1
|
Nutho B, Pengthaisong S, Tankrathok A, Lee VS, Ketudat Cairns JR, Rungrotmongkol T, Hannongbua S. Structural Basis of Specific Glucoimidazole and Mannoimidazole Binding by Os3BGlu7. Biomolecules 2020; 10:biom10060907. [PMID: 32549280 PMCID: PMC7356692 DOI: 10.3390/biom10060907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023] Open
Abstract
β-Glucosidases and β-mannosidases hydrolyze substrates that differ only in the epimer of the nonreducing terminal sugar moiety, but most such enzymes show a strong preference for one activity or the other. Rice Os3BGlu7 and Os7BGlu26 β-glycosidases show a less strong preference, but Os3BGlu7 and Os7BGlu26 prefer glucosides and mannosides, respectively. Previous studies of crystal structures with glucoimidazole (GIm) and mannoimidazole (MIm) complexes and metadynamic simulations suggested that Os7BGlu26 hydrolyzes mannosides via the B2,5 transition state (TS) conformation preferred for mannosides and glucosides via their preferred 4H3/4E TS conformation. However, MIm is weakly bound by both enzymes. In the present study, we found that MIm was not bound in the active site of crystallized Os3BGlu7, but GIm was tightly bound in the -1 subsite in a 4H3/4E conformation via hydrogen bonds with the surrounding residues. One-microsecond molecular dynamics simulations showed that GIm was stably bound in the Os3BGlu7 active site and the glycone-binding site with little distortion. In contrast, MIm initialized in the B2,5 conformation rapidly relaxed to a E3/4H3 conformation and moved out into a position in the entrance of the active site, where it bound more stably despite making fewer interactions. The lack of MIm binding in the glycone site in protein crystals and simulations implies that the energy required to distort MIm to the B2,5 conformation for optimal active site residue interactions is sufficient to offset the energy of those interactions in Os3BGlu7. This balance between distortion and binding energy may also provide a rationale for glucosidase versus mannosidase specificity in plant β-glycosidases.
Collapse
Affiliation(s)
- Bodee Nutho
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Salila Pengthaisong
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (A.T.)
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anupong Tankrathok
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (A.T.)
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (A.T.)
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (J.R.K.C.); (T.R.); (S.H.); Tel.: +66-4422-4304 (J.R.K.C.); +66-2218-5426 (T.R.); +66-2218-7602 (S.H.)
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (J.R.K.C.); (T.R.); (S.H.); Tel.: +66-4422-4304 (J.R.K.C.); +66-2218-5426 (T.R.); +66-2218-7602 (S.H.)
| | - Supot Hannongbua
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: (J.R.K.C.); (T.R.); (S.H.); Tel.: +66-4422-4304 (J.R.K.C.); +66-2218-5426 (T.R.); +66-2218-7602 (S.H.)
| |
Collapse
|
2
|
Blaum BS, Neu U, Peters T, Stehle T. Spin ballet for sweet encounters: saturation-transfer difference NMR and X-ray crystallography complement each other in the elucidation of protein-glycan interactions. Acta Crystallogr F Struct Biol Commun 2018; 74:451-462. [PMID: 30084394 PMCID: PMC6096479 DOI: 10.1107/s2053230x18006581] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/28/2018] [Indexed: 03/11/2023] Open
Abstract
Biomolecular NMR spectroscopy has limitations in the determination of protein structures: an inherent size limit and the requirement for expensive and potentially difficult isotope labelling pose considerable hurdles. Therefore, structural analysis of larger proteins is almost exclusively performed by crystallography. However, the diversity of biological NMR applications outperforms that of any other structural biology technique. For the characterization of transient complexes formed by proteins and small ligands, notably oligosaccharides, one NMR technique has recently proven to be particularly powerful: saturation-transfer difference NMR (STD-NMR) spectroscopy. STD-NMR experiments are fast and simple to set up, with no general protein size limit and no requirement for isotope labelling. The method performs best in the moderate-to-low affinity range that is of interest in most of glycobiology. With small amounts of unlabelled protein, STD-NMR experiments can identify hits from mixtures of potential ligands, characterize mutant proteins and pinpoint binding epitopes on the ligand side. STD-NMR can thus be employed to complement and improve protein-ligand complex models obtained by other structural biology techniques or by purely computational means. With a set of protein-glycan interactions from our own work, this review provides an introduction to the technique for structural biologists. It exemplifies how crystallography and STD-NMR can be combined to elucidate protein-glycan (and other protein-ligand) interactions in atomic detail, and how the technique can extend structural biology from simplified systems amenable to crystallization to more complex biological entities such as membranes, live viruses or entire cells.
Collapse
Affiliation(s)
- Bärbel S. Blaum
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Ursula Neu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Mirabella S, D'Adamio G, Matassini C, Goti A, Delgado S, Gimeno A, Robina I, Moreno-Vargas AJ, Šesták S, Jiménez-Barbero J, Cardona F. Mechanistic Insight into the Binding of Multivalent Pyrrolidines to α-Mannosidases. Chemistry 2017; 23:14585-14596. [DOI: 10.1002/chem.201703011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Stefania Mirabella
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Giampiero D'Adamio
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Camilla Matassini
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| | - Andrea Goti
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| | - Sandra Delgado
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Ana Gimeno
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
| | - Inmaculada Robina
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; c/Prof. García González 1 41012 Sevilla Spain
| | - Antonio J. Moreno-Vargas
- Departamento de Química Orgánica; Facultad de Química; Universidad de Sevilla; c/Prof. García González 1 41012 Sevilla Spain
| | - Sergej Šesták
- Institute of Chemistry; Center for Glycomics; Slovak Academy of Sciences; Dúbravska cesta 9 84538 Bratislava Slovakia
| | - Jesús Jiménez-Barbero
- CIC bioGUNE; Bizkaia Science and Technology Park; Building 801A 48160 Derio Spain
- Ikerbasque; Basque Foundation for Science; Maria Diaz de Haro 5 48005 Bilbao Spain
- Departament Organic Chemistry II; EHU-UPV; 48040 Leioa Spain
| | - Francesca Cardona
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
- CNR-INO; Via N. Carrara 1 Sesto Fiorentino (FI) Italy
| |
Collapse
|
4
|
Groves P, Strzelecka-Kiliszek A, Sekrecka-Belniak A, Canales A, Jiménez-Barbero J, Bandorowicz-Pikula J, Pikula S, Cañada FJ. Exploring NMR methods as a tool to select suitable fluorescent nucleotide analogues. Org Biomol Chem 2014; 11:5332-8. [PMID: 23842795 DOI: 10.1039/c3ob40159f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fluorescent analogues provide important tools for biochemical/biophysical research. However, the analogues contain chemical modifications much larger than those known to affect ligand-binding, such as the inversion of a carbon centre or substitution of an atom. We lack experimental tools and protocols to select the most appropriate fluorescent analogue. Herein, we use several NMR spectroscopy methods, including Saturation Transfer Difference (STD), STD competition and transferred nuclear Overhauser effect spectroscopy (Tr-NOESY), as tools to select appropriate fluorescent probes. Annexin A6 (AnxA6) is a ubiquitous protein that forms in vitro GTP-induced ion channels. We used this protein as a model and screened guanosine triphosphate (GTP) and four fluorescent analogues against AnxA6. STD reported that the GTP moiety of all ligands made similar contacts with the protein, despite additional interactions between the fluorescent tags and AnxA6. Competition STD experiments verified that the analogues and GTP bind to the same site. Tr-NOESY indicated that the bound conformation of the base relative to ribose is altered for some analogues compared to GTP. MANT-GTP or the BODIPY thioester of guanosine 5'-O-(3-thiotriphosphate) are the most suitable fluorescent analogues for AnxA6, according to NMR. These results reveal NMR as a useful technique to select and design proper fluorescent tags for biochemical/biophysical assays.
Collapse
Affiliation(s)
- Patrick Groves
- Chemical Biology Division, Instituto de Tecnologia Química e Biológica (ITQB-UNL), Oeiras, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Tankrathok A, Iglesias-Fernández J, Luang S, Robinson RC, Kimura A, Rovira C, Hrmova M, Ketudat Cairns JR. Structural analysis and insights into the glycon specificity of the rice GH1 Os7BGlu26 β-D-mannosidase. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2124-35. [DOI: 10.1107/s0907444913020568] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 07/24/2013] [Indexed: 11/10/2022]
Abstract
Rice Os7BGlu26 is a GH1 family glycoside hydrolase with a threefold higherkcat/Kmvalue for 4-nitrophenyl β-D-mannoside (4NPMan) compared with 4-nitrophenyl β-D-glucoside (4NPGlc). To investigate its selectivity for β-D-mannoside and β-D-glucoside substrates, the structures of apo Os7BGlu26 at a resolution of 2.20 Å and of Os7BGlu26 with mannose at a resolution of 2.45 Å were elucidated from isomorphous crystals in space groupP212121. The (β/α)8-barrel structure is similar to other GH1 family structures, but with a narrower active-site cleft. The Os7BGlu26 structure with D-mannose corresponds to a product complex, with β-D-mannose in the1S5skew-boat conformation. Docking of the1S3,1S5,2SOand3S1pyranose-ring conformations of 4NPMan and 4NPGlc substrates into the active site of Os7BGlu26 indicated that the lowest energies were in the1S5and1S3skew-boat conformations. Comparison of these docked conformers with other rice GH1 structures revealed differences in the residues interacting with the catalytic acid/base between enzymes with and without β-D-mannosidase activity. The mutation of Tyr134 to Trp in Os7BGlu26 resulted in similarkcat/Kmvalues for 4NPMan and 4NPGlc, while mutation of Tyr134 to Phe resulted in a 37-fold higherkcat/Kmfor 4NPMan than 4NPGlc. Mutation of Cys182 to Thr decreased both the activity and the selectivity for β-D-mannoside. It was concluded that interactions with the catalytic acid/base play a significant role in glycon selection.
Collapse
|
6
|
Tavagnacco L, Engström O, Schnupf U, Saboungi ML, Himmel M, Widmalm G, Cesàro A, Brady JW. Caffeine and sugars interact in aqueous solutions: a simulation and NMR study. J Phys Chem B 2012; 116:11701-11. [PMID: 22897449 PMCID: PMC3477616 DOI: 10.1021/jp303910u] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics simulations were carried out on several systems of caffeine interacting with simple sugars. These included a single caffeine molecule in a 3 m solution of α-D-glucopyranose, at a caffeine concentration of 0.083 m, a single caffeine in a 3 m solution of β-D-glucopyranose, and a single caffeine molecule in a 1.08 m solution of sucrose (table sugar). Parallel nuclear magnetic resonance titration experiments were carried out on the same solutions under similar conditions. Consistent with previous thermodynamic experiments, the sugars were found to have an affinity for the caffeine molecules in both the simulations and experiments, and the binding in these complexes occurs by face-to-face stacking of the hydrophobic triad of protons of the pyranose rings against the caffeine face, rather than by hydrogen bonding. For the disaccharide, the binding occurs via stacking of the glucose ring against the caffeine, with a lesser affinity for the fructose observed. These findings are consistent with the association being driven by hydrophobic hydration and are similar to the previously observed binding of glucose rings to various other planar molecules, including indole, serotonin, and phenol.
Collapse
Affiliation(s)
| | - Olof Engström
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-10691 Stockholm, SWEDEN
| | - Udo Schnupf
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Marie-Louise Saboungi
- Centre de Recherche sur la Matière Divisée, 1 bis rue de la Férollerie, 45071 Orléans, FRANCE
| | - Michael Himmel
- National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401-3393
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-10691 Stockholm, SWEDEN
| | - Attilio Cesàro
- Department of Life Sciences, University of Trieste, Trieste, ITALY
| | - John W. Brady
- Department of Food Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
7
|
Lütteke T. The use of glycoinformatics in glycochemistry. Beilstein J Org Chem 2012; 8:915-29. [PMID: 23015842 PMCID: PMC3388882 DOI: 10.3762/bjoc.8.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/29/2012] [Indexed: 01/10/2023] Open
Abstract
Glycoinformatics is a small but growing branch of bioinformatics and chemoinformatics. Various resources are now available that can be of use to glycobiologists, but also to chemists who work on the synthesis or analysis of carbohydrates. This article gives an overview of existing glyco-specific databases and tools, with a focus on their application to glycochemistry: Databases can provide information on candidate glycan structures for synthesis, or on glyco-enzymes that can be used to synthesize carbohydrates. Statistical analyses of glycan databases help to plan glycan synthesis experiments. 3D-Structural data of protein-carbohydrate complexes are used in targeted drug design, and tools to support glycan structure analysis aid with quality control. Specific problems of glycoinformatics compared to bioinformatics for genomics or proteomics, especially concerning integration and long-term maintenance of the existing glycan databases, are also discussed.
Collapse
Affiliation(s)
- Thomas Lütteke
- Justus-Liebig-University Gießen, Institute of Veterinary Physiology and Biochemistry, Frankfurter Str. 100, 35392 Gießen, Germany
| |
Collapse
|
8
|
R. Ketudat Cairns J, Pengthaisong S, Luang S, Sansenya S, Tankrathok A, Svasti J. Protein-carbohydrate Interactions Leading to Hydrolysis and Transglycosylation in Plant Glycoside Hydrolase Family 1 Enzymes. J Appl Glycosci (1999) 2012. [DOI: 10.5458/jag.jag.jag-2011_022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
9
|
Sansenya S, Opassiri R, Kuaprasert B, Chen CJ, Ketudat Cairns JR. The crystal structure of rice (Oryza sativa L.) Os4BGlu12, an oligosaccharide and tuberonic acid glucoside-hydrolyzing β-glucosidase with significant thioglucohydrolase activity. Arch Biochem Biophys 2011; 510:62-72. [DOI: 10.1016/j.abb.2011.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 04/08/2011] [Accepted: 04/10/2011] [Indexed: 11/17/2022]
|