-K14 inhibits DIM-5. We also found that H3R2 is essential for DNA methylation in vivo but not important for DIM-5 activity. Interestingly, we found H3 mutants that show recessive defects in DNA methylation and others with dominant effects. We also defined a set of H3 mutations that are lethal.
Collapse
|
15
|
Moosmann A, Campsteijn C, Jansen PW, Nasrallah C, Raasholm M, Stunnenberg HG, Thompson EM. Histone variant innovation in a rapidly evolving chordate lineage. BMC Evol Biol 2011; 11:208. [PMID: 21756361 PMCID: PMC3156773 DOI: 10.1186/1471-2148-11-208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/15/2011] [Indexed: 01/04/2023] Open
Abstract
Background Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. Results We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs) and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. Conclusions These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.
Collapse
|
16
|
Anderson DC, Green GR, Smith K, Selker EU. Extensive and varied modifications in histone H2B of wild-type and histone deacetylase 1 mutant Neurospora crassa. Biochemistry 2010; 49:5244-57. [PMID: 20462202 DOI: 10.1021/bi100391w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA methylation is deficient in a histone deacetylase 1 (HDA1) mutant (hda-1) strain of Neurospora crassa with inactivated histone deacetylase 1. Difference two-dimensional (2D) gels identified the primary histone deacetylase 1 target as histone H2B. Acetylation was identified by LC-MS/MS at five different lysines in wild-type H2B and at 11 lysines in hda-1 H2B, suggesting Neurospora H2B is a complex combination of different acetylated species. Individual 2D gel spots were shifted by single lysine acetylations. FTICR MS-observed methylation ladders identify an ensemble of 20-25 or more modified forms for each 2D gel spot. Twelve different lysines or arginines were methylated in H2B from the wild type or hda-1; only two were in the N-terminal tail. Arginines were modified by monomethylation, dimethylation, or deimination. H2B from wild-type and hda-1 ensembles may thus differ by acetylation at multiple sites, and by additional modifications. Combined with asymmetry-generated diversity in H2B structural states in nucleosome core particles, the extensive modifications identified here can create substantial histone-generated structural diversity in nucleosome core particles.
Collapse
Affiliation(s)
- D C Anderson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | | | | | |
Collapse
|