1
|
Chen L, Liang J. A proximity ligation assay (PLA) based sensing platform for the ultrasensitive detection of P53 protein-specific SUMOylation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Fischer PD, Papadopoulos E, Dempersmier JM, Wang ZF, Nowak RP, Donovan KA, Kalabathula J, Gorgulla C, Junghanns PPM, Kabha E, Dimitrakakis N, Petrov OI, Mitsiades C, Ducho C, Gelev V, Fischer ES, Wagner G, Arthanari H. A biphenyl inhibitor of eIF4E targeting an internal binding site enables the design of cell-permeable PROTAC-degraders. Eur J Med Chem 2021; 219:113435. [PMID: 33892272 DOI: 10.1016/j.ejmech.2021.113435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022]
Abstract
The eukaryotic translation initiation factor 4E (eIF4E) is the master regulator of cap-dependent protein synthesis. Overexpression of eIF4E is implicated in diseases such as cancer, where dysregulation of oncogenic protein translation is frequently observed. eIF4E has been an attractive target for cancer treatment. Here we report a high-resolution X-ray crystal structure of eIF4E in complex with a novel inhibitor (i4EG-BiP) that targets an internal binding site, in contrast to the previously described inhibitor, 4EGI-1, which binds to the surface. We demonstrate that i4EG-BiP is able to displace the scaffold protein eIF4G and inhibit the proliferation of cancer cells. We provide insights into how i4EG-BiP is able to inhibit cap-dependent translation by increasing the eIF4E-4E-BP1 interaction while diminishing the interaction of eIF4E with eIF4G. Leveraging structural details, we designed proteolysis targeted chimeras (PROTACs) derived from 4EGI-1 and i4EG-BiP and characterized these on biochemical and cellular levels. We were able to design PROTACs capable of binding eIF4E and successfully engaging Cereblon, which targets proteins for proteolysis. However, these initial PROTACs did not successfully stimulate degradation of eIF4E, possibly due to competitive effects from 4E-BP1 binding. Our results highlight challenges of targeted proteasomal degradation of eIF4E that must be addressed by future efforts.
Collapse
Affiliation(s)
- Patrick D Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA; Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | - Evangelos Papadopoulos
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA; Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Jon M Dempersmier
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Zi-Fu Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Joann Kalabathula
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Christoph Gorgulla
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pierre P M Junghanns
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | - Eihab Kabha
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Nikolaos Dimitrakakis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Ognyan I Petrov
- Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Blvd., 1164, Sofia, Bulgaria
| | | | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, 66123, Germany
| | - Vladimir Gelev
- Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Blvd., 1164, Sofia, Bulgaria
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Guo Q, Wang Y, Chen C, Wei D, Fu J, Xu H, Gu H. Multiplexed Luminescence Oxygen Channeling Immunoassay Based on Dual-Functional Barcodes with a Host-Guest Structure: A Facile and Robust Suspension Array Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907521. [PMID: 32174029 DOI: 10.1002/smll.201907521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/08/2020] [Accepted: 02/19/2020] [Indexed: 05/24/2023]
Abstract
The development of a powerful immunoassay platform with capacities of both simplicity and high multiplexing is promising for disease diagnosis. To meet this urgent need, for the first time, a multiplexed luminescent oxygen channeling immunoassay (multi-LOCI) platform by implementation of LOCI with suspension array technology is reported. As the microcarrier of the platform, a unique dual-functional barcode with a host-guest structure composed of a quantum dot host bead (QDH) and LOCI acceptor beads (ABs) is designed, in which QDH provides function of high coding capacity while ABs facilitate the LOCI function. The analytes bridge QDH@ABs and LOCI donor beads (DBs) into a close proximity, forming a QDH@ABs-DBs "host-guest-satellite" superstructure that generates both barcode signal from QDH and LOCI signal induced by singlet oxygen channeling between ABs and DBs. Through imaging-based decoding, different barcodes are automatically distinguished and colocalized with LOCI signals. Importantly, the assay achieves simultaneous detection of multiple analytes within one reaction, simply by following a "mix-and-measure" protocol without the need for tedious washing steps. Furthermore, the multi-LOCI platform is validated for real sample measurements. With the advantages of robustness, simplicity, and high multiplexing, the platform holds great potential for the development of point-of-care diagnostics.
Collapse
Affiliation(s)
- Qingsheng Guo
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yao Wang
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Cang Chen
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Dan Wei
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jianping Fu
- Department of Mechanical Engineering, Department of Biomedical Engineering, Department of Cell and Developmental Biology, University of Michiga Ann Arbor, Ann Arbor, MI, 48109, USA
| | - Hong Xu
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Hongchen Gu
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
4
|
Tagit O, Hildebrandt N. Fluorescence Sensing of Circulating Diagnostic Biomarkers Using Molecular Probes and Nanoparticles. ACS Sens 2017; 2:31-45. [PMID: 28722447 DOI: 10.1021/acssensors.6b00625] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interplay of photonics, nanotechnology, and biochemistry has significantly improved the identification and characterization of multiple types of biomarkers by optical biosensors. Great achievements in fluorescence-based technologies have been realized, for example, by the advancement of multiplexing techniques or the introduction of nanoparticles to biochemical and clinical research. This review presents a concise overview of recent advances in fluorescence sensing techniques for the detection of circulating disease biomarkers. Detection principles of representative approaches, including fluorescence detection using molecular fluorophores, quantum dots, and metallic and silica nanoparticles, are explained and illustrated by pertinent examples from the recent literature. Advanced detection technologies and material development play a major role in modern biosensing and consistently provide significant improvements toward robust, sensitive, and versatile platforms for early detection of circulating diagnostic biomarkers.
Collapse
Affiliation(s)
- Oya Tagit
- NanoBioPhotonics
(nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay, France
- Department
of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Niko Hildebrandt
- NanoBioPhotonics
(nanofret.com), Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, CEA, 91405 Orsay, France
| |
Collapse
|
5
|
Abstract
Constitutive activation of STAT3/5b frequently occurs in various human malignancies. STAT3/5b activation involves dimerization via intermolecular pTyr-SH2 binding; therefore, antagonizing this interaction is a feasible approach to inhibit STAT3/5b activation for cancer therapy. We have developed a multiplexed assay to assess STAT3- and STAT5b-SH2 binding in a single well by combining AlphaLISA and AlphaScreen beads. In this chapter, we describe application of the method for the purpose of identifying new STAT3 and STAT5b antagonists.
Collapse
Affiliation(s)
- Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Kazuyuki Takakuma
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan
| |
Collapse
|
6
|
Takrouri K, Chen T, Papadopoulos E, Sahoo R, Kabha E, Chen H, Cantel S, Wagner G, Halperin JA, Aktas BH, Chorev M. Structure-activity relationship study of 4EGI-1, small molecule eIF4E/eIF4G protein-protein interaction inhibitors. Eur J Med Chem 2014; 77:361-77. [PMID: 24675136 DOI: 10.1016/j.ejmech.2014.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 03/04/2014] [Accepted: 03/12/2014] [Indexed: 01/15/2023]
Abstract
Protein-protein interactions are critical for regulating the activity of translation initiation factors and multitude of other cellular process, and form the largest block of untapped albeit most challenging targets for drug development. 4EGI-1, (E/Z)-2-(2-(4-(3,4-dichlorophenyl)thiazol-2-yl)hydrazono)-3-(2-nitrophenyl)propanoic acid, is a hit compound discovered in a screening campaign of small molecule libraries as an inhibitor of translation initiation factors eIF4E and eIF4G protein-protein interaction; it inhibits translation initiation in vitro and in vivo. A series of 4EGI-1-derived thiazol-2-yl hydrazones have been designed and synthesized in order to delineate the structural latitude and improve its binding affinity to eIF4E, and increase its potency in inhibiting the eIF4E/eIF4G interaction. Probing a wide range of substituents on both phenyl rings comprising the 3-phenylpropionic acid and 4-phenylthiazolidine moieties in the context of both E- and Z-isomers of 4EGI-1 led to analogs with enhanced binding affinity and translation initiation inhibitory activities.
Collapse
Affiliation(s)
- Khuloud Takrouri
- Laboratory for Translational Research, Hematology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 7, Boston, MA 02115, USA
| | - Ting Chen
- Laboratory for Translational Research, Hematology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 7, Boston, MA 02115, USA
| | - Evangelos Papadopoulos
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Rupam Sahoo
- Laboratory for Translational Research, Hematology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 7, Boston, MA 02115, USA
| | - Eihab Kabha
- Laboratory for Translational Research, Harvard Medical School, USA
| | - Han Chen
- Laboratory for Translational Research, Harvard Medical School, USA
| | - Sonia Cantel
- Laboratory for Translational Research, Harvard Medical School, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Jose A Halperin
- Laboratory for Translational Research, Hematology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 7, Boston, MA 02115, USA
| | - Bertal H Aktas
- Laboratory for Translational Research, Hematology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 7, Boston, MA 02115, USA
| | - Michael Chorev
- Laboratory for Translational Research, Hematology, Brigham and Women's Hospital, Harvard Medical School, 20 Shattuck Street, Thorn 7, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Novel multiplexed assay for identifying SH2 domain antagonists of STAT family proteins. PLoS One 2013; 8:e71646. [PMID: 23977103 PMCID: PMC3745430 DOI: 10.1371/journal.pone.0071646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
Some of the signal transducer and activator of transcription (STAT) family members are constitutively activated in a wide variety of human tumors. The activity of STAT depends on their Src homology 2 (SH2) domain-mediated binding to sequences containing phosphorylated tyrosine. Thus, antagonizing this binding is a feasible approach to inhibiting STAT activation. We have developed a novel multiplexed assay for STAT3- and STAT5b-SH2 binding, based on amplified luminescent proximity homogeneous assay (Alpha) technology. AlphaLISA and AlphaScreen beads were combined in a single-well assay, which allowed the binding of STAT3- and STAT5b-SH2 to phosphotyrosine peptides to be simultaneously monitored. Biotin-labeled recombinant human STAT proteins were obtained as N- and C-terminal deletion mutants. The spacer length of the DIG-labeled peptide, the reaction time, and the concentration of sodium chloride were optimized to establish a HTS system with Z' values of greater than 0.6 for both STAT3- and STAT5b-SH2 binding. We performed a HTS campaign for chemical libraries using this multiplexed assay and identified hit compounds. A 2-chloro-1,4-naphthalenedione derivative, Compound 1, preferentially inhibited STAT3-SH2 binding in vitro, and the nuclear translocation of STAT3 in HeLa cells. Initial structure activity relationship (SAR) studies using the multiplexed assay showed the 3-substituent effect on both the activity and selectivity of STAT3 and STAT5b inhibition. Therefore, this multiplexed assay is useful for not only searching for potential lead compounds but also obtaining SAR data for developing new STAT3/STAT5b inhibitors.
Collapse
|
8
|
Gauthier N, Caron M, Pedro L, Arcand M, Blouin J, Labonté A, Normand C, Paquet V, Rodenbrock A, Roy M, Rouleau N, Beaudet L, Padrós J, Rodriguez-Suarez R. Development of homogeneous nonradioactive methyltransferase and demethylase assays targeting histone H3 lysine 4. ACTA ACUST UNITED AC 2011; 17:49-58. [PMID: 21940714 DOI: 10.1177/1087057111416659] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone posttranslational modifications are among the epigenetic mechanisms that modulate chromatin structure and gene transcription. Histone methylation and demethylation are dynamic processes controlled respectively by histone methyltransferases (HMTs) and demethylases (HDMs). Several HMTs and HDMs have been implicated in cancer, inflammation, and diabetes, making them attractive targets for drug therapy. Hence, the discovery of small-molecule modulators for these two enzyme classes has drawn significant attention from the pharmaceutical industry. Herein, the authors describe the development and optimization of homogeneous LANCE Ultra and AlphaLISA antibody-based assays for measuring the catalytic activity of two epigenetic enzymes acting on lysine 4 of histone H3: SET7/9 methyltransferase and LSD1 demethylase. Both the SET7/9 and LSD1 assays were designed as signal-increase assays using biotinylated peptides derived from the N-terminus of histone H3. In addition, the SET7/9 assay was demonstrated using full-length histone H3 protein as substrate in the AlphaLISA format. Optimized assays in 384-well plates are robust (Z' factors ≥0.7) and sensitive, requiring only nanomolar concentrations of enzyme and substrate. All assays allowed profiling of known SET7/9 and LSD1 inhibitors. The results demonstrate that the optimized LANCE Ultra and AlphaLISA assay formats provide a relevant biochemical screening approach toward the identification of small-molecule inhibitors of HMTs and HDMs that could lead to novel epigenetic therapies.
Collapse
Affiliation(s)
- Nancy Gauthier
- PerkinElmer,1744 William Street, Suite 600, Montreal, Quebec, Canada, H3J 1R4
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dausse E, Taouji S, Evadé L, Di Primo C, Chevet E, Toulmé JJ. HAPIscreen, a method for high-throughput aptamer identification. J Nanobiotechnology 2011; 9:25. [PMID: 21639912 PMCID: PMC3127992 DOI: 10.1186/1477-3155-9-25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 06/03/2011] [Indexed: 01/24/2023] Open
Abstract
Background Aptamers are oligonucleotides displaying specific binding properties for a predetermined target. They are selected from libraries of randomly synthesized candidates through an in vitro selection process termed SELEX (Systematic Evolution of Ligands by EXponential enrichment) alternating selection and amplification steps. SELEX is followed by cloning and sequencing of the enriched pool of oligonucleotides to enable comparison of the selected sequences. The most represented candidates are then synthesized and their binding properties are individually evaluated thus leading to the identification of aptamers. These post-selection steps are time consuming and introduce a bias to the expense of poorly amplified binders that might be of high affinity and are consequently underrepresented. A method that would circumvent these limitations would be highly valuable. Results We describe a novel homogeneous solution-based method for screening large populations of oligonucleotide candidates generated from SELEX. This approach, based on the AlphaScreen® technology, is carried out on the exclusive basis of the binding properties of the selected candidates without the needs of performing a priori sequencing. It therefore enables the functional identification of high affinity aptamers. We validated the HAPIscreen (High throughput APtamer Identification screen) methodology using aptamers targeted to RNA hairpins, previously identified in our laboratory. We then screened pools of candidates issued from SELEX rounds in a 384 well microplate format and identify new RNA aptamers to pre-microRNAs. Conclusions HAPIscreen, an Alphascreen®-based methodology for the identification of aptamers is faster and less biased than current procedures based on sequence comparison of selected oligonucleotides and sampling binding properties of few individuals. Moreover this methodology allows for screening larger number of candidates. Used here for selecting anti-premiR aptamers, HAPIscreen can be adapted to any type of tagged target and is fully amenable to automation.
Collapse
Affiliation(s)
- Eric Dausse
- Inserm U869, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33706 Pessac, France
| | | | | | | | | | | |
Collapse
|
10
|
Guo M, Xia Z, Ma H. Functional phosphosite screening for targeted protein–protein interactions by combining phosphoproteomics strategies and mammalian two-hybrid assays. MOLECULAR BIOSYSTEMS 2011; 7:1838-41. [DOI: 10.1039/c1mb05053b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|