1
|
Madduri K, Acharya D, Lescallette A, McFadden J, Ketterer P, Bing J, Raman B. Application of a Cell-Free Synthetic Biology Platform for the Reconstitution of Teleocidin B and UK-2A Precursor Biosynthetic Pathways. ACS Synth Biol 2024. [PMID: 39469830 DOI: 10.1021/acssynbio.4c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report the successful cell-free reconstitution of two natural product biosynthetic pathways of divergent complexity and structural classes. We first constructed the teleocidin biosynthetic pathway using our BY-2 (tobacco) cell-free protein synthesis (CFPS) system. We discovered a direct interaction between TleA and MbtH, and showed that the BY-2 system is capable of producing more than 80 mg/L teleocidin B-3 with cofactor supplementation and ∼20 mg/L with no cofactors supplemented, demonstrating the high metabolic activity of the system. We then extended our methodology and report the first successful cell-free biosynthesis of UK-2 diol (precursor to the commercially valuable secondary metabolite UK-2A) from simple building blocks by refactoring a complex pathway of 10 proteins in the wheat germ CFPS system. We show that plant CFPS systems are suitable for reconstructing pathways and identifying the functions of uncharacterized genes linked to biosynthetic gene clusters and rate-limiting biosynthetic steps.
Collapse
Affiliation(s)
- Krishna Madduri
- Crop Health R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Deepa Acharya
- Crop Health R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Adam Lescallette
- Crop Health R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Jeremy McFadden
- Crop Health R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Paul Ketterer
- Crop Health R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Jade Bing
- Crop Health R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Babu Raman
- Crop Health R&D, Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
2
|
Zhang M, Peng Z, Huang Z, Fang J, Li X, Qiu X. Functional Diversity and Engineering of the Adenylation Domains in Nonribosomal Peptide Synthetases. Mar Drugs 2024; 22:349. [PMID: 39195464 DOI: 10.3390/md22080349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Nonribosomal peptides (NRPs) are biosynthesized by nonribosomal peptide synthetases (NRPSs) and are widely distributed in both terrestrial and marine organisms. Many NRPs and their analogs are biologically active and serve as therapeutic agents. The adenylation (A) domain is a key catalytic domain that primarily controls the sequence of a product during the assembling of NRPs and thus plays a predominant role in the structural diversity of NRPs. Engineering of the A domain to alter substrate specificity is a potential strategy for obtaining novel NRPs for pharmaceutical studies. On the basis of introducing the catalytic mechanism and multiple functions of the A domains, this article systematically describes several representative NRPS engineering strategies targeting the A domain, including mutagenesis of substrate-specificity codes, substitution of condensation-adenylation bidomains, the entire A domain or its subdomains, domain insertion, and whole-module rearrangements.
Collapse
Affiliation(s)
- Mengli Zhang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zijing Peng
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zhenkuai Huang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Jiaqi Fang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xinhai Li
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xiaoting Qiu
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| |
Collapse
|
3
|
Yu Y, van der Donk WA. PEARL-Catalyzed Peptide Bond Formation after Chain Reversal by Ureido-Forming Condensation Domains. ACS CENTRAL SCIENCE 2024; 10:1242-1250. [PMID: 38947204 PMCID: PMC11212132 DOI: 10.1021/acscentsci.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
A subset of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) are encoded in their biosynthetic gene clusters (BGCs) with enzymes annotated as lantibiotic dehydratases. The functions of these putative lantibiotic dehydratases remain unknown. Here, we characterize an NRPS-PKS BGC with a putative lantibiotic dehydratase from the bacterium Stackebrandtia nassauensis (sna). Heterologous expression revealed several metabolites produced by the BGC, and the omission of selected biosynthetic enzymes revealed the biosynthetic pathway toward these compounds. The final product is a bisarginyl ureidopeptide with an enone electrophile. The putative lantibiotic dehydratase catalyzes peptide bond formation to a Thr that extends the peptide scaffold opposite to the NRPS and PKS biosynthetic direction. The condensation domain of the NRPS SnaA catalyzes the formation of a ureido group, and bioinformatics analysis revealed a distinct active site signature EHHXXHDG of ureido-generating condensation (Curea) domains. This work demonstrates that the annotated lantibiotic dehydratase serves as a separate amide bond-forming machinery in addition to the NRPS, and that the lantibiotic dehydratase enzyme family possesses diverse catalytic activities in the biosynthesis of both ribosomal and nonribosomal natural products.
Collapse
Affiliation(s)
- Yue Yu
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Jin T, Ren J, Bai B, Wu W, Cao Y, Meng J, Zhang L. Effects of Klebsiella michiganensis LDS17 on Codonopsis pilosula growth, rhizosphere soil enzyme activities, and microflora, and genome-wide analysis of plant growth-promoting genes. Microbiol Spectr 2024; 12:e0405623. [PMID: 38563743 PMCID: PMC11064500 DOI: 10.1128/spectrum.04056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Wei Wu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Yongqing Cao
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jing Meng
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Lihui Zhang
- Department of Life Sciences, Changzhi University, Changzhi, China
| |
Collapse
|
5
|
Romanowski SB, Lee S, Kunakom S, Paulo BS, Recchia MJJ, Liu DY, Cavanagh H, Linington RG, Eustáquio AS. Identification of the lipodepsipeptide selethramide encoded in a giant nonribosomal peptide synthetase from a Burkholderia bacterium. Proc Natl Acad Sci U S A 2023; 120:e2304668120. [PMID: 37812712 PMCID: PMC10589681 DOI: 10.1073/pnas.2304668120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
Bacterial natural products have found many important industrial applications. Yet traditional discovery pipelines often prioritize individual natural product families despite the presence of multiple natural product biosynthetic gene clusters in each bacterial genome. Systematic characterization of talented strains is a means to expand the known natural product space. Here, we report genomics, epigenomics, and metabolomics studies of Burkholderia sp. FERM BP-3421, a soil isolate and known producer of antitumor spliceostatins. Its genome is composed of two chromosomes and two plasmids encoding at least 29 natural product families. Metabolomics studies showed that FERM BP-3421 also produces antifungal aminopyrrolnitrin and approved anticancer romidepsin. From the orphan metabolome features, we connected a lipopeptide of 1,928 Da to an 18-module nonribosomal peptide synthetase encoded as a single gene in chromosome 1. Isolation and structure elucidation led to the identification of selethramide which contains a repeating pattern of serine and leucine and is cyclized at the side chain oxygen of the one threonine residue at position 13. A (R)-3-hydroxybutyric acid moiety decorates the N-terminal serine. Initial attempts to obtain deletion mutants to probe the role of selethramide failed. After acquiring epigenome (methylome) data for FERM BP-3421, we employed a mimicry by methylation strategy that improved DNA transfer efficiency. Mutants defective in selethramide biosynthesis showed reduced surfactant activity and impaired swarming motility that could be chemically complemented with selethramide. This work unveils a lipopeptide that promotes surface motility, establishes improved DNA transfer efficiency, and sets the stage for continued natural product identification from a prolific strain.
Collapse
Affiliation(s)
- Sean B. Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | - Sanghoon Lee
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | - Bruno S. Paulo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | | | - Dennis Y. Liu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Hannah Cavanagh
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Roger G. Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| |
Collapse
|
6
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
7
|
Wirtz DA, Schneberger N, Klöppel S, Richarz R, Geyer M, König GM, Hagelueken G, Crüsemann M. Adenylation Domain-Guided Recruitment of Trans-Acting Nonheme Monooxygenases in Nonribosomal Peptide Biosynthesis. ACS Chem Biol 2023; 18:1748-1759. [PMID: 37366538 DOI: 10.1021/acschembio.3c00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Nonheme diiron monooxygenases (NHDMs) interact with nonribosomal peptide synthetase (NRPS) assembly lines to install β-hydroxylations at thiolation-domain-bound amino acids during nonribosomal peptide biosynthesis. The high potential of this enzyme family to diversify the products of engineered assembly lines is disproportionate to the currently small knowledge about their structures and mechanisms of substrate recognition. Here, we report the crystal structure of FrsH, the NHDM which catalyzes the β-hydroxylation of l-leucines during biosynthesis of the depsipeptide G protein inhibitor FR900359. Using biophysical approaches, we provide evidence that FrsH interacts with the cognate monomodular NRPS FrsA. By AlphaFold modeling and mutational studies, we detect and examine structural features within the assembly line crucial to recruit FrsH for leucine β-hydroxylation. These are, in contrast to cytochrome-dependent NRPS β-hydroxylases, not located on the thiolation domain, but on the adenylation domain. FrsH can be functionally substituted by homologous enzymes from biosyntheses of the cell-wall-targeting antibiotics lysobactin and hypeptin, indicating that these features are generally applicable to members of the family of trans-acting NHDMs. These insights give important directions for the construction of artificial assembly lines to yield bioactive and chemically complex peptide products.
Collapse
Affiliation(s)
- Daniel A Wirtz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Niels Schneberger
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sophie Klöppel
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - René Richarz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
8
|
Matsukawa N, Tsumori C, Ohnishi K, Kai K. Discovery of Cyclic Lipopeptides Ralstopeptins A and B from Ralstonia solanacearum Species Complex and Analysis of Biosynthetic Gene Evolution. ACS Chem Biol 2023; 18:572-582. [PMID: 36811556 DOI: 10.1021/acschembio.2c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Ralstonia solanacearum species complex (RSSC) strains are plant pathogens that produce lipopeptides (ralstonins and ralstoamides) by the polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) enzyme hybrid. Recently, ralstonins were found to be key molecules in the parasitism of RSSC to other hosts, Aspergillus and Fusarium fungi. The PKS-NRPS genes of RSSC strains in the GenBank database suggest the production of additional lipopeptides, although it has not been confirmed to date. Here, we report the genome-driven and mass-spectrometry-guided discovery, isolation, and structural elucidation of ralstopeptins A and B from strain MAFF 211519. Ralstopeptins were found to be cyclic lipopeptides with two amino acid residues less than ralstonins. The partial deletion of the gene encoding PKS-NRPS obliterated the production of ralstopeptins in MAFF 211519. Bioinformatic analyses suggested possible evolutionary events of the biosynthetic genes of RSSC lipopeptides, where intragenomic recombination may have occurred within the PKS-NRPS genes, reducing the gene size. The chlamydospore-inducing activities of ralstopeptins A and B, ralstonins A and B, and ralstoamide A in the fungus Fusarium oxysporum indicated a structural preference for ralstonins. Altogether, we propose a model for the evolutionary processes that contribute to the chemical diversity of RSSC lipopeptides and its relation to the endoparasitism of RSSC in fungi.
Collapse
Affiliation(s)
- Nao Matsukawa
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Chiaki Tsumori
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, 200 Otsu, Monobe, Nanko-ku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
9
|
Patel KD, Ahmed SF, MacDonald MR, Gulick AM. Structural Studies of Modular Nonribosomal Peptide Synthetases. Methods Mol Biol 2023; 2670:17-46. [PMID: 37184698 DOI: 10.1007/978-1-0716-3214-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The non-ribosomal peptide synthetases (NRPSs) are a family of modular enzymes involved in the production of peptide natural products. Not restricted by the constraints of ribosomal peptide and protein production, the NRPSs are able to incorporate unusual amino acids and other suitable building blocks into the final product. The NRPSs operate with an assembly line strategy in which peptide intermediates are covalently tethered to a peptidyl carrier protein and transported to different catalytic domains for the multiple steps in the biosynthesis. Often the carrier and catalytic domains are joined into a single large multidomain protein. This chapter serves to introduce the NRPS enzymes, using the nocardicin NRPS system as an example that highlights many common features to NRPS biochemistry. We then describe recent advances in the structural biology of NRPSs focusing on large multidomain structures that have been determined.
Collapse
Affiliation(s)
- Ketan D Patel
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Syed Fardin Ahmed
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Monica R MacDonald
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Andrew M Gulick
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, USA.
- Department of Structural Biology, Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY, USA.
| |
Collapse
|
10
|
Matilla MA, Evans TJ, Martín J, Udaondo Z, Lomas‐Martínez C, Rico‐Jiménez M, Reyes F, Salmond GPC. Herbicolin A production and its modulation by quorum sensing in a
Pantoea agglomerans
rhizobacterium bioactive against a broad spectrum of plant‐pathogenic fungi. Microb Biotechnol 2022. [PMID: 36528875 PMCID: PMC10364316 DOI: 10.1111/1751-7915.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Global population growth makes it necessary to increase agricultural production yields. However, climate change impacts and diseases caused by plant pathogens are challenging modern agriculture. Therefore, it is necessary to look for alternatives to the excessive use of chemical fertilizers and pesticides. The plant microbiota plays an essential role in plant nutrition and health, and offers enormous potential to meet future challenges of agriculture. In this context, here we characterized the antifungal properties of the rhizosphere bacterium Pantoea agglomerans 9Rz4, which is active against a broad spectrum of plant pathogenic fungi. Chemical analyses revealed that strain 9Rz4 produces the antifungal herbicolin A and its biosynthetic gene cluster was identified and characterized. We found that the only acyl-homoserine lactone-based quorum sensing system of 9Rz4 modulates herbicolin A gene cluster expression. No role of plasmid carriage in the production of herbicolin A was observed. Plant assays revealed that herbicolin A biosynthesis does not affect the root colonization ability of P. agglomerans 9Rz4. Current legislative restrictions are aimed at reducing the use of chemical pesticides in agriculture, and the results derived from this study may lay the foundations for the development of novel biopesticides from rhizosphere microorganisms.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
- Department of Biochemistry University of Cambridge Cambridge UK
| | - Terry J. Evans
- Department of Biochemistry University of Cambridge Cambridge UK
| | - Jesús Martín
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Granada Spain
| | - Zulema Udaondo
- Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock Arkansas USA
| | - Cristina Lomas‐Martínez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
| | - Míriam Rico‐Jiménez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín Consejo Superior de Investigaciones Científicas Granada Spain
| | - Fernando Reyes
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía Granada Spain
| | | |
Collapse
|
11
|
Jin T, Ren J, Li Y, Bai B, Liu R, Wang Y. Plant growth-promoting effect and genomic analysis of the P. putida LWPZF isolated from C. japonicum rhizosphere. AMB Express 2022; 12:101. [PMID: 35917000 PMCID: PMC9346032 DOI: 10.1186/s13568-022-01445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Plant growth-promoting rhizobacteria are a type of beneficial bacteria which inhabit in the rhizosphere and possess the abilities to promote plant growth. Pseudomonas putida LWPZF is a plant growth-promoting bacterium isolated from the rhizosphere soil of Cercidiphyllum japonicum. Inoculation treatment with LWPZF could significantly promote the growth of C. japonicum seedlings. P. putida LWPZF has a variety of plant growth-promoting properties, including the ability to solubilize phosphate, synthesize ACC deaminase and IAA. The P. putida LWPZF genome contained a circular chromosome (6,259,530 bp) and a circular plasmid (160,969 bp) with G+C contents of 61.75% and 58.25%, respectively. There were 5632 and 169 predicted protein-coding sequences (CDSs) on the chromosome and the plasmid respectively. Genome sequence analysis revealed lots of genes associated with biosynthesis of IAA, pyoverdine, ACC deaminase, trehalose, volatiles acetoin and 2,3-butanediol, 4-hydroxybenzoate, as well as gluconic acid contributing phosphate solubilization. Additionally, we identified many heavy metal resistance genes, including arsenate, copper, chromate, cobalt-zinc-cadmium, and mercury. These results suggest that P. putida LWPZF shows strong potential in the fields of biofertilizer, biocontrol and heavy metal contamination soil remediation. The data presented in this study will allow us to better understand the mechanisms of plant growth promotion, biocontrol, and anti-heavy metal of P. putida LWPZF.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China.
| | - Yunling Li
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Ruixiang Liu
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| | - Ying Wang
- Department of Life Sciences, Changzhi University, Changzhi, 046011, People's Republic of China
| |
Collapse
|
12
|
Booth TJ, Bozhüyük KAJ, Liston JD, Batey SFD, Lacey E, Wilkinson B. Bifurcation drives the evolution of assembly-line biosynthesis. Nat Commun 2022; 13:3498. [PMID: 35715397 PMCID: PMC9205934 DOI: 10.1038/s41467-022-30950-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
Reprogramming biosynthetic assembly-lines is a topic of intense interest. This is unsurprising as the scaffolds of most antibiotics in current clinical use are produced by such pathways. The modular nature of assembly-lines provides a direct relationship between the sequence of enzymatic domains and the chemical structure of the product, but rational reprogramming efforts have been met with limited success. To gain greater insight into the design process, we wanted to examine how Nature creates assembly-lines and searched for biosynthetic pathways that might represent evolutionary transitions. By examining the biosynthesis of the anti-tubercular wollamides, we uncover how whole gene duplication and neofunctionalization can result in pathway bifurcation. We show that, in the case of the wollamide biosynthesis, neofunctionalization is initiated by intragenomic recombination. This pathway bifurcation leads to redundancy, providing the genetic robustness required to enable large structural changes during the evolution of antibiotic structures. Should the new product be non-functional, gene loss can restore the original genotype. However, if the new product confers an advantage, depreciation and eventual loss of the original gene creates a new linear pathway. This provides the blind watchmaker equivalent to the design, build, test cycle of synthetic biology.
Collapse
Affiliation(s)
- Thomas J Booth
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
- School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Kenan A J Bozhüyük
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany
| | - Jonathon D Liston
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Sibyl F D Batey
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW, 2164, Australia
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
13
|
Zhang F, Ramos Alvarenga RF, Throckmorton K, Chanana S, Braun DR, Fossen J, Zhao M, McCrone S, Harper MK, Rajski SR, Rose WE, Andes DR, Thomas MG, Bugni TS. Genome Mining and Metabolomics Unveil Pseudonochelin: A Siderophore Containing 5-Aminosalicylate from a Marine-Derived Pseudonocardia sp. Bacterium. Org Lett 2022; 24:3998-4002. [PMID: 35649263 PMCID: PMC9270686 DOI: 10.1021/acs.orglett.2c01408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pseudonochelin (1), a siderophore from a marine-derived Pseudonocardia sp. bacterium, was discovered using genome mining and metabolomics technologies. A 5-aminosalicylic acid (5-ASA) unit, not previously found in siderophore natural products, was identified in 1. Annotation of a putative psn biosynthetic gene cluster combined with bioinformatics and isotopic enrichment studies enabled us to propose the biosynthesis of 1. Moreover, 1 was found to display in vitro and in vivo antibacterial activity in an iron-dependent fashion.
Collapse
Affiliation(s)
- Fan Zhang
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
- Current Address: Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, PR China
| | - René F. Ramos Alvarenga
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
- Current Address: Gingko Bioworks, Boston, Massachusetts, 02210, USA
| | - Kurt Throckmorton
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
- Current Address: Enveda Biosciences, Boulder, Colorado, 80301, USA
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Jen Fossen
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Miao Zhao
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
- Current Address: United States Food and Drug Administration, Silver Springs, Maryland 20903, USA
| | - Sue McCrone
- Pharmacy Practice Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Mary Kay Harper
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Warren E Rose
- Pharmacy Practice Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - David R. Andes
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| | - Michael G. Thomas
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
14
|
Li C, Hu Y, Wu X, Stumpf SD, Qi Y, D’Alessandro JM, Nepal KK, Sarotti AM, Cao S, Blodgett JAV. Discovery of unusual dimeric piperazyl cyclopeptides encoded by a Lentzea flaviverrucosa DSM 44664 biosynthetic supercluster. Proc Natl Acad Sci U S A 2022; 119:e2117941119. [PMID: 35439047 PMCID: PMC9169926 DOI: 10.1073/pnas.2117941119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
Rare actinomycetes represent an underexploited source of new bioactive compounds. Here, we report the use of a targeted metabologenomic approach to identify piperazyl compounds in the rare actinomycete Lentzea flaviverrucosa DSM 44664. These efforts to identify molecules that incorporate piperazate building blocks resulted in the discovery and structural elucidation of two dimeric biaryl-cyclohexapeptides, petrichorins A and B. Petrichorin B is a symmetric homodimer similar to the known compound chloptosin, but petrichorin A is unique among known piperazyl cyclopeptides because it is an asymmetric heterodimer. Due to the structural complexity of petrichorin A, solving its structure required a combination of several standard chemical methods plus in silico modeling, strain mutagenesis, and solving the structure of its biosynthetic intermediate petrichorin C for confident assignment. Furthermore, we found that the piperazyl cyclopeptides comprising each half of the petrichorin A heterodimer are made via two distinct nonribosomal peptide synthetase (NRPS) assembly lines, and the responsible NRPS enzymes are encoded within a contiguous biosynthetic supercluster on the L. flaviverrucosa chromosome. Requiring promiscuous cytochrome p450 crosslinking events for asymmetric and symmetric biaryl production, petrichorins A and B exhibited potent in vitro activity against A2780 human ovarian cancer, HT1080 fibrosarcoma, PC3 human prostate cancer, and Jurkat human T lymphocyte cell lines with IC50 values at low nM levels. Cyclic piperazyl peptides and their crosslinked derivatives are interesting drug leads, and our findings highlight the potential for heterodimeric bicyclic peptides such as petrichorin A for inclusion in future pharmaceutical design and discovery programs.
Collapse
Affiliation(s)
- Chunshun Li
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813
| | - Yifei Hu
- Department of Biology, Washington University in St Louis, St Louis MO 63122
| | - Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720
| | - Spencer D. Stumpf
- Department of Biology, Washington University in St Louis, St Louis MO 63122
| | - Yunci Qi
- Department of Biology, Washington University in St Louis, St Louis MO 63122
| | | | - Keshav K. Nepal
- Department of Biology, Washington University in St Louis, St Louis MO 63122
| | - Ariel M. Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813
| | | |
Collapse
|
15
|
Grove A. Extracytoplasmic Function Sigma Factors Governing Production of the Primary Siderophores in Pathogenic Burkholderia Species. Front Microbiol 2022; 13:851011. [PMID: 35283809 PMCID: PMC8908255 DOI: 10.3389/fmicb.2022.851011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria respond to changing environments by modulating their gene expression programs. One of the mechanisms by which this may be accomplished is by substituting the primary σ factor with an alternative σ factor belonging to the family of extracytoplasmic function (ECF) σ factors. ECF σ factors are activated only in presence of specific signals, and they direct the RNA polymerase (RNAP) to transcribe a defined subset of genes. One condition, which may trigger the activation of an ECF σ factor, is iron limitation. To overcome iron starvation, bacteria produce and secrete siderophores, which chelate iron and facilitate its cellular uptake. In the genus Burkholderia, which includes several serious human pathogens, uptake of iron is critical for virulence, and expression of biosynthetic gene clusters encoding proteins involved in synthesis and transport of the primary siderophores are under control of an ECF σ factor. This review summarizes mechanisms involved in regulation of these gene clusters, including the role of global transcriptional regulators. Since siderophore-mediated iron acquisition is important for virulence, interference with this process constitutes a viable approach to the treatment of bacterial infections.
Collapse
Affiliation(s)
- Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
16
|
Abstract
Iron is an essential element for Escherichia, Salmonella, and Shigella species. The acquisition of sufficient amounts of iron is difficult in many environments, including the intestinal tract, where these bacteria usually reside. Members of these genera have multiple iron transport systems to transport both ferrous and ferric iron. These include transporters for free ferrous iron, ferric iron associated with chelators, and heme. The numbers and types of transport systems in any species reflect the diversity of niches that it can inhabit. Many of the iron transport genes are found on mobile genetic elements or pathogenicity islands, and there is evidence of the spread of the genes among different species and pathotypes. This is notable among the pathogenic members of the genera in which iron transport systems acquired by horizontal gene transfer allow the bacteria to overcome host innate defenses that act to restrict the availability of iron to the pathogen. The need for iron is balanced by the need to avoid iron overload since excess iron is toxic to the cell. Genes for iron transport and metabolism are tightly regulated and respond to environmental cues, including iron availability, oxygen, and temperature. Master regulators, the iron sensor Fur and the Fur-regulated small RNA (sRNA) RyhB, coordinate the expression of iron transport and cellular metabolism genes in response to the availability of iron.
Collapse
|
17
|
Soeriyadi AH, Ongley SE, Kehr JC, Pickford R, Dittmann E, Neilan BA. Tailoring Enzyme Stringency Masks the Multispecificity of a Lyngbyatoxin (Indolactam Alkaloid) Nonribosomal Peptide Synthetase. Chembiochem 2021; 23:e202100574. [PMID: 34850512 DOI: 10.1002/cbic.202100574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/30/2021] [Indexed: 11/11/2022]
Abstract
Indolactam alkaloids are activators of protein kinase C (PKC) and are of pharmacological interest for the treatment of pathologies involving PKC dysregulation. The marine cyanobacterial nonribosomal peptide synthetase (NRPS) pathway for lyngbyatoxin biosynthesis, which we previously expressed in E. coli, was studied for its amenability towards the biosynthesis of indolactam variants. Modification of culture conditions for our E. coli heterologous expression host and analysis of pathway products suggested the native lyngbyatoxin pathway NRPS does possess a degree of relaxed specificity. Site-directed mutagenesis of two positions within the adenylation domain (A-domain) substrate-binding pocket was performed, resulting in an alteration of substrate preference between valine, isoleucine, and leucine. We observed relative congruence of in vitro substrate activation by the LtxA NRPS to in vivo product formation. While there was a preference for isoleucine over leucine, the substitution of alternative tailoring domains may unveil the true in vivo effects of the mutations introduced herein.
Collapse
Affiliation(s)
- Angela H Soeriyadi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Sarah E Ongley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, 2308, Australia
| | - Jan-Christoph Kehr
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Russel Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, 2052, Australia
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
18
|
Cui Z, Nguyen H, Bhardwaj M, Wang X, Büschleb M, Lemke A, Schütz C, Rohrbacher C, Junghanns P, Koppermann S, Ducho C, Thorson JS, Van Lanen SG. Enzymatic C β-H Functionalization of l-Arg and l-Leu in Nonribosomally Derived Peptidyl Natural Products: A Tale of Two Oxidoreductases. J Am Chem Soc 2021; 143:19425-19437. [PMID: 34767710 DOI: 10.1021/jacs.1c08177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muraymycins are peptidyl nucleoside antibiotics that contain two Cβ-modified amino acids, (2S,3S)-capreomycidine and (2S,3S)-β-OH-Leu. The former is also a component of chymostatins, which are aldehyde-containing peptidic protease inhibitors that─like muraymycin─are derived from nonribosomal peptide synthetases (NRPSs). Using feeding experiments and in vitro characterization of 12 recombinant proteins, the biosynthetic mechanism for both nonproteinogenic amino acids is now defined. The formation of (2S,3S)-capreomycidine is shown to involve an FAD-dependent dehydrogenase:cyclase that requires an NRPS-bound pathway intermediate as a substrate. This cryptic dehydrogenation strategy is both temporally and mechanistically distinct in comparison to the biosynthesis of other capreomycidine diastereomers, which has previously been shown to proceed by Cβ-hydroxylation of free l-Arg catalyzed by a member of the nonheme Fe2+- and α-ketoglutarate (αKG)-dependent dioxygenase family and (eventually) a dehydration-mediated cyclization process catalyzed by a distinct enzyme(s). Contrary to our initial expectation, the sole nonheme Fe2+- and αKG-dependent dioxygenase candidate Mur15 encoded within the muraymycin gene cluster is instead demonstrated to catalyze specific Cβ hydroxylation of the Leu residue to generate (2S,3S)-β-OH-Leu that is found in most muraymycin congeners. Importantly, and in contrast to known l-Arg-Cβ-hydroxylases, the Mur15-catalyzed reaction occurs after the NRPS-mediated assembly of the peptide scaffold. This late-stage functionalization affords the opportunity to exploit Mur15 as a biocatalyst, proof of concept of which is provided.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Han Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Minakshi Bhardwaj
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiachang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Martin Büschleb
- Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University, GöTammannstr. 2, 37077 Göttingen, Germany
| | - Anke Lemke
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Schütz
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Rohrbacher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Pierre Junghanns
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
19
|
Akbar S, Stevens DC. Functional genomics study of Pseudomonas putida to determine traits associated with avoidance of a myxobacterial predator. Sci Rep 2021; 11:16445. [PMID: 34385565 PMCID: PMC8360965 DOI: 10.1038/s41598-021-96046-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Predation contributes to the structure and diversity of microbial communities. Predatory myxobacteria are ubiquitous to a variety of microbial habitats and capably consume a broad diversity of microbial prey. Predator-prey experiments utilizing myxobacteria have provided details into predatory mechanisms and features that facilitate consumption of prey. However, prey resistance to myxobacterial predation remains underexplored, and prey resistances have been observed exclusively from predator-prey experiments that included the model myxobacterium Myxococcus xanthus. Utilizing a predator-prey pairing that instead included the myxobacterium, Cystobacter ferrugineus, with Pseudomonas putida as prey, we observed surviving phenotypes capable of eluding predation. Comparative transcriptomics between P. putida unexposed to C. ferrugineus and the survivor phenotype suggested that increased expression of efflux pumps, genes associated with mucoid conversion, and various membrane features contribute to predator avoidance. Unique features observed from the survivor phenotype when compared to the parent P. putida include small colony variation, efflux-mediated antibiotic resistance, phenazine-1-carboxylic acid production, and increased mucoid conversion. These results demonstrate the utility of myxobacterial predator-prey models and provide insight into prey resistances in response to predatory stress that might contribute to the phenotypic diversity and structure of bacterial communities.
Collapse
Affiliation(s)
- Shukria Akbar
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
| | - D Cole Stevens
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.
| |
Collapse
|
20
|
Iacovelli R, Bovenberg RAL, Driessen AJM. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. J Ind Microbiol Biotechnol 2021; 48:6324005. [PMID: 34279620 PMCID: PMC8788816 DOI: 10.1093/jimb/kuab045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/12/2021] [Indexed: 01/23/2023]
Abstract
Nonribosomal peptide synthetases (NRPS) are large multimodular enzymes that synthesize a diverse variety of peptides. Many of these are currently used as pharmaceuticals, thanks to their activity as antimicrobials (penicillin, vancomycin, daptomycin, echinocandin), immunosuppressant (cyclosporin) and anticancer compounds (bleomycin). Because of their biotechnological potential, NRPSs have been extensively studied in the past decades. In this review, we provide an overview of the main structural and functional features of these enzymes, and we consider the challenges and prospects of engineering NRPSs for the synthesis of novel compounds. Furthermore, we discuss secondary metabolism and NRP synthesis in the filamentous fungus Penicillium rubens and examine its potential for the production of novel and modified β-lactam antibiotics.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.,DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
21
|
Vinnik V, Zhang F, Park H, Cook TB, Throckmorton K, Pfleger BF, Bugni TS, Thomas MG. Structural and Biosynthetic Analysis of the Fabrubactins, Unusual Siderophores from Agrobacterium fabrum Strain C58. ACS Chem Biol 2021; 16:125-135. [PMID: 33373180 DOI: 10.1021/acschembio.0c00809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Siderophores are iron-chelating molecules produced by microorganisms and plants to acquire exogenous iron. Siderophore biosynthetic enzymology often produces elaborate and unique molecules through unusual reactions to enable specific recognition by the producing organisms. Herein, we report the structure of two siderophore analogs from Agrobacterium fabrum strain C58, which we named fabrubactin (FBN) A and FBN B. Additionally, we characterized the substrate specificities of the NRPS and PKS components. The structures suggest unique Favorskii-like rearrangements of the molecular backbone that we propose are catalyzed by the flavin-dependent monooxygenase, FbnE. FBN A and B contain a 1,1-dimethyl-3-amino-1,2,3,4-tetrahydro-7,8-dihydroxy-quinolin (Dmaq) moiety previously seen only in the anachelin cyanobacterial siderophores. We provide evidence that Dmaq is derived from l-DOPA and propose a mechanism for the formation of the mature Dmaq moiety. Our bioinformatic analyses suggest that FBN A and B and the anachelins belong to a large and diverse siderophore family widespread throughout the Rhizobium/Agrobacterium group, α-proteobacteria, and cyanobacteria.
Collapse
Affiliation(s)
- Vladimir Vinnik
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Fan Zhang
- Pharmaceutical Sciences Division, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Hyunjun Park
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- CATALOG, Boston, Massachusetts 02129, United States
| | - Taylor B. Cook
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kurt Throckmorton
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Michael G. Thomas
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
22
|
McErlean M, Liu X, Cui Z, Gust B, Van Lanen SG. Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics. Nat Prod Rep 2021; 38:1362-1407. [PMID: 33404015 DOI: 10.1039/d0np00064g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to September 2020 Hundreds of nucleoside-based natural products have been isolated from various microorganisms, several of which have been utilized in agriculture as pesticides and herbicides, in medicine as therapeutics for cancer and infectious disease, and as molecular probes to study biological processes. Natural products consisting of structural modifications of each of the canonical nucleosides have been discovered, ranging from simple modifications such as single-step alkylations or acylations to highly elaborate modifications that dramatically alter the nucleoside scaffold and require multiple enzyme-catalyzed reactions. A vast amount of genomic information has been uncovered the past two decades, which has subsequently allowed the first opportunity to interrogate the chemically intriguing enzymatic transformations for the latter type of modifications. This review highlights (i) the discovery and potential applications of structurally complex pyrimidine nucleoside antibiotics for which genetic information is known, (ii) the established reactions that convert the canonical pyrimidine into a new nucleoside scaffold, and (iii) the important tailoring reactions that impart further structural complexity to these molecules.
Collapse
Affiliation(s)
- M McErlean
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - X Liu
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - Z Cui
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - B Gust
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Germany
| | - S G Van Lanen
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| |
Collapse
|
23
|
Alonzo DA, Schmeing TM. Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations. Protein Sci 2020; 29:2316-2347. [PMID: 33073901 DOI: 10.1002/pro.3979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Depsipeptides are compounds that contain both ester bonds and amide bonds. Important natural product depsipeptides include the piscicide antimycin, the K+ ionophores cereulide and valinomycin, the anticancer agent cryptophycin, and the antimicrobial kutzneride. Furthermore, database searches return hundreds of uncharacterized systems likely to produce novel depsipeptides. These compounds are made by specialized nonribosomal peptide synthetases (NRPSs). NRPSs are biosynthetic megaenzymes that use a module architecture and multi-step catalytic cycle to assemble monomer substrates into peptides, or in the case of specialized depsipeptide synthetases, depsipeptides. Two NRPS domains, the condensation domain and the thioesterase domain, catalyze ester bond formation, and ester bonds are introduced into depsipeptides in several different ways. The two most common occur during cyclization, in a reaction between a hydroxy-containing side chain and the C-terminal amino acid residue in a peptide intermediate, and during incorporation into the growing peptide chain of an α-hydroxy acyl moiety, recruited either by direct selection of an α-hydroxy acid substrate or by selection of an α-keto acid substrate that is reduced in situ. In this article, we discuss how and when these esters are introduced during depsipeptide synthesis, survey notable depsipeptide synthetases, and review insight into bacterial depsipeptide synthetases recently gained from structural studies.
Collapse
Affiliation(s)
- Diego A Alonzo
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
24
|
Li Y, Tahlan K, Bignell DR. Functional Cross-Talk of MbtH-Like Proteins During Thaxtomin Biosynthesis in the Potato Common Scab Pathogen Streptomyces scabiei. Front Microbiol 2020; 11:585456. [PMID: 33178168 PMCID: PMC7593251 DOI: 10.3389/fmicb.2020.585456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Thaxtomin A is a potent phytotoxin that serves as the principle pathogenicity determinant of the common scab pathogen, Streptomyces scabiei, and is also a promising natural herbicide for agricultural applications. The biosynthesis of thaxtomin A involves the non-ribosomal peptide synthetases (NRPSs) TxtA and TxtB, and an MbtH-like protein (MLP), TxtH, which may function as a chaperone by promoting the proper folding of the two NRPS enzymes in S. scabiei. MLPs are required for the proper function of many NRPS enzymes in bacteria, and they are often capable of interacting with NRPSs from different biosynthetic pathways, though the mechanism by which this occurs is still poorly understood. To gain additional insights into MLP functional cross-talk, we conducted a broad survey of MLPs from diverse phylogenetic lineages to determine if they could functionally replace TxtH. The MLPs were assessed using a protein solubility assay to determine whether they could promote the soluble expression of the TxtA and TxtB adenylation domains. In addition, the MLPs were tested for their ability to restore thaxtomin production in a S. scabiei mutant that lacked TxtH and other endogenous MLPs. Our results showed that the MLPs investigated vary in their ability to exhibit functional cross-talk with TxtH, with two of the MLPs being unable to compensate for the loss of TxtH in the assays performed. The ability of an MLP to serve as a functional partner for the thaxtomin NRPS was not correlated with its overall amino acid similarity with TxtH, but instead with the presence of highly conserved residues. In silico structural analysis of TxtH in association with the TxtA and TxtB adenylation domains revealed that several such residues are situated at the predicted interaction interface, suggesting that they might be critical for promoting functional interactions between MLPs and the thaxtomin NRPS enzymes. Overall, our study provides additional insights into the mechanism of MLP cross-talk, and it enhances our understanding of the thaxtomin biosynthetic machinery. It is anticipated that our findings will have useful applications for both the control of common scab disease and the commercial production of thaxtomin A for agricultural use.
Collapse
|
25
|
Bernhardt M, Berman S, Zechel D, Bechthold A. Role of Two Exceptional trans Adenylation Domains and MbtH-like Proteins in the Biosynthesis of the Nonribosomal Peptide WS9324A from Streptomyces calvus ATCC 13382. Chembiochem 2020; 21:2659-2666. [PMID: 32333627 PMCID: PMC7539972 DOI: 10.1002/cbic.202000142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Indexed: 11/26/2022]
Abstract
Nonribosomal peptide synthetases (NRPS) are organized in a modular arrangement. Usually, the modular order corresponds to the assembly of the amino acids in the respective peptide, following the collinearity rule. The WS9326A biosynthetic gene cluster from Streptomyces calvus shows deviations from this rule. Most interesting is the presence of two trans adenylation domains that are located downstream of the modular NRPS arrangement. Adenylation domains are responsible for the activation of their respective amino acids. In this study, we confirmed the involvement of the trans adenylation domains in WS9326A biosynthesis by performing gene knockout experiments and by observing the selective adenylation of their predicted amino acid substrates in vitro. We conclude that the trans adenylation domains are essential for WS9326A biosynthesis. Moreover, both adenylation domains are observed to have MbtH‐like protein dependency. Overall, we conclude that the trans adenylation domains are essential for WS9326A biosynthesis.
Collapse
Affiliation(s)
- Mirjam Bernhardt
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Strass 19, 79104, Freiburg im Breisgau, Germany
| | - Stefanie Berman
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Strass 19, 79104, Freiburg im Breisgau, Germany
| | - David Zechel
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7 L 3 N6, Canada
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Strass 19, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
26
|
Wang L, Wang M, Fu Y, Huang P, Kong D, Niu G. Engineered biosynthesis of thaxtomin phytotoxins. Crit Rev Biotechnol 2020; 40:1163-1171. [PMID: 32819175 DOI: 10.1080/07388551.2020.1807461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herbicide-resistant weeds are a growing problem worldwide. Thaxtomin phytotoxins are a group of nitrated diketopiperazines produced by the potato common scab-causing pathogen Streptomyces scabies and other actinobacterial plant pathogens. They represent a unique class of microbial natural products with distinctive structural features and promising herbicidal activity. The biosynthesis of thaxtomins proceeds through multiple steps of unusual enzymatic reactions. Advances in understanding of thaxtomins biosynthetic machinery have provided the basis for precursor-directed biosynthesis, pathway refactoring, and one-pot biocombinatorial synthesis to generate thaxtomin analogues. We herein summarize recent findings on the biosynthesis of thaxtomins and highlight recent advances in the rational generation of novel thaxtomins for the development of potent herbicidal agents.
Collapse
Affiliation(s)
- Linqi Wang
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meiyan Wang
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yudie Fu
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Pengju Huang
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Dekun Kong
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing, China.,State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing, China
| |
Collapse
|
27
|
Kaniusaite M, Tailhades J, Kittilä T, Fage CD, Goode RJA, Schittenhelm RB, Cryle MJ. Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics. FEBS J 2020; 288:507-529. [PMID: 32359003 DOI: 10.1111/febs.15350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023]
Abstract
The biosynthesis of the glycopeptide antibiotics (GPAs) demonstrates the exceptional ability of nonribosomal peptide (NRP) synthesis to generate diverse and complex structures from an expanded array of amino acid precursors. Whilst the heptapeptide cores of GPAs share a conserved C terminus, including the aromatic residues involved cross-linking and that are essential for the antibiotic activity of GPAs, most structural diversity is found within the N terminus of the peptide. Furthermore, the origin of the (D)-stereochemistry of residue 1 of all GPAs is currently unclear, despite its importance for antibiotic activity. Given these important features, we have now reconstituted modules (M) 1-4 of the NRP synthetase (NRPS) assembly lines that synthesise the clinically relevant type IV GPA teicoplanin and the related compound A40926. Our results show that important roles in amino acid modification during the NRPS-mediated biosynthesis of GPAs can be ascribed to the actions of condensation domains present within these modules, including the incorporation of (D)-amino acids at position 1 of the peptide. Our results also indicate that hybrid NRPS assembly lines can be generated in a facile manner by mixing NRPS proteins from different systems and that uncoupling of peptide formation due to different rates of activity seen for NRPS modules can be controlled by varying the ratio of NRPS modules. Taken together, this indicates that NRPS assembly lines function as dynamic peptide assembly lines and not static megaenzyme complexes, which has significant implications for biosynthetic redesign of these important biosynthetic systems.
Collapse
Affiliation(s)
- Milda Kaniusaite
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,EMBL Australia, Monash University, Clayton, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,EMBL Australia, Monash University, Clayton, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Australia
| | - Tiia Kittilä
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | - Robert J A Goode
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Australia
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia.,EMBL Australia, Monash University, Clayton, Australia.,ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Australia
| |
Collapse
|
28
|
Schalk IJ, Rigouin C, Godet J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ Microbiol 2020; 22:1447-1466. [PMID: 32011068 DOI: 10.1111/1462-2920.14937] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
Abstract
Siderophores are iron-chelating molecules produced by bacteria to access iron, a key nutrient. These compounds have highly diverse chemical structures, with various chelating groups. They are released by bacteria into their environment to scavenge iron and bring it back into the cells. The biosynthesis of siderophores requires complex enzymatic processes and expression of the enzymes involved is very finely regulated by iron availability and diverse transcriptional regulators. Recent data have also highlighted the organization of the enzymes involved in siderophore biosynthesis into siderosomes, multi-enzymatic complexes involved in siderophore synthesis. An understanding of siderophore biosynthesis is of great importance, as these compounds have many potential biotechnological applications because of their metal-chelating properties and their key role in bacterial growth and virulence. This review focuses on the biosynthesis of siderophores produced by fluorescent Pseudomonads, bacteria capable of colonizing a large variety of ecological niches. They are characterized by the production of chromopeptide siderophores, called pyoverdines, which give the typical green colour characteristic of fluorescent pseudomonad cultures. Secondary siderophores are also produced by these strains and can have highly diverse structures (such as pyochelins, pseudomonine, yersiniabactin, corrugatin, achromobactin and quinolobactin).
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Coraline Rigouin
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Julien Godet
- Université de Strasbourg, Laboratoire de BioImagerie et Pathologies, UMR CNRS, 7021, Illkirch, France
| |
Collapse
|
29
|
Lundy TA, Mori S, Thamban Chandrika N, Garneau-Tsodikova S. Characterization of a Unique Interrupted Adenylation Domain That Can Catalyze Three Reactions. ACS Chem Biol 2020; 15:282-289. [PMID: 31887013 DOI: 10.1021/acschembio.9b00929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interrupted adenylation (A) domains contain auxiliary domains within their structure and are a subject of growing interest in the field of nonribosomal peptide biosynthesis. They have been shown to possess intriguing functions and structure as well as promising engineering potential. Here, we present the characterization of an unprecedented type of interrupted A domain from the columbamides biosynthetic pathway, ColG(AMsMbA). This interrupted A domain contains two back-to-back methylation (M) domains within the same interruption site in the A domain, whereas previously, naturally occurring reported and characterized interrupted A domains harbored only one M domain. By a series of radiometric and mass spectrometry assays, we show that the first and second M domains site specifically methylate the side-chain oxygen and backbone nitrogen of l-Ser after the substrate is transferred onto a carrier thiolation domain, ColG(T). This is the first reported characterization of a dimethylating back-to-back interrupted A domain. The insights gained by this work lay the foundation for future combinatorial biosynthesis of site specifically methylated nonribosomal peptides.
Collapse
Affiliation(s)
- Taylor A. Lundy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Shogo Mori
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
30
|
Lundy TA, Mori S, Garneau-Tsodikova S. Lessons learned in engineering interrupted adenylation domains when attempting to create trifunctional enzymes from three independent monofunctional ones. RSC Adv 2020; 10:34299-34307. [PMID: 35519055 PMCID: PMC9056781 DOI: 10.1039/d0ra05490a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
Interrupted adenylation (A) domains are fascinating examples of multifunctional enzymes. They are found in nonribosomal peptide synthetases (NRPSs), which biosynthesize nonribosomal peptides (NRPs), a major class of medically relevant natural products (NPs). Interrupted A domains contain the catalytic portion of another domain within them, typically a methylation (M) domain, thus combining both adenylation and methylation capabilities. In recent years, interrupted A domains have demonstrated tremendous enzyme engineering potential as they are able to be constructed artificially in a laboratory setting by combining the A and M domains of two separate NRPS proteins. A recent discovery and characterization of a naturally occurring interrupted A domain that harbored two M domains back-to-back, a trifunctional protein, showed the ingenuity of Nature to both N- and O-methylate amino acids, the building blocks of NRPs. Since we have shown that a single M domain could be added to an uninterrupted A domain to create an artificial interrupted A domain, we set out to investigate if: (i) an A domain could be engineered to contain two back-to-back M domains and (ii) the added M domains would have to reflect the pattern in Nature, a side chain (O-) methylating M domain (Ms) followed by a backbone (N-) methylating M domain (Mb), or if the order of the M domains could be reversed. To address these questions, we set out to create our own AMsMbA and AMbMsA engineered interrupted A domains. We evaluated these engineered proteins connected (in cis) and/or disconnected (in trans) from the native thiolation (T) domain, through a series of radiometric assays, high performance liquid chromatography (HPLC), and mass spectrometry (MS) for adenylation, loading, and methylation ability. We found that although adenylation activity was preserved in both versions (AMsMbA and AMbMsA), addition of the M domains, in natural and unnatural order, did not result in the desired added methylation capability. This study offers valuable insights into the limits of constructing engineered interrupted A domains as potential tools for modifications of NRPs. Interrupted adenylation (A) domains are fascinating examples of multifunctional enzymes with high potential for engineering. Here, limits were established in engineering trifunctional interrupted A domains.![]()
Collapse
Affiliation(s)
- Taylor A. Lundy
- Department of Pharmaceutical Sciences
- University of Kentucky
- College of Pharmacy
- Lexington
- USA
| | - Shogo Mori
- Department of Pharmaceutical Sciences
- University of Kentucky
- College of Pharmacy
- Lexington
- USA
| | | |
Collapse
|
31
|
Li Y, Liu J, Adekunle D, Bown L, Tahlan K, Bignell DR. TxtH is a key component of the thaxtomin biosynthetic machinery in the potato common scab pathogen Streptomyces scabies. MOLECULAR PLANT PATHOLOGY 2019; 20:1379-1393. [PMID: 31282068 PMCID: PMC6792134 DOI: 10.1111/mpp.12843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Streptomyces scabies causes potato common scab disease, which reduces the quality and market value of affected tubers. The predominant pathogenicity determinant produced by S. scabies is the thaxtomin A phytotoxin, which is essential for common scab disease development. Production of thaxtomin A involves the nonribosomal peptide synthetases (NRPSs) TxtA and TxtB, both of which contain an adenylation (A-) domain for selecting and activating the appropriate amino acid during thaxtomin biosynthesis. The genome of S. scabies 87.22 contains three small MbtH-like protein (MLP)-coding genes, one of which (txtH) is present in the thaxtomin biosynthesis gene cluster. MLP family members are typically required for the proper folding of NRPS A-domains and/or stimulating their activities. This study investigated the importance of TxtH during thaxtomin biosynthesis in S. scabies. Biochemical studies showed that TxtH is required for promoting the soluble expression of both the TxtA and TxtB A-domains in Escherichia coli, and amino acid residues essential for this activity were identified. Deletion of txtH in S. scabies significantly reduced thaxtomin A production, and deletion of one of the two additional MLP homologues in S. scabies completely abolished production. Engineered expression of all three S. scabies MLPs could restore thaxtomin A production in a triple MLP-deficient strain, while engineered expression of MLPs from other Streptomyces spp. could not. Furthermore, the constructed MLP mutants were reduced in virulence compared to wild-type S. scabies. The results of our study confirm that TxtH plays a key role in thaxtomin A biosynthesis and plant pathogenicity in S. scabies.
Collapse
Affiliation(s)
- Yuting Li
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| | - Jingyu Liu
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| | - Damilola Adekunle
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| | - Luke Bown
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
- Present address:
Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐Champaign1206 W Gregory DriveUrbana Il61801USA
| | - Kapil Tahlan
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| | - Dawn R.D. Bignell
- Department of BiologyMemorial University of Newfoundland232 Elizabeth AveSt. John'sNLA1B 3X9Canada
| |
Collapse
|
32
|
Throckmorton K, Vinnik V, Chowdhury R, Cook T, Chevrette MG, Maranas C, Pfleger B, Thomas MG. Directed Evolution Reveals the Functional Sequence Space of an Adenylation Domain Specificity Code. ACS Chem Biol 2019; 14:2044-2054. [PMID: 31430120 DOI: 10.1021/acschembio.9b00532] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonribosomal peptides are important natural products biosynthesized by nonribosomal peptide synthetases (NRPSs). Adenylation (A) domains of NRPSs are highly specific for the substrate they recognize. This recognition is determined by 10 residues in the substrate-binding pocket, termed the specificity code. This finding led to the proposal that nonribosomal peptides could be altered by specificity code swapping. Unfortunately, this approach has proven, with few exceptions, to be unproductive; changing the specificity code typically results in broadened specificity or poor function. To enhance our understanding of A domain substrate selectivity, we carried out a detailed analysis of the specificity code from the A domain of EntF, an NRPS involved in enterobactin biosynthesis in Escherichia coli. Using directed evolution and a genetic selection, we determined which sites in the code have strict residue requirements and which are tolerant of variation. We showed that the EntF A domain, and other l-Ser-specific A domains, have a functional sequence space for l-Ser recognition, rather than a single code. This functional space is more expansive than the aggregate of all characterized l-Ser-specific A domains: we identified 152 new l-Ser specificity codes. Together, our data provide essential insights into how to overcome the barriers that prevent rational changes to A domain specificity.
Collapse
Affiliation(s)
- Kurt Throckmorton
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Vladimir Vinnik
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Taylor Cook
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Marc G. Chevrette
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Genetics, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Costas Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Brian Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Michael George Thomas
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
33
|
Zhang J, Li X, Olmedo M, Holdorf AD, Shang Y, Artal-Sanz M, Yilmaz LS, Walhout AJM. A Delicate Balance between Bacterial Iron and Reactive Oxygen Species Supports Optimal C. elegans Development. Cell Host Microbe 2019; 26:400-411.e3. [PMID: 31444089 DOI: 10.1016/j.chom.2019.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/20/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
Iron is an essential micronutrient for all forms of life; low levels of iron cause human disease, while too much iron is toxic. Low iron levels induce reactive oxygen species (ROS) by disruption of the heme and iron-sulfur cluster-dependent electron transport chain (ETC). To identify bacterial metabolites that affect development, we screened the Keio Escherichia coli collection and uncovered 244 gene deletion mutants that slow Caenorhabditis elegans development. Several of these genes encode members of the ETC cytochrome bo oxidase complex, as well as iron importers. Surprisingly, either iron or anti-oxidant supplementation reversed the developmental delay. This suggests that low bacterial iron results in high bacterial ROS and vice versa, which causes oxidative stress in C. elegans that subsequently impairs mitochondrial function and delays development. Our data indicate that the bacterial diets of C. elegans provide precisely tailored amounts of iron to support proper development.
Collapse
Affiliation(s)
- Jingyan Zhang
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xuhang Li
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Maria Olmedo
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, 41013 Seville, Spain
| | - Amy D Holdorf
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ye Shang
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Universidad Pablo de Olavide, Department of Molecular Biology and Biochemical Engineering, 41013 Seville, Spain
| | - L Safak Yilmaz
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Albertha J M Walhout
- Program in Systems Biology and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
34
|
Zwahlen RD, Pohl C, Bovenberg RAL, Driessen AJM. Bacterial MbtH-like Proteins Stimulate Nonribosomal Peptide Synthetase-Derived Secondary Metabolism in Filamentous Fungi. ACS Synth Biol 2019; 8:1776-1787. [PMID: 31284717 PMCID: PMC6713467 DOI: 10.1021/acssynbio.9b00106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Filamentous fungi are known producers of bioactive natural products, low molecular weight molecules that arise from secondary metabolism. MbtH-like proteins (MLPs) are small (∼10 kDa) proteins, which associate noncovalently with adenylation domains of some bacterial nonribosomal peptide synthetases (NRPS). MLPs promote the folding, stability, and activity of NRPS enzymes. MLPs are highly conserved among a wide range of bacteria; however, they are absent from all fungal species sequenced to date. We analyzed the interaction potential of bacterial MLPs with eukaryotic NRPS enzymes first using crystal structures, with results suggesting a conservation of the interaction surface. Subsequently, we transformed five MLPs into Penicillium chrysogenum strains and analyzed changes in NRPS-derived metabolite profiles. Three of the five transformed MLPs increased the rate of nonribosomal peptide formation and elevated the concentrations of intermediate and final products of the penicillin, roquefortine, chrysogine, and fungisporin biosynthetic pathways. Our results suggest that even though MLPs are not found in the fungal domain of life, they can be used in fungal hosts as a tool for natural product discovery and biotechnological production.
Collapse
Affiliation(s)
- Reto D. Zwahlen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Carsten Pohl
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A. L. Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
- DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J. M. Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
35
|
The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase. Nat Commun 2019; 10:3432. [PMID: 31366889 PMCID: PMC6668435 DOI: 10.1038/s41467-019-11383-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/11/2019] [Indexed: 01/19/2023] Open
Abstract
Nonribosomal peptide synthetases produce diverse natural products using a multidomain architecture where the growing peptide, attached to an integrated carrier domain, is delivered to neighboring catalytic domains for bond formation and modification. Investigation of these systems can lead to the discovery of new structures, unusual biosynthetic transformations, and to the engineering of catalysts for generating new products. The antimicrobial β-lactone obafluorin is produced nonribosomally from dihydroxybenzoic acid and a β-hydroxy amino acid that cyclizes into the β-lactone during product release. Here we report the structure of the nonribosomal peptide synthetase ObiF1, highlighting the structure of the β-lactone-producing thioesterase domain and an interaction between the C-terminal MbtH-like domain with an upstream adenylation domain. Biochemical assays examine catalytic promiscuity, provide mechanistic insight, and demonstrate utility for generating obafluorin analogs. These results advance our understanding of the structural cycle of nonribosomal peptide synthetases and provide insights into the production of β-lactone natural products. The antimicrobial β-lactone obafluorin is produced by a Nonribosomal Peptide Synthetase (NRPS). Here the authors present the crystal structure of the obafluorin NRPS and develop a reconstitution assay that allows them to analyse product formation from obafluorin NRPS mutants and alternate substrates.
Collapse
|
36
|
Brown AS, Calcott MJ, Owen JG, Ackerley DF. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Nat Prod Rep 2019; 35:1210-1228. [PMID: 30069573 DOI: 10.1039/c8np00036k] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to May 2018 Non-ribosomal peptide synthetases (NRPSs) are mega-enzymes that form modular templates to assemble specific peptide products, independent of the ribosome. The autonomous nature of the modules in the template offers prospects for re-engineering NRPS enzymes to generate modified peptide products. Although this has clearly been a primary mechanism of natural product diversification throughout evolution, equivalent strategies have proven challenging to implement in the laboratory. In this review we examine key examples of successful and less-successful re-engineering of NRPS templates to generate novel peptides, with the aim of extracting practical guidelines to inform future efforts. We emphasise the importance of maintaining effective protein-protein interactions in recombinant NRPS templates, and identify strengths and limitations of diverse strategies for achieving different engineering outcomes.
Collapse
Affiliation(s)
- Alistair S Brown
- School of Biological Sciences, Victoria University of Wellington, New Zealand.
| | | | | | | |
Collapse
|
37
|
Cook TB, Pfleger BF. Leveraging synthetic biology for producing bioactive polyketides and non-ribosomal peptides in bacterial heterologous hosts. MEDCHEMCOMM 2019; 10:668-681. [PMID: 31191858 PMCID: PMC6540960 DOI: 10.1039/c9md00055k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/06/2019] [Indexed: 12/14/2022]
Abstract
Bacteria have historically been a rich source of natural products (e.g. polyketides and non-ribosomal peptides) that possess medically-relevant activities. Despite extensive discovery programs in both industry and academia, a plethora of biosynthetic pathways remain uncharacterized and the corresponding molecular products untested for potential bioactivities. This knowledge gap comes in part from the fact that many putative natural product producers have not been cultured in conventional laboratory settings in which the corresponding products are produced at detectable levels. Next-generation sequencing technologies are further increasing the knowledge gap by obtaining metagenomic sequence information from complex communities where production of the desired compound cannot be isolated in the laboratory. For these reasons, many groups are turning to synthetic biology to produce putative natural products in heterologous hosts. This strategy depends on the ability to heterologously express putative biosynthetic gene clusters and produce relevant quantities of the corresponding products. Actinobacteria remain the most abundant source of natural products and the most promising heterologous hosts for natural product discovery and production. However, researchers are discovering more natural products from other groups of bacteria, such as myxobacteria and cyanobacteria. Therefore, phylogenetically similar heterologous hosts have become promising candidates for synthesizing these novel molecules. The downside of working with these microbes is the lack of well-characterized genetic tools for optimizing expression of gene clusters and product titers. This review examines heterologous expression of natural product gene clusters in terms of the motivations for this research, the traits desired in an ideal host, tools available to the field, and a survey of recent progress.
Collapse
Affiliation(s)
- Taylor B Cook
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Dr. Room 3629 , Madison , WI 53706 , USA .
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Dr. Room 3629 , Madison , WI 53706 , USA .
| |
Collapse
|
38
|
Liu M, Jia Y, Xie Y, Zhang C, Ma J, Sun C, Ju J. Identification of the Actinomycin D Biosynthetic Pathway from Marine-Derived Streptomyces costaricanus SCSIO ZS0073. Mar Drugs 2019; 17:E240. [PMID: 31018504 PMCID: PMC6521150 DOI: 10.3390/md17040240] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
Bioactive secondary metabolites from Streptomycetes are important sources of lead compounds in current drug development. Streptomyces costaricanus SCSIO ZS0073, a mangrove-derived actinomycete, produces actinomycin D, a clinically used therapeutic for Wilm's tumor of the kidney, trophoblastic tumors and rhabdomyosarcoma. In this work, we identified the actinomycin biosynthetic gene cluster (BGC) acn by detailed analyses of the S. costaricanus SCSIO ZS0073 genome. This organism produces actinomycin D with a titer of ~69.8 μg mL-1 along with traces of actinomycin Xoβ. The acn cluster localized to a 39.8 kb length region consisting of 25 open reading frames (ORFs), including a set of four genes that drive the construction of the 4-methyl-3-hydroxy-anthranilic acid (4-MHA) precursor and three non-ribosomal peptide synthetases (NRPSs) that generate the 4-MHA pentapeptide semi-lactone, which, upon dimerization, affords final actinomycin D. Furthermore, the acn cluster contains four positive regulatory genes acnWU4RO, which were identified by in vivo gene inactivation studies. Our data provide insights into the genetic characteristics of this new mangrove-derived actinomycin D bioproducer, enabling future metabolic engineering campaigns to improve both titers and the structural diversities possible for actinomycin D and related analogues.
Collapse
Affiliation(s)
- Mengchan Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanxi Jia
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunchang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Chunyan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Changli Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- College of Oceanography, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Lundy TA, Mori S, Garneau-Tsodikova S. Probing the limits of interrupted adenylation domains by engineering a trifunctional enzyme capable of adenylation, N-, and S-methylation. Org Biomol Chem 2019; 17:1169-1175. [PMID: 30644493 DOI: 10.1039/c8ob02996b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adenylation (A) domains found in nonribosomal peptide synthetases (NRPSs) exhibit tremendous plasticity. Some A domains have been shown to display the ability to contain within them the catalytic portion of an auxiliary domain, most commonly that of a methyltransferase (M) enzyme. This unique feature of A domains interrupted by M domains allows them to possess bifunctionality, where they can both adenylate and methylate an amino acid substrate. Additionally, these types of inserted M domains are able to selectively carry out either backbone or side chain methylation of amino acids. Interruptions with M domains are naturally found to occur either between the a2-a3 or the a8-a9 of the ten conserved motifs of A domains. Herein, we set out to answer the following question: Can one A domain support two different M domain interruptions occurring in two different locations (a2-a3 and a8-a9) of the A domain and possess the ability to adenylate an amino acid and methylate it on both its side chain and backbone? To answer this question we added a backbone methylating M3S domain from TioS(A3aM3SA3b) between the a8-a9 region of a mono-interrupted A domain, TioN(AaMNAb), that already contained a side chain methylating MN domain between its a2-a3 region. We evaluated the di-interrupted A domain TioN(AMNAM3SA) with a series of radiometric and mass spectrometry assays and found that this engineered enzyme was indeed capable of all three activities. These findings show that production of an active trifunctional di-interrupted A domain is possible and represents an exciting new avenue for future nonribosomal peptide (NRP) derivatization.
Collapse
Affiliation(s)
- Taylor A Lundy
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, Lexington, KY 40536-0596, USA.
| | | | | |
Collapse
|
40
|
Degen A, Mayerthaler F, Mootz HD, Di Ventura B. Context-dependent activity of A domains in the tyrocidine synthetase. Sci Rep 2019; 9:5119. [PMID: 30914767 PMCID: PMC6435693 DOI: 10.1038/s41598-019-41492-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 01/08/2023] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are large, modular enzymes that produce bioactive peptides of tremendous structural and chemical diversity, due to the incorporation, alongside the canonical 20 amino acids, of non-proteinogenic amino acids, fatty acids, sugars and heterocyclic rings. For linear NRPSs, the size and composition of the peptide product is dictated by the number, order and specificity of the individual modules, each made of several domains. Given the size and complexity of NRPSs, most in vitro studies have focused on individual domains, di-domains or single modules extracted from the full-length proteins. However, intermodular interactions could play a critical role and regulate the activity of the domains and modules in unpredictable ways. Here we investigate in vitro substrate activation by three A domains of the tyrocidine synthetase TycC enzyme, systematically comparing their activity when alone (with the respective PCP domain), in pairs (di-modular constructs) or all together (tri-modular construct). Furthermore, we study the impact of mutations in the A or PCP domains in these various constructs. Our results suggest that substrate adenylation and effects of mutations largely depend on the context in which the domains/modules are. Therefore, generalizing properties observed for domains or modules in isolation should be done with caution.
Collapse
Affiliation(s)
- Anna Degen
- German Cancer Research Center DKFZ and Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Florian Mayerthaler
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149, Münster, Germany
| | - Henning D Mootz
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149, Münster, Germany
| | - Barbara Di Ventura
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
41
|
Ronnebaum TA, McFarlane JS, Prisinzano TE, Booker SJ, Lamb AL. Stuffed Methyltransferase Catalyzes the Penultimate Step of Pyochelin Biosynthesis. Biochemistry 2018; 58:665-678. [PMID: 30525512 DOI: 10.1021/acs.biochem.8b00716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nonribosomal peptide synthetases use tailoring domains to incorporate chemical diversity into the final natural product. A structurally unique set of tailoring domains are found to be stuffed within adenylation domains and have only recently begun to be characterized. PchF is the NRPS termination module in pyochelin biosynthesis and includes a stuffed methyltransferase domain responsible for S-adenosylmethionine (AdoMet)-dependent N-methylation. Recent studies of stuffed methyltransferase domains propose a model in which methylation occurs on amino acids after adenylation and thiolation rather than after condensation to the nascent peptide chain. Herein, we characterize the adenylation and stuffed methyltransferase didomain of PchF through the synthesis and use of substrate analogues, steady-state kinetics, and onium chalcogen effects. We provide evidence that methylation occurs through an SN2 reaction after thiolation, condensation, cyclization, and reduction of the module substrate cysteine and is the penultimate step in pyochelin biosynthesis.
Collapse
Affiliation(s)
| | | | | | - Squire J Booker
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and the Howard Hughes Medical Institute , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | | |
Collapse
|
42
|
Guzmán-Chávez F, Zwahlen RD, Bovenberg RAL, Driessen AJM. Engineering of the Filamentous Fungus Penicillium chrysogenum as Cell Factory for Natural Products. Front Microbiol 2018; 9:2768. [PMID: 30524395 PMCID: PMC6262359 DOI: 10.3389/fmicb.2018.02768] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Penicillium chrysogenum (renamed P. rubens) is the most studied member of a family of more than 350 Penicillium species that constitute the genus. Since the discovery of penicillin by Alexander Fleming, this filamentous fungus is used as a commercial β-lactam antibiotic producer. For several decades, P. chrysogenum was subjected to a classical strain improvement (CSI) program to increase penicillin titers. This resulted in a massive increase in the penicillin production capacity, paralleled by the silencing of several other biosynthetic gene clusters (BGCs), causing a reduction in the production of a broad range of BGC encoded natural products (NPs). Several approaches have been used to restore the ability of the penicillin production strains to synthetize the NPs lost during the CSI. Here, we summarize various re-activation mechanisms of BGCs, and how interference with regulation can be used as a strategy to activate or silence BGCs in filamentous fungi. To further emphasize the versatility of P. chrysogenum as a fungal production platform for NPs with potential commercial value, protein engineering of biosynthetic enzymes is discussed as a tool to develop de novo BGC pathways for new NPs.
Collapse
Affiliation(s)
- Fernando Guzmán-Chávez
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Reto D Zwahlen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Roel A L Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,DSM Biotechnology Centre, Delft, Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.,Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
43
|
Jiang G, Zuo R, Zhang Y, Powell MM, Zhang P, Hylton SM, Loria R, Ding Y. One-Pot Biocombinatorial Synthesis of Herbicidal Thaxtomins. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Guangde Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Ran Zuo
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Yi Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Magan M. Powell
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Peilan Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Sarah M. Hylton
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Rosemary Loria
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
44
|
An Orphan MbtH-Like Protein Interacts with Multiple Nonribosomal Peptide Synthetases in Myxococcus xanthus DK1622. J Bacteriol 2018; 200:JB.00346-18. [PMID: 30126939 DOI: 10.1128/jb.00346-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022] Open
Abstract
One mechanism by which bacteria and fungi produce bioactive natural products is the use of nonribosomal peptide synthetases (NRPSs). Many NRPSs in bacteria require members of the MbtH-like protein (MLP) superfamily for their solubility or function. Although MLPs are known to interact with the adenylation domains of NRPSs, the role MLPs play in NRPS enzymology has yet to be elucidated. MLPs are nearly always encoded within the biosynthetic gene clusters (BGCs) that also code for the NRPSs that interact with the MLP. Here, we identify 50 orphan MLPs from diverse bacteria. An orphan MLP is one that is encoded by a gene that is not directly adjacent to genes predicted to be involved in nonribosomal peptide biosynthesis. We targeted the orphan MLP MXAN_3118 from Myxococcus xanthus DK1622 for characterization. The M. xanthus DK1622 genome contains 15 NRPS-encoding BGCs but only one MLP-encoding gene (MXAN_3118). We tested the hypothesis that MXAN_3118 interacts with one or more NRPS using a combination of in vivo and in vitro assays. We determined that MXAN_3118 interacts with at least seven NRPSs from distinct BGCs. We show that one of these BGCs codes for NRPS enzymology that likely produces a valine-rich natural product that inhibits the clumping of M. xanthus DK1622 in liquid culture. MXAN_3118 is the first MLP to be identified that naturally interacts with multiple NRPS systems in a single organism. The finding of an MLP that naturally interacts with multiple NRPS systems suggests it may be harnessed as a "universal" MLP for generating functional hybrid NRPSs.IMPORTANCE MbtH-like proteins (MLPs) are essential accessory proteins for the function of many nonribosomal peptide synthetases (NRPSs). We identified 50 MLPs from diverse bacteria that are coded by genes that are not located near any NRPS-encoding biosynthetic gene clusters (BGCs). We define these as orphan MLPs because their NRPS partner(s) is unknown. Investigations into the orphan MLP from Myxococcus xanthus DK1622 determined that it interacts with NRPSs from at least seven distinct BGCs. Support for these MLP-NRPS interactions came from the use of a bacterial two-hybrid assay and copurification of the MLP with various NRPSs. The flexibility of this MLP to naturally interact with multiple NRPSs led us to hypothesize that this MLP may be used as a "universal" MLP during the construction of functional hybrid NRPSs.
Collapse
|
45
|
Mori S, Green KD, Choi R, Buchko GW, Fried MG, Garneau-Tsodikova S. Using MbtH-Like Proteins to Alter the Substrate Profile of a Nonribosomal Peptide Adenylation Enzyme. Chembiochem 2018; 19:2186-2194. [PMID: 30134012 DOI: 10.1002/cbic.201800240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/21/2018] [Indexed: 01/19/2023]
Abstract
MbtH-like proteins (MLPs) are required for soluble expression and/or optimal activity of some adenylation (A) domains of nonribosomal peptide synthetases. Because A domains can interact with noncognate MLP partners, how the function of an A domain, TioK, involved in the biosynthesis of the bisintercalator thiocoraline, is altered by noncognate MLPs has been investigated. Measuring TioK activity with 12 different MLPs from a variety of bacterial species by using a radiometric assay suggested that the A domain substrate promiscuity could be altered by foreign MLPs. Kinetic studies and bioinformatics analysis expanded the complexity of MLP functions and interactions.
Collapse
Affiliation(s)
- Shogo Mori
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone St., Lexington, KY, 40536-0596, USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone St., Lexington, KY, 40536-0596, USA
| | - Ryan Choi
- University of Washington, Center for Emerging and Re-emerging Infectious Diseases, 750 Republican St., Seattle, WA, 98109, USA.,University of Washington, Seattle Structural Genomics Center for Infectious Diseases, 307 Westlake Avenue N, Seattle, WA, 98109, USA
| | - Garry W Buchko
- University of Washington, Seattle Structural Genomics Center for Infectious Diseases, 307 Westlake Avenue N, Seattle, WA, 98109, USA.,Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, P. O. Box 999, Richmond, WA, 99352, USA.,School of Molecular Biosciences, Washington State University, P. O. Box 647520, Pullman, WA, 99164, USA
| | - Michael G Fried
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Biological Sciences Research Bldg, 741 South Limestone St., Lexington, KY, 40536-0509, USA
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone St., Lexington, KY, 40536-0596, USA
| |
Collapse
|
46
|
Ringel MT, Brüser T. The biosynthesis of pyoverdines. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:424-437. [PMID: 30386787 PMCID: PMC6206403 DOI: 10.15698/mic2018.10.649] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/03/2018] [Indexed: 01/11/2023]
Abstract
Pyoverdines are fluorescent siderophores of pseudomonads that play important roles for growth under iron-limiting conditions. The production of pyoverdines by fluorescent pseudomonads permits their colonization of hosts ranging from humans to plants. Prominent examples include pathogenic or non-pathogenic species such as Pseudomonas aeruginosa, P. putida, P. syringae, or P. fluorescens. Many distinct pyoverdines have been identified, all of which have a dihydroxyquinoline fluorophore in common, derived from oxidative cyclizations of non-ribosomal peptides. These serve as precursor of pyoverdines and are commonly known as ferribactins. Ferribactins of distinct species or even strains often differ in their sequence, resulting in a large variety of pyoverdines. However, synthesis of all ferribactins begins with an L-Glu/D-Tyr/L-Dab sequence, and the fluorophore is generated from the D-Tyr/L-Dab residues. In addition, the initial L-Glu residue is modified to various acids and amides that are responsible for the range of distinguishable pyoverdines in individual strains. While ferribactin synthesis is a cytoplasmic process, the maturation to the fluorescent pyoverdine as well as the tailoring of the initial glutamate are exclusively periplasmic processes that have been a mystery until recently. Here we review the current knowledge of pyoverdine biosynthesis with a focus on the recent advancements regarding the periplasmic maturation and tailoring reactions.
Collapse
Affiliation(s)
- Michael T. Ringel
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
47
|
García-Salcedo R, Álvarez-Álvarez R, Olano C, Cañedo L, Braña AF, Méndez C, de la Calle F, Salas JA. Characterization of the Jomthonic Acids Biosynthesis Pathway and Isolation of Novel Analogues in Streptomyces caniferus GUA-06-05-006A. Mar Drugs 2018; 16:md16080259. [PMID: 30065171 PMCID: PMC6117699 DOI: 10.3390/md16080259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/20/2022] Open
Abstract
Jomthonic acids (JAs) are a group of natural products (NPs) with adipogenic activity. Structurally, JAs are formed by a modified β-methylphenylalanine residue, whose biosynthesis involves a methyltransferase that in Streptomyces hygroscopicus has been identified as MppJ. Up to date, three JA members (A–C) and a few other natural products containing β-methylphenylalanine have been discovered from soil-derived microorganisms. Herein, we report the identification of a gene (jomM) coding for a putative methyltransferase highly identical to MppJ in the chromosome of the marine actinobacteria Streptomyces caniferus GUA-06-05-006A. In its 5’ region, jomM clusters with two polyketide synthases (PKS) (jomP1, jomP2), a nonribosomal peptide synthetase (NRPS) (jomN) and a thioesterase gene (jomT), possibly conforming a single transcriptional unit. Insertion of a strong constitutive promoter upstream of jomP1 led to the detection of JA A, along with at least two novel JA family members (D and E). Independent inactivation of jomP1, jomN and jomM abolished production of JA A, JA D and JA E, indicating the involvement of these genes in JA biosynthesis. Heterologous expression of the JA biosynthesis cluster in Streptomyces coelicolor M1152 and in Streptomyces albus J1074 led to the production of JA A, B, C and F. We propose a pathway for JAs biosynthesis based on the findings here described.
Collapse
Affiliation(s)
- Raúl García-Salcedo
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, 28770 Colmenar Viejo (Madrid), Spain.
| | - Rubén Álvarez-Álvarez
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Carlos Olano
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Librada Cañedo
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, 28770 Colmenar Viejo (Madrid), Spain.
| | - Alfredo F Braña
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Carmen Méndez
- Department of Functional Biology and University Institute of Oncology of Principado de Asturias (U.I.O.P.A), University of Oviedo, 33006 Oviedo (Asturias), Spain.
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| | - Fernando de la Calle
- Drug Discovery Area, PharmaMar S.A. Avda. de los Reyes 1, 28770 Colmenar Viejo (Madrid), Spain.
| | - José A Salas
- Institute for Health Research of Principado de Asturias (IHRPA), 33006 Oviedo (Asturias), Spain.
| |
Collapse
|
48
|
Schomer RA, Park H, Barkei JJ, Thomas MG. Alanine Scanning of YbdZ, an MbtH-like Protein, Reveals Essential Residues for Functional Interactions with Its Nonribosomal Peptide Synthetase Partner EntF. Biochemistry 2018; 57:4125-4134. [PMID: 29921120 DOI: 10.1021/acs.biochem.8b00552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are megasynthetases that require complex and specific interactions between multiple domains and proteins to functionally produce a metabolite. MbtH-like proteins (MLPs) are integral components of many NRPSs and interact directly with the adenylation domain of the megasynthetases to stimulate functional enzymology. All of the MLP residues that are essential for functional interactions between the MLP and NRPS have yet to be defined. Here we probe the interactions between YbdZ, an MLP, and EntF, an NRPS, from Escherichia coli by performing a complete alanine scan of YbdZ. A phenotypic screen identified 11 YbdZ variants that are unable to replace the wild-type MLP, and these YbdZ variants were characterized using a series of in vivo and in vitro assays in an effort to explain why functional interactions with EntF were disrupted. All of the YbdZ variants enhanced the solubility of overproduced EntF, suggesting they were still capable of direct interactions with the megasynthase. Conversely, we show that EntF also influences the solubility of YbdZ and its variants. In vitro biochemical analyses of EntF function with each of the YbdZ variants found the impact that an amino acid substitution will have on NRPS function is difficult to predict, highlighting the complex interaction between these proteins.
Collapse
Affiliation(s)
- Rebecca A Schomer
- Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Hyunjun Park
- Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - John J Barkei
- Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Michael G Thomas
- Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
49
|
Structural basis for backbone N-methylation by an interrupted adenylation domain. Nat Chem Biol 2018; 14:428-430. [PMID: 29556104 DOI: 10.1038/s41589-018-0014-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022]
Abstract
Interrupted adenylation domains are enigmatic fusions, in which one enzyme is inserted into another to form a highly unusual bifunctional enzyme. We present the first crystal structure of an interrupted adenylation domain that reveals a unique embedded methyltransferase. The structure and functional data provide insight into how these enzymes N-methylate amino acid precursors en route to nonribosomal peptides.
Collapse
|
50
|
Skiba MA, Maloney FP, Dan Q, Fraley AE, Aldrich CC, Smith JL, Brown WC. PKS-NRPS Enzymology and Structural Biology: Considerations in Protein Production. Methods Enzymol 2018; 604:45-88. [PMID: 29779664 PMCID: PMC5992914 DOI: 10.1016/bs.mie.2018.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structural diversity and complexity of marine natural products have made them a rich and productive source of new bioactive molecules for drug development. The identification of these new compounds has led to extensive study of the protein constituents of the biosynthetic pathways from the producing microbes. Essential processes in the dissection of biosynthesis have been the elucidation of catalytic functions and the determination of 3D structures for enzymes of the polyketide synthases and nonribosomal peptide synthetases that carry out individual reactions. The size and complexity of these proteins present numerous difficulties in the process of going from gene to structure. Here, we review the problems that may be encountered at the various steps of this process and discuss some of the solutions devised in our and other labs for the cloning, production, purification, and structure solution of complex proteins using Escherichia coli as a heterologous host.
Collapse
Affiliation(s)
| | | | - Qingyun Dan
- University of Michigan, Ann Arbor, MI, United States
| | - Amy E Fraley
- University of Michigan, Ann Arbor, MI, United States
| | | | - Janet L Smith
- University of Michigan, Ann Arbor, MI, United States.
| | - W Clay Brown
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|