1
|
Kiss DJ, Oláh J, Tóth G, Varga M, Stirling A, Menyhárd DK, Ferenczy GG. The Structure-Derived Mechanism of Box H/ACA Pseudouridine Synthase Offers a Plausible Paradigm for Programmable RNA Editing. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dóra Judit Kiss
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Gergely Tóth
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. stny. 1/a, H-1117 Budapest, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Pázmány P. stny. 1/c, H-1117 Budapest, Hungary
| | - András Stirling
- Theoretical Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Dóra K. Menyhárd
- MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. stny. 1/a, H-1117 Budapest, Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| |
Collapse
|
2
|
Martinez Campos C, Tsai K, Courtney DG, Bogerd HP, Holley CL, Cullen BR. Mapping of pseudouridine residues on cellular and viral transcripts using a novel antibody-based technique. RNA (NEW YORK, N.Y.) 2021; 27:1400-1411. [PMID: 34376564 PMCID: PMC8522693 DOI: 10.1261/rna.078940.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 05/24/2023]
Abstract
Pseudouridine (Ψ) is the most common noncanonical ribonucleoside present on mammalian noncoding RNAs (ncRNAs), including rRNAs, tRNAs, and snRNAs, where it contributes ∼7% of the total uridine level. However, Ψ constitutes only ∼0.1% of the uridines present on mRNAs and its effect on mRNA function remains unclear. Ψ residues have been shown to inhibit the detection of exogenous RNA transcripts by host innate immune factors, thus raising the possibility that viruses might have subverted the addition of Ψ residues to mRNAs by host pseudouridine synthase (PUS) enzymes as a way to inhibit antiviral responses in infected cells. Here, we describe and validate a novel antibody-based Ψ mapping technique called photo-crosslinking-assisted Ψ sequencing (PA-Ψ-seq) and use it to map Ψ residues on not only multiple cellular RNAs but also on the mRNAs and genomic RNA encoded by HIV-1. We describe 293T-derived cell lines in which human PUS enzymes previously reported to add Ψ residues to human mRNAs, specifically PUS1, PUS7, and TRUB1/PUS4, were inactivated by gene editing. Surprisingly, while this allowed us to assign several sites of Ψ addition on cellular mRNAs to each of these three PUS enzymes, Ψ sites present on HIV-1 transcripts remained unaffected. Moreover, loss of PUS1, PUS7, or TRUB1 function did not significantly reduce the level of Ψ residues detected on total human mRNA below the ∼0.1% level seen in wild-type cells, thus implying that the PUS enzyme(s) that adds the bulk of Ψ residues to human mRNAs remains to be defined.
Collapse
Affiliation(s)
- Cecilia Martinez Campos
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Kevin Tsai
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David G Courtney
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Christopher L Holley
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
3
|
Schmidt A, Hanspach G, Hengesbach M. Structural dynamics govern substrate recruitment and catalytic turnover in H/ACA RNP pseudouridylation. RNA Biol 2021; 18:1300-1309. [PMID: 33111609 PMCID: PMC8354600 DOI: 10.1080/15476286.2020.1842984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 01/17/2023] Open
Abstract
H/ACA ribonucleoproteins catalyse the sequence-dependent pseudouridylation of ribosomal and spliceosomal RNAs. Here, we reconstitute site-specifically fluorophore labelled H/ACA complexes and analyse their structural dynamics using single-molecule FRET spectroscopy. Our results show that the guide RNA is distorted into a substrate-binding competent conformation by specific protein interactions. Analysis of the reaction pathway using atomic mutagenesis establishes a new model how individual protein domains contribute to catalysis. Taken together, these results identify and characterize individual roles for all accessory proteins on the assembly and function of H/ACA RNPs.
Collapse
Affiliation(s)
- Andreas Schmidt
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Hanspach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Czekay DP, Kothe U. H/ACA Small Ribonucleoproteins: Structural and Functional Comparison Between Archaea and Eukaryotes. Front Microbiol 2021; 12:654370. [PMID: 33776984 PMCID: PMC7991803 DOI: 10.3389/fmicb.2021.654370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
During ribosome synthesis, ribosomal RNA is modified through the formation of many pseudouridines and methylations which contribute to ribosome function across all domains of life. In archaea and eukaryotes, pseudouridylation of rRNA is catalyzed by H/ACA small ribonucleoproteins (sRNPs) utilizing different H/ACA guide RNAs to identify target uridines for modification. H/ACA sRNPs are conserved in archaea and eukaryotes, as they share a common general architecture and function, but there are also several notable differences between archaeal and eukaryotic H/ACA sRNPs. Due to the higher protein stability in archaea, we have more information on the structure of archaeal H/ACA sRNPs compared to eukaryotic counterparts. However, based on the long history of yeast genetic and other cellular studies, the biological role of H/ACA sRNPs during ribosome biogenesis is better understood in eukaryotes than archaea. Therefore, this review provides an overview of the current knowledge on H/ACA sRNPs from archaea, in particular their structure and function, and relates it to our understanding of the roles of eukaryotic H/ACA sRNP during eukaryotic ribosome synthesis and beyond. Based on this comparison of our current insights into archaeal and eukaryotic H/ACA sRNPs, we discuss what role archaeal H/ACA sRNPs may play in the formation of ribosomes.
Collapse
Affiliation(s)
- Dominic P Czekay
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
5
|
Pseudouridylation defect due to DKC1 and NOP10 mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. Proc Natl Acad Sci U S A 2020; 117:15137-15147. [PMID: 32554502 DOI: 10.1073/pnas.2002328117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA modifications play a fundamental role in cellular function. Pseudouridylation, the most abundant RNA modification, is catalyzed by the H/ACA small ribonucleoprotein (snoRNP) complex that shares four core proteins, dyskerin (DKC1), NOP10, NHP2, and GAR1. Mutations in DKC1, NOP10, or NHP2 cause dyskeratosis congenita (DC), a disorder characterized by telomere attrition. Here, we report a phenotype comprising nephrotic syndrome, cataracts, sensorineural deafness, enterocolitis, and early lethality in two pedigrees: males with DKC1 p.Glu206Lys and two children with homozygous NOP10 p.Thr16Met. Females with heterozygous DKC1 p.Glu206Lys developed cataracts and sensorineural deafness, but nephrotic syndrome in only one case of skewed X-inactivation. We found telomere attrition in both pedigrees, but no mucocutaneous abnormalities suggestive of DC. Both mutations fall at the dyskerin-NOP10 binding interface in a region distinct from those implicated in DC, impair the dyskerin-NOP10 interaction, and disrupt the catalytic pseudouridylation site. Accordingly, we found reduced pseudouridine levels in the ribosomal RNA (rRNA) of the patients. Zebrafish dkc1 mutants recapitulate the human phenotype and show reduced 18S pseudouridylation, ribosomal dysregulation, and a cell-cycle defect in the absence of telomere attrition. We therefore propose that this human disorder is the consequence of defective snoRNP pseudouridylation and ribosomal dysfunction.
Collapse
|
6
|
Kiss DJ, Oláh J, Tóth G, Menyhárd DK, Ferenczy GG. Quantum chemical calculations support pseudouridine synthase reaction through a glycal intermediate and provide details of the mechanism. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2361-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Henras AK, Plisson-Chastang C, Humbert O, Romeo Y, Henry Y. Synthesis, Function, and Heterogeneity of snoRNA-Guided Posttranscriptional Nucleoside Modifications in Eukaryotic Ribosomal RNAs. Enzymes 2017; 41:169-213. [PMID: 28601222 DOI: 10.1016/bs.enz.2017.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosomal RNAs contain numerous 2'-O-methylated nucleosides and pseudouridines. Methylation of the 2' oxygen of ribose moieties and isomerization of uridines into pseudouridines are catalyzed by C/D and H/ACA small nucleolar ribonucleoprotein particles, respectively. We review the composition, structure, and mode of action of archaeal and eukaryotic C/D and H/ACA particles. Most rRNA modifications cluster in functionally crucial regions of the rRNAs, suggesting they play important roles in translation. Some of these modifications promote global translation efficiency or modulate translation fidelity. Strikingly, recent quantitative nucleoside modification profiling methods have revealed that a subset of modification sites is not always fully modified. The finding of such ribosome heterogeneity is in line with the concept of specialized ribosomes that could preferentially translate specific mRNAs. This emerging concept is supported by findings that some human diseases are caused by defects in the rRNA modification machinery correlated with a significant alteration of IRES-dependent translation.
Collapse
Affiliation(s)
- Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Humbert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Abstract
Pseudouridine (Ψ) is the most abundant posttranscriptional modification in noncoding RNAs. Pseudouridines are often clustered in important regions of rRNAs (ribosomal RNAs), snRNAs (small nuclear RNAs), and tRNAs (transfer RNAs), contributing to RNA function. Pseudouridylation is governed by two independent mechanisms. The first involves single protein enzymes called pseudouridine synthases (PUSs) that alone recognize the substrate and catalyze the isomerization of uridine to pseudouridine (RNA-independent pseudouridylation). The second is an RNA-guided pseudouridylation by a family of box H/ACA RNPs (ribonucleoproteins), each of which consists of a unique RNA (box H/ACA RNA) and four common core proteins (Cbf5/NAP57/Dyskerin, Nhp2/L7Ae, Nop10, and Gar1). The RNA component serves as a guide that base pairs with the substrate RNA and directs the enzyme (Cbf5) to carry out the pseudouridylation reaction at a specific site. The crystal structures of many PUSs have been solved in numerous organisms including E. coli and human. Several partial and complete crystal structures of archaea and yeast box H/ACA RNPs are available, providing a rich source of information regarding the molecular interactions between protein components and box H/ACA RNA. Over the years, several experimental systems have been developed to study the mechanism and function of pseudouridylation. Apart from noncoding RNA pseudouridylation, recent experiments have provided evidence of mRNA pseudouridylation as well. Despite remarkable progress, there is a need to accelerate efforts in order to understand the detailed mechanisms and functions of RNA pseudouridylation.
Collapse
Affiliation(s)
- Meemanage D De Zoysa
- University of Rochester Medical Center, Center for RNA Biology, Rochester, NY, United States
| | - Yi-Tao Yu
- University of Rochester Medical Center, Center for RNA Biology, Rochester, NY, United States.
| |
Collapse
|
9
|
Majumder M, Bosmeny MS, Gupta R. Structure-function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation. RNA (NEW YORK, N.Y.) 2016; 22:1604-1619. [PMID: 27539785 PMCID: PMC5029457 DOI: 10.1261/rna.057547.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/25/2016] [Indexed: 05/31/2023]
Abstract
In Eukarya and Archaea, in addition to protein-only pseudouridine (Ψ) synthases, complexes containing one guide RNA and four proteins can also produce Ψ. Cbf5 protein is the Ψ synthase in the complex. Previously, we showed that Ψ's at positions 1940, 1942, and 2605 of Haloferax volcanii 23S rRNA are absent in a cbf5-deleted strain, and a plasmid-borne copy of cbf5 can rescue the synthesis of these Ψ's. Based on published reports of the structure of archaeal Cbf5 complexed with other proteins and RNAs, we identified several potential residues and structures in H. volcanii Cbf5, which were expected to play important roles in pseudouridylation. We mutated these structures and determined their effects on Ψ production at the three rRNA positions under in vivo conditions. Mutations of several residues in the catalytic domain and certain residues in the thumb loop either abolished Ψ's or produced partial modification; the latter indicates a slower rate of Ψ formation. The universal catalytic aspartate of Ψ synthases could be replaced by glutamate in Cbf5. A conserved histidine, which is common to Cbf5 and TruB is not needed, but another conserved histidine of Cbf5 is required for the in vivo RNA-guided Ψ formation. We also identified a previously unreported novelty in the pseudouridylation activity of Cbf5 where a single stem-loop of a guide H/ACA RNA is used to produce two closely placed Ψ's and mutations of certain residues of Cbf5 abolished one of these two Ψ's. In summary, this first in vivo study identifies several structures of an archaeal Cbf5 protein that are important for its RNA-guided pseudouridylation activity.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Michael S Bosmeny
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
10
|
Touw WG, van Beusekom B, Evers JMG, Vriend G, Joosten RP. Validation and correction of Zn-Cys xHis y complexes. Acta Crystallogr D Struct Biol 2016; 72:1110-1118. [PMID: 27710932 PMCID: PMC5053137 DOI: 10.1107/s2059798316013036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/12/2016] [Indexed: 11/10/2022] Open
Abstract
Many crystal structures in the Protein Data Bank contain zinc ions in a geometrically distorted tetrahedral complex with four Cys and/or His ligands. A method is presented to automatically validate and correct these zinc complexes. Analysis of the corrected zinc complexes shows that the average Zn-Cys distances and Cys-Zn-Cys angles are a function of the number of cysteines and histidines involved. The observed trends can be used to develop more context-sensitive targets for model validation and refinement.
Collapse
Affiliation(s)
- Wouter G. Touw
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein-Zuid 26-28, 6525 GA Nijmegen, The Netherlands
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Bart van Beusekom
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jochem M. G. Evers
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein-Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Geert Grooteplein-Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Robbie P. Joosten
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
11
|
Toffano-Nioche C, Gautheret D, Leclerc F. Revisiting the structure/function relationships of H/ACA(-like) RNAs: a unified model for Euryarchaea and Crenarchaea. Nucleic Acids Res 2015; 43:7744-61. [PMID: 26240384 PMCID: PMC4652768 DOI: 10.1093/nar/gkv756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/22/2023] Open
Abstract
A structural and functional classification of H/ACA and H/ACA-like motifs is obtained from the analysis of the H/ACA guide RNAs which have been identified previously in the genomes of Euryarchaea (Pyrococcus) and Crenarchaea (Pyrobaculum). A unified structure/function model is proposed based on the common structural determinants shared by H/ACA and H/ACA-like motifs in both Euryarchaea and Crenarchaea. Using a computational approach, structural and energetic rules for the guide:target RNA-RNA interactions are derived from structural and functional data on the H/ACA RNP particles. H/ACA(-like) motifs found in Pyrococcus are evaluated through the classification and their biological relevance is discussed. Extra-ribosomal targets found in both Pyrococcus and Pyrobaculum might support the hypothesis of a gene regulation mediated by H/ACA(-like) guide RNAs in archaea.
Collapse
Affiliation(s)
- Claire Toffano-Nioche
- I2BC, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris Sud, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| | - Daniel Gautheret
- I2BC, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris Sud, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| | - Fabrice Leclerc
- I2BC, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris Sud, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
12
|
RNA size is a critical factor for U-containing substrate selectivity and permanent pseudouridylated product release during the RNA:Ψ-synthase reaction catalyzed by box H/ACA sRNP enzyme at high temperature. Biochimie 2015; 113:134-42. [PMID: 25896443 DOI: 10.1016/j.biochi.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022]
Abstract
The box H/ACA small ribonucleoprotein particles (H/ACA sRNPs) are RNP enzymes that isomerize uridines (U) into pseudouridines (Ψ) in archaeal RNAs. The RNA component acts as a guide by forming base-pair interactions with the substrate RNA to specify the target nucleotide of the modification to the catalytic subunit Cbf5. Here, we have analyzed association of an H/ACA sRNP enzyme from the hyperthermophilic archaeon Pyrococcus abyssi with synthetic substrate RNAs of different length and with target nucleotide variants, and estimated their turnover at high temperature. In these conditions, we found that a short substrate, which length is restricted to the interaction with RNA guide sequence, has higher turnover rate. However, the longer substrate with additional 5' and 3' sequences non-complementary to the guide RNA is better discriminated by the U to Ψ conversion allowing the RNP enzyme to distinguish the modified product from the substrate. In addition, we identified that the conserved residue Y179 in the catalytic center of Cbf5 is crucial for substrate selectivity.
Collapse
|
13
|
Yu YT, Meier UT. RNA-guided isomerization of uridine to pseudouridine--pseudouridylation. RNA Biol 2014; 11:1483-94. [PMID: 25590339 PMCID: PMC4615163 DOI: 10.4161/15476286.2014.972855] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Box H/ACA ribonucleoproteins (RNPs), each consisting of one unique guide RNA and 4 common core proteins, constitute a family of complex enzymes that catalyze, in an RNA-guided manner, the isomerization of uridines to pseudouridines (Ψs) in RNAs, a reaction known as pseudouridylation. Over the years, box H/ACA RNPs have been extensively studied revealing many important aspects of these RNA modifying machines. In this review, we focus on the composition, structure, and biogenesis of H/ACA RNPs. We explain the mechanism of how this enzyme family recognizes and specifies its target uridine in a substrate RNA. We discuss the substrates of box H/ACA RNPs, focusing on rRNA (rRNA) and spliceosomal small nuclear RNA (snRNA). We describe the modification product Ψ and its contribution to RNA function. Finally, we consider possible mechanisms of the bone marrow failure syndrome dyskeratosis congenita and of prostate and other cancers linked to mutations in H/ACA RNPs.
Collapse
Key Words
- DC, dyskeratosis congenita
- H/ACA
- HH, hoyeraal-hreidarsson syndrome
- PIKK, phosphatidylinositol 3-kinase-related kinase
- PUA, pseudouridylase and archaeosine transglycosylase
- RNA modification
- RNA-guided
- RNP, ribonucleoprotein
- SMN, survival of motor neuron protein
- SSD, SHQ1 specific domain
- U, uridine
- X-DC, X-linked dyskeratosis congenita
- dyskeratosis congenita
- prostate cancer
- pseudouridine
- rRNA
- rRNA, ribosomal RNA
- ribonucleoproteins
- sca, small Cajal body
- snRNA, small nuclear RNA
- sno, small nucleolar
- snoRNA
- snoRNA, small nucleolar RNA
- spliceosomal small nuclear RNA
- tRNA, transfer RNA
- ψ, pseudouridine, 5-ribosyluracil
Collapse
MESH Headings
- Dyskeratosis Congenita/genetics
- Dyskeratosis Congenita/metabolism
- Dyskeratosis Congenita/pathology
- Humans
- Isomerism
- Male
- Mutation
- Nucleic Acid Conformation
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Pseudouridine/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Yi-Tao Yu
- University of Rochester Medical Center; Department of Biochemistry and Biophysics; Center for RNA Biology; Rochester, NY USA
| | - U Thomas Meier
- Albert Einstein College of Medicine; Department of Anatomy and Structural Biology; Bronx, NY USA
| |
Collapse
|
14
|
Fourmann JB, Tillault AS, Blaud M, Leclerc F, Branlant C, Charpentier B. Comparative study of two box H/ACA ribonucleoprotein pseudouridine-synthases: relation between conformational dynamics of the guide RNA, enzyme assembly and activity. PLoS One 2013; 8:e70313. [PMID: 23922977 PMCID: PMC3726423 DOI: 10.1371/journal.pone.0070313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/18/2013] [Indexed: 11/22/2022] Open
Abstract
Multiple RNA-guided pseudouridine synthases, H/ACA ribonucleoprotein particles (RNPs) which contain a guide RNA and four proteins, catalyze site-specific post-transcriptional isomerization of uridines into pseudouridines in substrate RNAs. In archaeal particles, the guide small RNA (sRNA) is anchored by the pseudouridine synthase aCBF5 and the ribosomal protein L7Ae. Protein aNOP10 interacts with both aCBF5 and L7Ae. The fourth protein, aGAR1, interacts with aCBF5 and enhances catalytic efficiency. Here, we compared the features of two H/ACA sRNAs, Pab21 and Pab91, from Pyrococcus abyssi. We found that aCBF5 binds much more weakly to Pab91 than to Pab21. Surprisingly, the Pab91 sRNP exhibits a higher catalytic efficiency than the Pab21 sRNP. We thus investigated the molecular basis of the differential efficiencies observed for the assembly and catalytic activity of the two enzymes. For this, we compared profiles of the extent of lead-induced cleavages in these sRNAs during a stepwise reconstitution of the sRNPs, and analyzed the impact of the absence of the aNOP10–L7Ae interaction. Such probing experiments indicated that the sRNAs undergo a series of conformational changes upon RNP assembly. These changes were also evaluated directly by circular dichroism (CD) spectroscopy, a tool highly adapted to analyzing RNA conformational dynamics. In addition, our results reveal that the conformation of helix P1 formed at the base of the H/ACA sRNAs is optimized in Pab21 for efficient aCBF5 binding and RNP assembly. Moreover, P1 swapping improved the assembly of the Pab91 sRNP. Nonetheless, efficient aCBF5 binding probably also relies on the pseudouridylation pocket which is not optimized for high activity in the case of Pab21.
Collapse
Affiliation(s)
- Jean-Baptiste Fourmann
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Anne-Sophie Tillault
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Magali Blaud
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Fabrice Leclerc
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christiane Branlant
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Bruno Charpentier
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Unité Mixte de Recherche Centre National de la Recherche Scientifique - Université de Lorraine, Biopôle de l’Université de Lorraine, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|
15
|
Yang X, Duan J, Li S, Wang P, Ma S, Ye K, Zhao XS. Kinetic and thermodynamic characterization of the reaction pathway of box H/ACA RNA-guided pseudouridine formation. Nucleic Acids Res 2012; 40:10925-36. [PMID: 23012266 PMCID: PMC3510513 DOI: 10.1093/nar/gks882] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/20/2022] Open
Abstract
The box H/ACA RNA-guided pseudouridine synthase is a complicated ribonucleoprotein enzyme that recruits substrate via both the guide RNA and the catalytic subunit Cbf5. Structural studies have revealed multiple conformations of the enzyme, but a quantitative description of the reaction pathway is still lacking. Using fluorescence correlation spectroscopy, we here measured the equilibrium dissociation constants and kinetic association and dissociation rates of substrate and product complexes mimicking various reaction intermediate states. These data support a sequential model for substrate loading and product release regulated by the thumb loop of Cbf5. The uridine substrate is first bound primarily through interaction with the guide RNA and then loaded into the active site while progressively interacted with the thumb. After modification, the subtle chemical structure change from uridine to pseudouridine at the target site triggers the release of the thumb, resulting in an intermediate complex with the product bound mainly by the guide RNA. By dissecting the role of Gar1 in individual steps of substrate turnover, we show that Gar1 plays a major role in catalysis and also accelerates product release about 2-fold. Our biophysical results integrate with previous structural knowledge into a coherent reaction pathway of H/ACA RNA-guided pseudouridylation.
Collapse
Affiliation(s)
- Xinxing Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Jingqi Duan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Shuang Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Peng Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Shoucai Ma
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Keqiong Ye
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| | - Xin Sheng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 and National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
16
|
Berulava T, Ziehe M, Klein-Hitpass L, Mladenov E, Thomale J, Rüther U, Horsthemke B. FTO levels affect RNA modification and the transcriptome. Eur J Hum Genet 2012; 21:317-23. [PMID: 22872099 DOI: 10.1038/ejhg.2012.168] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A block of single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity associated) gene is associated with variation in body weight. Previous works suggest that increased expression of FTO, which encodes a 2-oxoglutarate-dependent nucleic acid demethylase, leads to increased body weight, although the underlying mechanism has remained unclear. To elucidate the function of FTO, we examined the consequences of altered FTO levels in cultured cells and murine brain. Here we show that a knockdown of FTO in HEK293 cells affects the transcripts levels of genes involved in the response to starvation, whereas overexpression of FTO affects the transcript levels of genes related to RNA processing and metabolism. Subcellular localization of FTO further strengthens the latter notion. Using immunocytochemistry and confocal laser scanning microscopy, we detected FTO in nuclear speckles and--to a lesser and varying extent--in the nucleoplasm and nucleoli of HEK293, HeLa and MCF-7 cells. Moreover, RNA modification analyses revealed that loss of Fto affects the 3-methyluridine/uridine and pseudouridine/uridine ratios in total brain RNA. We conclude that altered levels of FTO have multiple and diverse consequences on RNA modifications and the transcriptome.
Collapse
Affiliation(s)
- Tea Berulava
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA-protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo.
Collapse
|