1
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
2
|
Jakubec M, Pšenáková K, Svehlova K, Curtis EA. Optimizing the Chemiluminescence of a Light-Producing Deoxyribozyme. Chembiochem 2022; 23:e202200026. [PMID: 35286749 DOI: 10.1002/cbic.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/14/2022] [Indexed: 01/05/2023]
Abstract
Supernova is a chemiluminescent deoxyribozyme recently discovered in our group. It transfers the phosphate group from the 1,2-dioxetane substrate CDP-Star to its 5' hydroxyl group, which triggers a decomposition reaction and the production of light. Here we investigated the effects of reaction conditions on the ability of Supernova to generate a chemiluminescent signal (using a plate reader assay) and to phosphorylate itself (using a ligation assay). Our experiments indicate that multiple zinc ions are required for catalytic function, suggesting links between Supernova and protein enzymes that catalyze similar reactions. They also show how factors such as pH, potassium concentration, CDP-Star concentration, and DNA concentration affect the reaction. By combining information from different experiments, the rate enhancement of light production was increased by more than 1000-fold. These results should be useful for applications in which Supernova is used as a sensor.
Collapse
Affiliation(s)
- Martin Jakubec
- Institute of Organic Chemistry and Biochemistry, 160 00, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Karolína Pšenáková
- Institute of Organic Chemistry and Biochemistry, 160 00, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Katerina Svehlova
- Institute of Organic Chemistry and Biochemistry, 160 00, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, 128 43, Prague, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry, 160 00, Prague, Czech Republic
| |
Collapse
|
3
|
Yum JH, Sugiyama H, Park S. Harnessing DNA as a Designable Scaffold for Asymmetric Catalysis: Recent Advances and Future Perspectives. CHEM REC 2022; 22:e202100333. [PMID: 35312235 DOI: 10.1002/tcr.202100333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/27/2022]
Abstract
Since the first report of DNAzyme by in vitro selection in 1994, catalytic DNA has investigated extensively, and their application has expanded continually in virtue of rapid advances in molecular biology and biotechnology. Nowadays, DNA is in the second prime time by way of DNA-based hybrid catalysts and DNA metalloenzymes in which helical chirality of DNA serves to asymmetric catalysis. DNA-based hybrid catalysts are attractive system to respond the demand of the times to pursuit green and sustainable society beyond traditional catalytic systems that value reaction efficiency. Herein, we highlight the recent advances and perspective of DNA-based hybrid catalysts with various aspects of DNA as a versatile scaffold for asymmetric synthesis. We hope that scientists in a variety of fields will be encouraged to join and promote remarkable evolution of this interesting research.
Collapse
Affiliation(s)
- Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Soyoung Park
- Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan.,Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
| |
Collapse
|
4
|
Zhang C, Li Q, Xu T, Li W, He Y, Gu H. New DNA-hydrolyzing DNAs isolated from an ssDNA library carrying a terminal hybridization stem. Nucleic Acids Res 2021; 49:6364-6374. [PMID: 34057476 PMCID: PMC8216280 DOI: 10.1093/nar/gkab439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
DNA-hydrolyzing DNAs represent an attractive type of DNA-processing catalysts distinctive from the protein-based restriction enzymes. The innate DNA property has enabled them to readily join DNA-based manipulations to promote the development of DNA biotechnology. A major in vitro selection strategy to identify these DNA catalysts relies tightly on the isolation of linear DNAs processed from a circular single-stranded (ss) DNA sequence library by self-hydrolysis. Herein, we report that by programming a terminal hybridization stem in the library, other than the previously reported classes (I & II) of deoxyribozymes, two new classes (III & IV) were identified with the old selection strategy to site-specifically hydrolyze DNA in the presence of Zn2+. Their representatives own a catalytic core consisting of ∼20 conserved nucleotides and a half-life of ∼15 min at neutral pH. In a bimolecular construct, class III exhibits unique broad generality on the enzyme strand, which can be potentially harnessed to engineer DNA-responsive DNA hydrolyzers for detection of any target ssDNA sequence. Besides the new findings, this work should also provide an improved approach to select for DNA-hydrolyzing deoxyribozymes that use various molecules and ions as cofactors.
Collapse
Affiliation(s)
- Canyu Zhang
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Qingting Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Tianbin Xu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Wei Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Yungang He
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200433, China.,Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
5
|
Zn 2+-dependent DNAzymes that cleave all combinations of ribonucleotides. Commun Biol 2021; 4:221. [PMID: 33594202 PMCID: PMC7886857 DOI: 10.1038/s42003-021-01738-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 11/14/2020] [Indexed: 11/08/2022] Open
Abstract
Although several DNAzymes are known, their utility is limited by a narrow range of substrate specificity. Here, we report the isolation of two zinc-dependent DNAzymes, ZincDz1 and ZincDz2, which exhibit compact catalytic core sequences with highly versatile hydrolysis activity. They were selected through in vitro selection followed by deep sequencing analysis. Despite their sequence similarity, each DNAzyme showed different Zn2+-concentration and pH-dependent reaction profiles, and cleaved the target RNA sequences at different sites. Using various substrate RNA sequences, we found that the cleavage sequence specificity of ZincDz2 and its highly active mutant ZincDz2-v2 to be 5'-rN↓rNrPu-3'. Furthermore, we demonstrated that the designed ZincDz2 could cut microRNA miR-155 at three different sites. These DNAzymes could be useful in a broad range of applications in the fields of medicine and biotechnology.
Collapse
|
6
|
Nucleic acid-cleaving catalytic DNA for sensing and therapeutics. Talanta 2020; 211:120709. [PMID: 32070594 DOI: 10.1016/j.talanta.2019.120709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
DNAzymes with nucleic acid-cleaving catalytic activity are increasing in versatility through concerted efforts to discover new sequences with unique functions, and they are generating excitement in the sensing community as cheap, stable, amplifiable detection elements. This review provides a comprehensive list and detailed descriptions of the DNAzymes identified to date, classified by their associated small molecule or ion needed for catalysis; of note, this classification clarifies conserved regions of various DNAzymes that are not obvious in the literature. Furthermore, we detail the breadth of functionality of these DNA sequences as well as the range of reaction conditions under which they are useful. In addition, the utility of the DNAzymes in a variety of sensing and therapeutic applications is presented, detailing both their advantages and disadvantages.
Collapse
|
7
|
Hu L, Fu X, Kong G, Yin Y, Meng HM, Ke G, Zhang XB. DNAzyme–gold nanoparticle-based probes for biosensing and bioimaging. J Mater Chem B 2020; 8:9449-9465. [DOI: 10.1039/d0tb01750g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design and applications of DNAzyme–gold nanoparticle-based probes in biosensing and bioimaging are summarized here.
Collapse
Affiliation(s)
- Ling Hu
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Xiaoyi Fu
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Gezhi Kong
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Yao Yin
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Hong-Min Meng
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Guoliang Ke
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Xiao-Bing Zhang
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| |
Collapse
|
8
|
Gao L, Tong X, Ye T, Gao H, Zhang Q, Yan C, Yu Y, Fei Y, Zhou X, Shao Y. G‐Quadruplex‐Based Photooxidase Driven by Visible Light. ChemCatChem 2019. [DOI: 10.1002/cctc.201901481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Longlong Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Xingyu Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Ting Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Heng Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Qingqing Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Chenxiao Yan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Yali Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Yifan Fei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry College of Chemistry and Life SciencesZhejiang Normal University Jinhua 321004 P.R. China
| |
Collapse
|
9
|
DU ZH, LI XY, TIAN JJ, Zhang YZ, TIAN HT, XU WT. Progress on Detection of Metals Ions by Functional Nucleic Acids Biosensor. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61094-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Yuan Y, Zhao Y, Chen L, Wu J, Chen G, Li S, Zou J, Chen R, Wang J, Jiang F, Tang Z. Selective tumor cell death induced by irradiated riboflavin through recognizing DNA G-T mismatch. Nucleic Acids Res 2017; 45:8676-8683. [PMID: 28911109 PMCID: PMC5587794 DOI: 10.1093/nar/gkx602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/04/2017] [Indexed: 12/04/2022] Open
Abstract
Riboflavin (vitamin B2) has been thought to be a promising antitumoral agent in photodynamic therapy, though the further application of the method was limited by the unclear molecular mechanism. Our work reveals that riboflavin was able to recognize G–T mismatch specifically and induce single-strand breaks in duplex DNA targets efficiently under irradiation. In the presence of riboflavin, the photo-irradiation could induce the death of tumor cells that are defective in mismatch repair system selectively, highlighting the G–T mismatch as potential drug target for tumor cells. Moreover, riboflavin is a promising leading compound for further drug design due to its inherent specific recognition of the G–T mismatch.
Collapse
Affiliation(s)
- Yi Yuan
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.,College of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yongyun Zhao
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Lianqi Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jiasi Wu
- College of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Gangyi Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Sheng Li
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jiawei Zou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Rong Chen
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jian Wang
- College of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| |
Collapse
|
11
|
Hwang K, Hosseinzadeh P, Lu Y. Biochemical and Biophysical Understanding of Metal Ion Selectivity of DNAzymes. Inorganica Chim Acta 2016; 452:12-24. [PMID: 27695134 DOI: 10.1016/j.ica.2016.04.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review summarizes research into the metal-binding properties of catalytic DNAzymes, towards the goal of understanding the structural properties leading to metal ion specificity. Progress made and insight gained from a range of biochemical and biophysical techniques are covered, and promising directions for future investigations are discussed.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Parisa Hosseinzadeh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
12
|
Hollenstein M. DNA Catalysis: The Chemical Repertoire of DNAzymes. Molecules 2015; 20:20777-804. [PMID: 26610449 PMCID: PMC6332124 DOI: 10.3390/molecules201119730] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022] Open
Abstract
Deoxyribozymes or DNAzymes are single-stranded catalytic DNA molecules that are obtained by combinatorial in vitro selection methods. Initially conceived to function as gene silencing agents, the scope of DNAzymes has rapidly expanded into diverse fields, including biosensing, diagnostics, logic gate operations, and the development of novel synthetic and biological tools. In this review, an overview of all the different chemical reactions catalyzed by DNAzymes is given with an emphasis on RNA cleavage and the use of non-nucleosidic substrates. The use of modified nucleoside triphosphates (dN*TPs) to expand the chemical space to be explored in selection experiments and ultimately to generate DNAzymes with an expanded chemical repertoire is also highlighted.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
13
|
Abstract
Catalysis is a fundamental chemical concept, and many kinds of catalysts have considerable practical value. Developing entirely new catalysts is an exciting challenge. Rational design and screening have provided many new small-molecule catalysts, and directed evolution has been used to optimize or redefine the function of many protein enzymes. However, these approaches have inherent limitations that prompt the pursuit of different kinds of catalysts using other experimental methods. Nature evolved RNA enzymes, or ribozymes, for key catalytic roles that in modern biology are limited to phosphodiester cleavage/ligation and amide bond formation. Artificial DNA enzymes, or deoxyribozymes, have great promise for a broad range of catalytic activities. They can be identified from unbiased (random) sequence populations as long as the appropriate in vitro selection strategies can be implemented for their identification. Notably, in vitro selection is different in key conceptual and practical ways from rational design, screening, and directed evolution. This Account describes the development by in vitro selection of DNA catalysts for many different kinds of covalent modification reactions of peptide and protein substrates, inspired in part by our earlier work with DNA-catalyzed RNA ligation reactions. In one set of studies, we have sought DNA-catalyzed peptide backbone cleavage, with the long-term goal of artificial DNA-based proteases. We originally anticipated that amide hydrolysis should be readily achieved, but in vitro selection instead surprisingly led to deoxyribozymes for DNA phosphodiester hydrolysis; this was unexpected because uncatalyzed amide bond hydrolysis is 10(5)-fold faster. After developing a suitable selection approach that actively avoids DNA hydrolysis, we were able to identify deoxyribozymes for hydrolysis of esters and aromatic amides (anilides). Aliphatic amide cleavage remains an ongoing focus, including via inclusion of chemically modified DNA nucleotides in the catalyst, which we have recently found to enable this cleavage reaction. In numerous other efforts, we have investigated DNA-catalyzed peptide side chain modification reactions. Key successes include nucleopeptide formation (attachment of oligonucleotides to peptide side chains) and phosphatase and kinase activities (removal and attachment of phosphoryl groups to side chains). Through all of these efforts, we have learned the importance of careful selection design, including the frequent need to develop specific "capture" reactions that enable the selection process to provide only those DNA sequences that have the desired catalytic functions. We have established strategies for identifying deoxyribozymes that accept discrete peptide and protein substrates, and we have obtained data to inform the key choice of random region length at the outset of selection experiments. Finally, we have demonstrated the viability of modular deoxyribozymes that include a small-molecule-binding aptamer domain, although the value of such modularity is found to be minimal, with implications for many selection endeavors. Advances such as those summarized in this Account reveal that DNA has considerable catalytic abilities for biochemically relevant reactions, specifically including covalent protein modifications. Moreover, DNA has substantially different, and in many ways better, characteristics than do small molecules or proteins for a catalyst that is obtained "from scratch" without demanding any existing information on catalyst structure or mechanism. Therefore, prospects are very strong for continued development and eventual practical applications of deoxyribozymes for peptide and protein modification.
Collapse
Affiliation(s)
- Scott K. Silverman
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Production of single-stranded DNAs by self-cleavage of rolling-circle amplification products. Biotechniques 2014; 54:337-43. [PMID: 23750543 DOI: 10.2144/000114009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/05/2013] [Indexed: 01/02/2023] Open
Abstract
DNA molecules that encode a small, high-speed self-hydrolyzing deoxyribozyme are used as templates for rolling circle amplification (RCA) to produce single-stranded DNAs (ssDNAs) of single- and multiple-unit lengths. Including self-cleaving deoxyribozymes in RCA products can generate large amounts of ssDNAs with defined sequence and length as well as precise termini. We also demonstrate the use of this method to efficiently generate ssDNA size markers by using deoxyribozyme reaction conditions that permit partial processing.
Collapse
|
15
|
Brandsen BM, Hesser AR, Castner MA, Chandra M, Silverman SK. DNA-catalyzed hydrolysis of esters and aromatic amides. J Am Chem Soc 2013; 135:16014-7. [PMID: 24127695 DOI: 10.1021/ja4077233] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We previously reported that DNA catalysts (deoxyribozymes) can hydrolyze DNA phosphodiester linkages, but DNA-catalyzed amide bond hydrolysis has been elusive. Here we used in vitro selection to identify DNA catalysts that hydrolyze ester linkages as well as DNA catalysts that hydrolyze aromatic amides, for which the leaving group is an aniline moiety. The aromatic amide-hydrolyzing deoxyribozymes were examined using linear free energy relationship analysis. The hydrolysis reaction is unaffected by substituents on the aromatic ring (ρ ≈ 0), suggesting general acid-catalyzed elimination as the likely rate-determining step of the addition-elimination hydrolysis mechanism. These findings establish that DNA has the catalytic ability to achieve hydrolysis of esters and aromatic amides as carbonyl-based substrates, and they suggest a mechanism-based approach to achieve DNA-catalyzed aliphatic amide hydrolysis.
Collapse
Affiliation(s)
- Benjamin M Brandsen
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
16
|
Hollenstein M. Deoxynucleoside triphosphates bearing histamine, carboxylic acid, and hydroxyl residues--synthesis and biochemical characterization. Org Biomol Chem 2013; 11:5162-72. [PMID: 23817514 DOI: 10.1039/c3ob40842f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Modified nucleoside triphosphates (dA(Hs)TP, dU(POH)TP, and dC(Val)TP) bearing imidazole, hydroxyl, and carboxylic acid residues connected to the purine and pyrimidine bases through alkyne linkers were prepared. These modified dN*TPs were excellent substrates for various DNA polymerases in primer extension reactions. Moreover, the combined use of terminal deoxynucleotidyl transferase (TdT) and the modified dNTPs led to efficient tailing reactions that rival those of natural counterparts. Finally, the triphosphates were tolerated by polymerases under PCR conditions, and the ensuing modified oligonucleotides served as templates for the regeneration of unmodified DNA. Thus, these modified dN*TPs are fully compatible with in vitro selection methods and can be used to develop artificial peptidases based on DNA.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
17
|
Gu H, Furukawa K, Weinberg Z, Berenson DF, Breaker RR. Small, highly active DNAs that hydrolyze DNA. J Am Chem Soc 2013; 135:9121-9. [PMID: 23679108 PMCID: PMC3763483 DOI: 10.1021/ja403585e] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
DNA phosphoester bonds are exceedingly resistant to hydrolysis in the absence of chemical or enzymatic catalysts. This property is particularly important for organisms with large genomes, as resistance to hydrolytic degradation permits the long-term storage of genetic information. Here we report the creation and analysis of two classes of engineered deoxyribozymes that selectively and rapidly hydrolyze DNA. Members of class I deoxyribozymes carry a catalytic core composed of only 15 conserved nucleotides and attain an observed rate constant (k(obs)) of ~1 min(-1) when incubated near neutral pH in the presence of Zn(2+). Natural DNA sequences conforming to the class I consensus sequence and structure were found that undergo hydrolysis under selection conditions (2 mM Zn(2+), pH 7), which demonstrates that the inherent structure of certain DNA regions might promote catalytic reactions, leading to genomic instability.
Collapse
Affiliation(s)
- Hongzhou Gu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520 United States
- Howard Hughes Medical Institute, New Haven, Connecticut, 06520 United States
| | - Kazuhiro Furukawa
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520 United States
| | - Zasha Weinberg
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520 United States
- Howard Hughes Medical Institute, New Haven, Connecticut, 06520 United States
| | - Daniel F. Berenson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520 United States
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, 06520 United States
- Howard Hughes Medical Institute, New Haven, Connecticut, 06520 United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520 United States
| |
Collapse
|
18
|
Parker DJ, Xiao Y, Aguilar JM, Silverman SK. DNA catalysis of a normally disfavored RNA hydrolysis reaction. J Am Chem Soc 2013; 135:8472-5. [PMID: 23697866 DOI: 10.1021/ja4032488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently used in vitro selection to identify many deoxyribozymes that catalyze DNA phosphodiester bond hydrolysis and create 5'-phosphate and 3'-hydroxyl termini. Alternatively, numerous deoxyribozymes have been identified for catalysis of RNA cleavage by 2'-hydroxyl transesterification, forming 2',3'-cyclic phosphate and 5'-hydroxyl termini. In this study, we investigated the ability of DNA to catalyze RNA cleavage by hydrolysis rather than transesterification, although normally the hydrolysis reaction is substantially disfavored relative to transesterification. Via a series of in vitro selection experiments, we found that reselection of a DNA-hydrolyzing deoxyribozyme leads either to transesterification or hydrolysis, depending on exclusion or inclusion of a stringent selection pressure for hydrolysis. An entirely new selection starting from a random DNA pool, using an all-RNA substrate and imposing the same selection pressure, also leads to RNA hydrolysis. Collectively, these results establish experimentally that small DNA sequences have the catalytic ability to direct a chemical reaction down a disfavored pathway, even when a more favorable mechanism is readily available. Our view of DNA catalysis is therefore expanded beyond merely increasing the rates of reactions that would have occurred more slowly without the catalyst.
Collapse
Affiliation(s)
- Darren J Parker
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
19
|
Velez TE, Singh J, Xiao Y, Allen EC, Wong OY, Chandra M, Kwon SC, Silverman SK. Systematic evaluation of the dependence of deoxyribozyme catalysis on random region length. ACS COMBINATORIAL SCIENCE 2012; 14:680-7. [PMID: 23088677 DOI: 10.1021/co300111f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Functional nucleic acids are DNA and RNA aptamers that bind targets, or they are deoxyribozymes and ribozymes that have catalytic activity. These functional DNA and RNA sequences can be identified from random-sequence pools by in vitro selection, which requires choosing the length of the random region. Shorter random regions allow more complete coverage of sequence space but may not permit the structural complexity necessary for binding or catalysis. In contrast, longer random regions are sampled incompletely but may allow adoption of more complicated structures that enable function. In this study, we systematically examined random region length (N(20) through N(60)) for two particular deoxyribozyme catalytic activities, DNA cleavage and tyrosine-RNA nucleopeptide linkage formation. For both activities, we previously identified deoxyribozymes using only N(40) regions. In the case of DNA cleavage, here we found that shorter N(20) and N(30) regions allowed robust catalytic function, either by DNA hydrolysis or by DNA deglycosylation and strand scission via β-elimination, whereas longer N(50) and N(60) regions did not lead to catalytically active DNA sequences. Follow-up selections with N(20), N(30), and N(40) regions revealed an interesting interplay of metal ion cofactors and random region length. Separately, for Tyr-RNA linkage formation, N(30) and N(60) regions provided catalytically active sequences, whereas N(20) was unsuccessful, and the N(40) deoxyribozymes were functionally superior (in terms of rate and yield) to N(30) and N(60). Collectively, the results indicate that with future in vitro selection experiments for DNA and RNA catalysts, and by extension for aptamers, random region length should be an important experimental variable.
Collapse
Affiliation(s)
- Tania E. Velez
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews
Avenue, Urbana, Illinois 61801, United States
| | - Jaydeep Singh
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews
Avenue, Urbana, Illinois 61801, United States
| | - Ying Xiao
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews
Avenue, Urbana, Illinois 61801, United States
| | - Emily C. Allen
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews
Avenue, Urbana, Illinois 61801, United States
| | - On Yi Wong
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews
Avenue, Urbana, Illinois 61801, United States
| | - Madhavaiah Chandra
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews
Avenue, Urbana, Illinois 61801, United States
| | - Sarah C. Kwon
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews
Avenue, Urbana, Illinois 61801, United States
| | - Scott K. Silverman
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews
Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
20
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
21
|
Dokukin V, Silverman SK. Lanthanide ions as required cofactors for DNA catalysts. Chem Sci 2012; 3:1707-1714. [PMID: 23243490 DOI: 10.1039/c2sc01067d] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report that micromolar concentrations of lanthanide ions can be required cofactors for DNA-hydrolyzing deoxyribozymes. Previous work identified deoxyribozymes that simultaneously require both Zn(2+) and Mn(2+) to achieve DNA-catalyzed DNA hydrolysis (10(12) rate enhancement); a mutant of one such DNA catalyst requires only Zn(2+). Here we show that in vitro selection in the presence of 10 µM lanthanide ion (Ce(3+), Eu(3+), or Yb(3+)) along with 1 mM Zn(2+) leads to numerous DNA-hydrolyzing deoxyribozymes that strictly require the lanthanide ion as well as Zn(2+) for catalytic activity. These DNA catalysts have a range of lanthanide dependences, including some deoxyribozymes that strongly favor one particular lanthanide ion (e.g., Ce(3+) >> Eu(3+) >> Yb(3+)) and others that function well with more than one lanthanide ion. Intriguingly, two of the Yb(3+)-dependent deoxyribozymes function well with Yb(3+) alone (K(d,app) ~10 µM, in the absence of Zn(2+)) and have little or no activity with Eu(3+) or Ce(3+). In contrast to these selection outcomes when lanthanide ions were present, new selections with Zn(2+) or Mn(2+) alone, or Zn(2+) with Mg(2+)/Ca(2+), led primarily to deoxyribozymes that cleave DNA by deglycosylation and β-elimination rather than by hydrolysis, including several instances of depyrimidination. We conclude that lanthanide ions warrant closer attention as cofactors when identifying new nucleic acid catalysts, especially for applications in which high concentrations of polyvalent metal ion cofactors are undesirable.
Collapse
Affiliation(s)
- Victor Dokukin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
22
|
Xiao Y, Wehrmann RJ, Ibrahim NA, Silverman SK. Establishing broad generality of DNA catalysts for site-specific hydrolysis of single-stranded DNA. Nucleic Acids Res 2011; 40:1778-86. [PMID: 22021383 PMCID: PMC3287185 DOI: 10.1093/nar/gkr860] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We recently reported that a DNA catalyst (deoxyribozyme) can site-specifically hydrolyze DNA on the minutes time scale. Sequence specificity is provided by Watson-Crick base pairing between the DNA substrate and two oligonucleotide binding arms that flank the 40-nt catalytic region of the deoxyribozyme. The DNA catalyst from our recent in vitro selection effort, 10MD5, can cleave a single-stranded DNA substrate sequence with the aid of Zn2+ and Mn2+ cofactors, as long as the substrate cleavage site encompasses the four particular nucleotides ATG^T. Thus, 10MD5 can cleave only 1 out of every 256 (44) arbitrarily chosen DNA sites, which is rather poor substrate sequence tolerance. In this study, we demonstrated substantially broader generality of deoxyribozymes for site-specific DNA hydrolysis. New selection experiments were performed, revealing the optimality of presenting only one or two unpaired DNA substrate nucleotides to the N40 DNA catalytic region. Comprehensive selections were then performed, including in some cases a key selection pressure to cleave the substrate at a predetermined site. These efforts led to identification of numerous new DNA-hydrolyzing deoxyribozymes, many of which require merely two particular nucleotide identities at the cleavage site (e.g. T^G), while retaining Watson-Crick sequence generality beyond those nucleotides along with useful cleavage rates. These findings establish experimentally that broadly sequence-tolerant and site-specific deoxyribozymes are readily identified for hydrolysis of single-stranded DNA.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
23
|
Wong OY, Pradeepkumar PI, Silverman SK. DNA-catalyzed covalent modification of amino acid side chains in tethered and free peptide substrates. Biochemistry 2011; 50:4741-9. [PMID: 21510668 DOI: 10.1021/bi200585n] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study focuses on the development of DNA catalysts (deoxyribozymes) that modify side chains of peptide substrates, with the long-term goal of achieving DNA-catalyzed covalent protein modification. We recently described several deoxyribozymes that modify tyrosine (Tyr) or serine (Ser) side chains by catalyzing their reaction with 5'-triphosphorylated RNA, forming nucleopeptide linkages. In each previous case, the side chain was presented in a highly preorganized three-dimensional architecture such that the resulting deoxyribozymes inherently cannot function with free peptides or proteins, which do not maintain the preorganization. Here we describe in vitro selection of deoxyribozymes that catalyze Tyr side chain modification of tethered and free peptide substrates, where the approach can potentially be generalized for catalysis involving large proteins. Several new deoxyribozymes for Tyr modification (and several for Ser modification as well) were identified; progressively better catalytic activity was observed as the selection design was strategically changed. The best new deoxyribozyme, 15MZ36, catalyzes covalent Tyr modification of a free tripeptide substrate with a k(obs) of 0.50 h(-1) (t(1/2) of 83 min) and up to 65% yield. These findings represent an important advance by demonstrating, for the first time, DNA catalysis involving free peptide substrates. The new results suggest the feasibility of DNA-catalyzed covalent modification of side chains of large protein substrates and provide key insights into how to achieve this goal.
Collapse
Affiliation(s)
- On Yi Wong
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
24
|
Xiao Y, Allen EC, Silverman SK. Merely two mutations switch a DNA-hydrolyzing deoxyribozyme from heterobimetallic (Zn2+/Mn2+) to monometallic (Zn2+-only) behavior. Chem Commun (Camb) 2010; 47:1749-51. [PMID: 21125108 DOI: 10.1039/c0cc04575f] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A deoxyribozyme that hydrolyzes DNA phosphodiester linkages with a requirement for both Zn(2+) and Mn(2+) is switched by only two nucleotide mutations to require Zn(2+) alone, demonstrating that DNA-catalyzed DNA hydrolysis can be achieved using only one metal ion cofactor.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|