1
|
Marensi V, Yap MC, Ji Y, Lin C, Berthiaume LG, Leslie EM. Glutathione transferase P1 is modified by palmitate. PLoS One 2024; 19:e0308500. [PMID: 39269939 PMCID: PMC11398671 DOI: 10.1371/journal.pone.0308500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/24/2024] [Indexed: 09/15/2024] Open
Abstract
Glutathione transferase P1 (GSTP1) is a multi-functional protein that protects cells from electrophiles by catalyzing their conjugation with glutathione, and contributes to the regulation of cell proliferation, apoptosis, and signalling. GSTP1, usually described as a cytosolic enzyme, can localize to other cell compartments and we have reported its strong association with the plasma membrane. In the current study, the hypothesis that GSTP1 is palmitoylated and this modification facilitates its dynamic localization and function was investigated. Palmitoylation is the reversible post-translational addition of a 16-C saturated fatty acid to proteins, most commonly on Cys residues through a thioester bond. GSTP1 in MCF7 cells was modified by palmitate, however, GSTP1 Cys to Ser mutants (individual and Cys-less) retained palmitoylation. Treatment of palmitoylated GSTP1 with 0.1 N NaOH, which cleaves ester bonds, did not remove palmitate. Purified GSTP1 was spontaneously palmitoylated in vitro and peptide sequencing revealed that Cys48 and Cys102 undergo S-palmitoylation, while Lys103 undergoes the rare N-palmitoylation. N-palmitoylation occurs via a stable NaOH-resistant amide bond. Analysis of subcellular fractions of MCF7-GSTP1 cells and a modified proximity ligation assay revealed that palmitoylated GSTP1 was present not only in the membrane fraction but also in the cytosol. GSTP1 isolated from E. coli, and MCF7 cells (grown under fatty acid free or regular conditions), associated with plasma membrane-enriched fractions and this association was not altered by palmitoyl CoA. Overall, GSTP1 is modified by palmitate, at multiple sites, including at least one non-Cys residue. These modifications could contribute to regulating the diverse functions of GSTP1.
Collapse
Affiliation(s)
- Vanessa Marensi
- Department of Physiology and Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Megan C. Yap
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Yuhuan Ji
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States of America
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States of America
| | - Luc G. Berthiaume
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Elaine M. Leslie
- Department of Physiology and Membrane Protein Disease Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
3
|
Tsumagari K, Isobe Y, Imami K, Arita M. Exploring protein lipidation by mass spectrometry-based proteomics. J Biochem 2024; 175:225-233. [PMID: 38102731 PMCID: PMC10908362 DOI: 10.1093/jb/mvad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Protein lipidation is a common co- or post-translational modification that plays a crucial role in regulating the localization, interaction and function of cellular proteins. Dysregulation of lipid modifications can lead to various diseases, including cancer, neurodegenerative diseases and infectious diseases. Therefore, the identification of proteins undergoing lipidation and their lipidation sites should provide insights into many aspects of lipid biology, as well as providing potential targets for therapeutic strategies. Bottom-up proteomics using liquid chromatography/tandem mass spectrometry is a powerful technique for the global analysis of protein lipidation. Here, we review proteomic methods for profiling protein lipidation, focusing on the two major approaches: the use of chemical probes, such as lipid alkyne probes, and the use of enrichment techniques for endogenous lipid-modified peptides. The challenges facing these methods and the prospects for developing them further to achieve a comprehensive analysis of lipid modifications are discussed.
Collapse
Affiliation(s)
- Kazuya Tsumagari
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yosuke Isobe
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Koshi Imami
- Proteome Homeostasis Research Unit, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Xu Y, Ding K, Peng T. Chemical Proteomics Reveals N ε-Fatty-Acylation of Septins by Rho Inactivation Domain (RID) of the Vibrio MARTX Toxin to Alter Septin Localization and Organization. Mol Cell Proteomics 2024; 23:100730. [PMID: 38311109 PMCID: PMC10924143 DOI: 10.1016/j.mcpro.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Vibrio species, the Gram-negative bacterial pathogens causing cholera and sepsis, produce multiple secreted virulence factors for infection and pathogenesis. Among these is the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin that releases several critical effector domains with distinct functions inside eukaryotic host cells. One such effector domain, the Rho inactivation domain (RID), has been discovered to catalyze long-chain Nε-fatty-acylation on lysine residues of Rho GTPases, causing inactivation of Rho GTPases and disruption of the host actin cytoskeleton. However, whether RID modifies other host proteins to exert additional functions remains to be determined. Herein, we describe the integration of bioorthogonal chemical labeling and quantitative proteomics to globally profile the target proteins modified by RID in living cells. More than 246 proteins are identified as new RID substrates, including many involved in GTPase regulation, cytoskeletal organization, and cell division. We demonstrate that RID extensively Nε-fatty-acylates septin proteins, the fourth cytoskeletal component of mammalian cells with important roles in diverse cellular processes. While affinity purification and mass spectrometry analysis show that RID-mediated Nε-fatty-acylation does not affect septin-septin interactions, this modification increases the membrane association of septins and confers localization to detergent-resistant membrane rafts. As a result, the filamentous assembly and organization of septins are disrupted by RID-mediated Nε-fatty-acylation, further contributing to cytoskeletal and mitotic defects that phenocopy the effects of septin depletion. Overall, our work greatly expands the substrate scope and function of RID and demonstrates the role of RID-mediated Nε-fatty-acylation in manipulating septin localization and organization.
Collapse
Affiliation(s)
- Yaxin Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ke Ding
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China; Shenzhen Bay Laboratory, Institute of Chemical Biology, Shenzhen, China.
| |
Collapse
|
5
|
Xiong M, Li C, Wang W, Yang B. Protein Structure and Modification of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:15-38. [PMID: 36717484 DOI: 10.1007/978-981-19-7415-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) allow water molecules and other small, neutral solutes to quickly pass through membrane. The protein structures of AQPs solved by crystallographic methods or cryo-electron microscopy technology show that AQP monomer consists of six membrane-spanning alpha-helices that form the central water-transporting pore. AQP monomers assemble to form tetramers, forming the functional units in the membrane, to transport water or other small molecules. The biological functions of AQPs are regulated by posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation and protein interactions. Modifications of AQP combined with structural properties contribute to a better functional mechanism of AQPs. Insight into the molecular mechanisms responsible for AQP modifications as well as gating and transport properties proved to be fundamental to the development of new therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mengyao Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chunling Li
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
6
|
Hale OJ, Cooper HJ. Native Ambient Mass Spectrometry of an Intact Membrane Protein Assembly and Soluble Protein Assemblies Directly from Lens Tissue. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202201458. [PMID: 38505128 PMCID: PMC10946450 DOI: 10.1002/ange.202201458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/16/2022]
Abstract
Membrane proteins constitute around two-thirds of therapeutic targets but present a significant challenge for structural analysis due to their low abundance and solubility. Existing methods for structural analysis rely on over-expression and/or purification of the membrane protein, thus removing any links back to actual physiological environment. Here, we demonstrate mass spectrometry analysis of an intact oligomeric membrane protein directly from tissue. Aquaporin-0 exists as a 113 kDa tetramer, with each subunit featuring six transmembrane helices. We report the characterisation of the intact assembly directly from a section of sheep eye lens without sample pre-treatment. Protein identity was confirmed by mass measurement of the tetramer and subunits, together with top-down mass spectrometry, and the spatial distribution was determined by mass spectrometry imaging. Our approach allows simultaneous analysis of soluble protein assemblies in the tissue.
Collapse
Affiliation(s)
- Oliver J. Hale
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | - Helen J. Cooper
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
7
|
Hale OJ, Cooper HJ. Native Ambient Mass Spectrometry of an Intact Membrane Protein Assembly and Soluble Protein Assemblies Directly from Lens Tissue. Angew Chem Int Ed Engl 2022; 61:e202201458. [PMID: 35665580 PMCID: PMC9401010 DOI: 10.1002/anie.202201458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/16/2022]
Abstract
Membrane proteins constitute around two-thirds of therapeutic targets but present a significant challenge for structural analysis due to their low abundance and solubility. Existing methods for structural analysis rely on over-expression and/or purification of the membrane protein, thus removing any links back to actual physiological environment. Here, we demonstrate mass spectrometry analysis of an intact oligomeric membrane protein directly from tissue. Aquaporin-0 exists as a 113 kDa tetramer, with each subunit featuring six transmembrane helices. We report the characterisation of the intact assembly directly from a section of sheep eye lens without sample pre-treatment. Protein identity was confirmed by mass measurement of the tetramer and subunits, together with top-down mass spectrometry, and the spatial distribution was determined by mass spectrometry imaging. Our approach allows simultaneous analysis of soluble protein assemblies in the tissue.
Collapse
Affiliation(s)
- Oliver J. Hale
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | - Helen J. Cooper
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
8
|
Protein Lipidation Types: Current Strategies for Enrichment and Characterization. Int J Mol Sci 2022; 23:ijms23042365. [PMID: 35216483 PMCID: PMC8880637 DOI: 10.3390/ijms23042365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications regulate diverse activities of a colossal number of proteins. For example, various types of lipids can be covalently linked to proteins enzymatically or non-enzymatically. Protein lipidation is perhaps not as extensively studied as protein phosphorylation, ubiquitination, or glycosylation although it is no less significant than these modifications. Evidence suggests that proteins can be attached by at least seven types of lipids, including fatty acids, lipoic acids, isoprenoids, sterols, phospholipids, glycosylphosphatidylinositol anchors, and lipid-derived electrophiles. In this review, we summarize types of protein lipidation and methods used for their detection, with an emphasis on the conjugation of proteins with polyunsaturated fatty acids (PUFAs). We discuss possible reasons for the scarcity of reports on PUFA-modified proteins, limitations in current methodology, and potential approaches in detecting PUFA modifications.
Collapse
|
9
|
Harvey SR, O’Neale C, Schey KL, Wysocki VH. Native Mass Spectrometry and Surface Induced Dissociation Provide Insight into the Post-Translational Modifications of Tetrameric AQP0 Isolated from Bovine Eye Lens. Anal Chem 2022; 94:1515-1519. [PMID: 35015511 PMCID: PMC9161558 DOI: 10.1021/acs.analchem.1c04322] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aquaporin-0 (AQP0) is a tetrameric membrane protein and the most abundant membrane protein in the eye lens. Interestingly, there is little to no cellular turnover once mature lens fiber cells are formed, and hence, age-related modifications accumulate with time. While bottom-up mass spectrometry-based approaches can provide identification of post-translational modifications, they cannot provide information on how these modifications coexist in a single chain or complex. Native mass spectrometry, however, enables the transfer of the intact complex into the gas-phase allowing modifications to be identified at the tetramer level. Here, we present the use of native mass spectrometry and surface-induced dissociation to study the post-translational modifications of AQP0 isolated and purified from bovine eye lens, existing as multiple forms due to the different modification states naturally present.
Collapse
Affiliation(s)
- Sophie R Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Carla O’Neale
- Vanderbilt University Department of Biochemistry and Mass Spectrometry Research Center, Nashville, TN 37240
| | - Kevin L Schey
- Vanderbilt University Department of Biochemistry and Mass Spectrometry Research Center, Nashville, TN 37240
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210,
| |
Collapse
|
10
|
Ultrapermeable Polyamide Nanofiltration Membrane Formed on a Self-Constructed Cellulose Nanofibers Interlayer. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Komaniecki G, Lin H. Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Front Cell Dev Biol 2021; 9:717503. [PMID: 34368168 PMCID: PMC8339906 DOI: 10.3389/fcell.2021.717503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Post-translational acylation of lysine side chains is a common mechanism of protein regulation. Modification by long-chain fatty acyl groups is an understudied form of lysine acylation that has gained increasing attention recently due to the characterization of enzymes that catalyze the addition and removal this modification. In this review we summarize what has been learned about lysine fatty acylation in the approximately 30 years since its initial discovery. We report on what is known about the enzymes that regulate lysine fatty acylation and their physiological functions, including tumorigenesis and bacterial pathogenesis. We also cover the effect of lysine fatty acylation on reported substrates. Generally, lysine fatty acylation increases the affinity of proteins for specific cellular membranes, but the physiological outcome depends greatly on the molecular context. Finally, we will go over the experimental tools that have been used to study lysine fatty acylation. While much has been learned about lysine fatty acylation since its initial discovery, the full scope of its biological function has yet to be realized.
Collapse
Affiliation(s)
- Garrison Komaniecki
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
13
|
New insights into the mechanisms of age-related protein-protein crosslinking in the human lens. Exp Eye Res 2021; 209:108679. [PMID: 34147508 DOI: 10.1016/j.exer.2021.108679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/31/2022]
Abstract
Although protein crosslinking is often linked with aging as well as some age-related diseases, very few molecular details are available on the nature of the amino acids involved, or mechanisms that are responsible for crosslinking. Recent research has shown that several amino acids are able to generate reactive intermediates that ultimately lead to covalent crosslinking through multiple non-enzymatic mechanisms. This information has been derived from proteomic investigations on aged human lenses and the mechanisms of crosslinking, in each case, have been elucidated using model peptides. Residues involved in spontaneous protein-protein crosslinking include aspartic acid, asparagine, cysteine, lysine, phosphoserine, phosphothreonine, glutamic acid and glutamine. It has become clear, therefore, that several amino acids can act as potential sites for crosslinking in the long-lived proteins that are present in aged individuals. Moreover, the lens has been an invaluable model tissue and source of crosslinked proteins from which to determine crosslinking mechanisms that may lead to crosslinking in other human tissues.
Collapse
|
14
|
Cantrell LS, Schey KL. Proteomic characterization of the human lens and Cataractogenesis. Expert Rev Proteomics 2021; 18:119-135. [PMID: 33849365 DOI: 10.1080/14789450.2021.1913062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The goal of this review is to highlight the triumphs and frontiers in measurement of the lens proteome as it relates to onset of age-related nuclear cataract. As global life expectancy increases, so too does the frequency of age-related nuclear cataracts. Molecular therapeutics do not exist for delay or relief of cataract onset in humans. Since lens fiber cells are incapable of protein synthesis after initial maturation, age-related changes in proteome composition and post-translational modification accumulation can be measured with various techniques. Several of these modifications have been associated with cataract onset. AREAS COVERED We discuss the impact of long-lived proteins on the lens proteome and lens homeostasis as well as proteomic techniques that may be used to measure proteomes at various levels of proteomic specificity and spatial resolution. EXPERT OPINION There is clear evidence that several proteome modifications are correlated with cataract formation. Past studies should be enhanced with cutting-edge, spatially resolved mass spectrometry techniques to enhance the specificity and sensitivity of modification detection as it relates to cataract formation.
Collapse
Affiliation(s)
- Lee S Cantrell
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
15
|
Ahangarpour M, Kavianinia I, Harris PWR, Brimble MA. Photo-induced radical thiol-ene chemistry: a versatile toolbox for peptide-based drug design. Chem Soc Rev 2021; 50:898-944. [PMID: 33404559 DOI: 10.1039/d0cs00354a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While the global market for peptide/protein-based therapeutics is witnessing significant growth, the development of peptide drugs remains challenging due to their low oral bioavailability, poor membrane permeability, and reduced metabolic stability. However, a toolbox of chemical approaches has been explored for peptide modification to overcome these obstacles. In recent years, there has been a revival of interest in photoinduced radical thiol-ene chemistry as a powerful tool for the construction of therapeutic peptides.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|
16
|
Figlewicz DP, Witkamp RF. FATTY ACIDS AS CELL SIGNALS IN INGESTIVE BEHAVIORS. Physiol Behav 2020; 223:112985. [PMID: 32473927 DOI: 10.1016/j.physbeh.2020.112985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 05/23/2020] [Indexed: 12/17/2022]
|
17
|
Wang Z, Ryan DJ, Schey KL. Localization of the lens intermediate filament switch by imaging mass spectrometry. Exp Eye Res 2020; 198:108134. [PMID: 32682822 PMCID: PMC7508834 DOI: 10.1016/j.exer.2020.108134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/07/2020] [Accepted: 06/29/2020] [Indexed: 01/18/2023]
Abstract
Imaging mass spectrometry (IMS) enables targeted and untargeted visualization of the spatial localization of molecules in tissues with great specificity. The lens is a unique tissue that contains fiber cells corresponding to various stages of differentiation that are packed in a highly spatial order. The application of IMS to lens tissue localizes molecular features that are spatially related to the fiber cell organization. Such spatially resolved molecular information assists our understanding of lens structure and physiology; however, protein IMS studies are typically limited to abundant, soluble, low molecular weight proteins. In this study, a method was developed for imaging low solubility cytoskeletal proteins in the lens; a tissue that is filled with high concentrations of soluble crystallins. Optimized tissue washes combined with on-tissue enzymatic digestion allowed successful imaging of peptides corresponding to known lens cytoskeletal proteins. The resulting peptide signals facilitated segmentation of the bovine lens into molecularly distinct regions. A sharp intermediate filament transition from vimentin to lens-specific beaded filament proteins was detected in the lens cortex. MALDI IMS also revealed the region where posttranslational myristoylation of filensin occurs and the results indicate that truncation and myristoylation of filensin starts soon after filensin expression increased in the inner cortex. From intermediate filament switch to filensin truncation and myristoylation, multiple remarkable changes occur in the narrow region of lens cortex. MALDI images delineated the boundaries of distinct lens regions that will guide further proteomic and interactomic studies.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Daniel J Ryan
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
18
|
Boughton BA, Thomas ORB, Demarais NJ, Trede D, Swearer SE, Grey AC. Detection of small molecule concentration gradients in ocular tissues and humours. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4460. [PMID: 31654531 DOI: 10.1002/jms.4460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/02/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The eye is an elegant organ consisting of a number of tissues and fluids with specialised functions that together allow it to effectively transmit and transduce light input to the brain for visual perception. One key determinant of this integrated function is the spatial relationship of ocular tissues. Biomolecular distributions within the main ocular tissues cornea, lens, and retina have been studied extensively in isolation, yet the potential for metabolic communication between ocular tissues via the ocular humours has been difficult to visualise. To address this limitation, the current study presents a method to map spatial distributions of metabolites and small molecules in whole eyes, including ocular humours. Using a tape-transfer system and freeze-drying, the spatial distribution of ocular small molecules was investigated in mouse, rat, fish (black bream), and rabbit eyes using negative ion mode MALDI imaging mass spectrometry. Full-scan imaging was used for discovery experiments, while MS/MS imaging for identification and localisation was also demonstrated. In all eyes, metabolites such as glutathione and phospholipids were localised in the main ocular tissues. In addition, in rodent eyes, major metabolites were distributed relatively uniformly in ocular humours. In contrast, both uniform and spatially defined ocular metabolite distributions were observed in the black bream eye. Tissue and ocular humour distributions were reproducible, as demonstrated by the three-dimensional analysis of a mouse eye, and able to be captured with high spatial resolution analysis. The presented method could be used to further investigate the role of inter-tissue metabolism in ocular health, and to support the development of therapeutics to treat major ocular diseases.
Collapse
Affiliation(s)
- Berin A Boughton
- Metabolomics Australia, University of Melbourne, Melbourne, Australia
| | - Oliver R B Thomas
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Nicholas J Demarais
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Stephen E Swearer
- School of BioSciences, University of Melbourne, Melbourne, Australia
| | - Angus C Grey
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Schey KL, Wang Z, Friedrich MG, Garland DL, Truscott RJW. Spatiotemporal changes in the human lens proteome: Critical insights into long-lived proteins. Prog Retin Eye Res 2019; 76:100802. [PMID: 31704338 DOI: 10.1016/j.preteyeres.2019.100802] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
Abstract
The ocular lens is a unique tissue that contains an age gradient of cells and proteins ranging from newly differentiated cells containing newly synthesized proteins to cells and proteins that are as old as the organism. Thus, the ocular lens is an excellent model for studying long-lived proteins (LLPs) and the effects of aging and post-translational modifications on protein structure and function. Given the architecture of the lens, with young fiber cells in the outer cortex and the oldest cells in the lens nucleus, spatially-resolved studies provide information on age-specific protein changes. In this review, experimental strategies and proteomic methods that have been used to examine age-related and cataract-specific changes to the human lens proteome are described. Measured spatio-temporal changes in the human lens proteome are summarized and reveal a highly consistent, time-dependent set of modifications observed in transparent human lenses. Such measurements have led to the discovery of cataract-specific modifications and the realization that many animal systems are unsuitable to study many of these modifications. Mechanisms of protein modifications such as deamidation, racemization, truncation, and protein-protein crosslinking are presented and the implications of such mechanisms for other long-lived proteins in other tissues are discussed in the context of age-related neurological diseases. A comprehensive understanding of LLP modifications will enhance our ability to develop new therapies for the delay, prevention or reversal of age-related diseases.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University, USA.
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt University, USA
| | - Michael G Friedrich
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | | | - Roger J W Truscott
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| |
Collapse
|
20
|
Spiegelman NA, Zhang X, Jing H, Cao J, Kotliar IB, Aramsangtienchai P, Wang M, Tong Z, Rosch KM, Lin H. SIRT2 and Lysine Fatty Acylation Regulate the Activity of RalB and Cell Migration. ACS Chem Biol 2019; 14:2014-2023. [PMID: 31433161 DOI: 10.1021/acschembio.9b00492] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein lysine fatty acylation is increasingly recognized as a prevalent and important protein post-translation modification. Recently, it has been shown that K-Ras4a, R-Ras2, and Rac1 are regulated by lysine fatty acylation. Here, we investigated whether other members of the Ras superfamily could also be regulated by lysine fatty acylation. Several small GTPases exhibit hydroxylamine resistant fatty acylation, suggesting they may also have protein lysine fatty acylation. We further characterized one of these GTPases, RalB. We show that RalB has C-terminal lysine fatty acylation, with the predominant modification site being Lys200. The lysine acylation of RalB is regulated by SIRT2, a member of the sirtuin family of nicotinamide adenine dinucleotide (NAD)-dependent protein lysine deacylases. Lysine fatty acylated RalB exhibited enhanced plasma membrane localization and recruited its known effectors Sec5 and Exo84, members of the exocyst complex, to the plasma membrane. RalB lysine fatty acylation did not affect the proliferation or anchorage-independent growth but did affect the trans-well migration of A549 lung cancer cells. This study thus identified an additional function for protein lysine fatty acylation and the deacylase SIRT2.
Collapse
Affiliation(s)
- Nicole A. Spiegelman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hui Jing
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ji Cao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ilana B. Kotliar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, 1230 York Ave., New York, New York 10065, United States
| | - Pornpun Aramsangtienchai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Zhen Tong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kelly M. Rosch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
21
|
Wang Z, Schey KL. Proteomic Analysis of S-Palmitoylated Proteins in Ocular Lens Reveals Palmitoylation of AQP5 and MP20. Invest Ophthalmol Vis Sci 2019; 59:5648-5658. [PMID: 30489624 PMCID: PMC6266727 DOI: 10.1167/iovs.18-25312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to characterize the palmitoyl-proteome in lens fiber cells. S-palmitoylation is the most common form of protein S-acylation and the reversible nature of this modification functions as a molecular switch to regulate many biological processes. This modification could play important roles in regulating protein functions and protein–protein interactions in the lens. Methods The palmitoyl-proteome of bovine lens fiber cells was investigated by combining acyl-biotin exchange (ABE) chemistry and mass-spectrometry analysis. Due to the possibility of false-positive results from ABE experiment, a method was also developed for direct detection of palmitoylated peptides by mass spectrometry for validating palmitoylation of lens proteins MP20 and AQP5. Palmitoylation levels on AQP5 in different regions of the lens were quantified after iodoacetamide (IAA)-palmitate exchange. Results The ABE experiment identified 174 potential palmitoylated proteins. These proteins include 39 well-characterized palmitoylated proteins, 92 previously reported palmitoylated proteins in other tissues, and 43 newly identified potential palmitoylated proteins including two important transmembrane proteins in the lens, AQP5 and MP20. Further analysis by direct detection of palmitoylated peptides confirmed palmitoylation of AQP5 on C6 and palmitoylation of MP20 on C159. Palmitoylation of AQP5 was found to only occur in a narrow region of the inner lens cortex and does not occur in the lens epithelium, in the lens outer cortex, or in the lens nucleus. Conclusions AQP5 and MP20 are among 174 palmitoylated proteins found in bovine lens fiber cells. This modification to AQP5 and MP20 may play a role in their translocation from the cytoplasm to cell membranes during fiber cell differentiation.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
22
|
Tapodi A, Clemens DM, Uwineza A, Jarrin M, Goldberg MW, Thinon E, Heal WP, Tate EW, Nemeth-Cahalan K, Vorontsova I, Hall JE, Quinlan RA. BFSP1 C-terminal domains released by post-translational processing events can alter significantly the calcium regulation of AQP0 water permeability. Exp Eye Res 2019; 185:107585. [PMID: 30790544 PMCID: PMC6713518 DOI: 10.1016/j.exer.2019.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 01/20/2023]
Abstract
BFSP1 (beaded filament structural protein 1, filensin) is a cytoskeletal protein expressed in the eye lens. It binds AQP0 in vitro and its C-terminal sequences have been suggested to regulate the water channel activity of AQP0. A myristoylated fragment from the C-terminus of BFSP1 was found in AQP0 enriched fractions. Here we identify BFSP1 as a substrate for caspase-mediated cleavage at several C-terminal sites including D433. Cleavage at D433 exposes a cryptic myristoylation sequence (434–440). We confirm that this sequence is an excellent substrate for both NMT1 and 2 (N-myristoyl transferase). Thus caspase cleavage may promote formation of myristoylated fragments derived from the BFSP1 C-terminus (G434-S665). Myristoylation at G434 is not required for membrane association. Biochemical fractionation and immunogold labeling confirmed that C-terminal BFSP1 fragments containing the myristoylation sequence colocalized with AQP0 in the same plasma membrane compartments of lens fibre cells. To determine the functional significance of the association of BFSP1 G434-S665 sequences with AQP0, we measured AQP0 water permeability in Xenopus oocytes co-transfected with transcripts expressing both AQP0 and various C-terminal domain fragments of BFSP1 generated by caspase cleavage. We found that different fragments dramatically alter the response of AQP0 to different concentrations of Ca2+. The complete C-terminal fragment (G434-S665) eliminates calcium regulation altogether. Shorter fragments can enhance regulation by elevated calcium or reverse the response, indicative of the regulatory potential of BFSP1 with respect to AQP0. In particular, elimination of the myristoylation site by the mutation G434A reverses the order of water permeability sensitivity to different Ca2+ concentrations.
Collapse
Affiliation(s)
- Antal Tapodi
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK
| | | | - Alice Uwineza
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK
| | - Miguel Jarrin
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK
| | - Martin W Goldberg
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK
| | - Emmanuelle Thinon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK; Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - William P Heal
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK; Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK; Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | | | | | - James E Hall
- Physiology and Biophysics, UC Irvine, Irvine, CA, USA.
| | - Roy A Quinlan
- Department of Biosciences, The University of Durham, South Road, Durham, DH1 3LE, UK; Biophysical Sciences Institute, The University of Durham, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
23
|
Zhang S, Spiegelman NA, Lin H. Global Profiling of Sirtuin Deacylase Substrates Using a Chemical Proteomic Strategy and Validation by Fluorescent Labeling. Methods Mol Biol 2019; 2009:137-147. [PMID: 31152401 DOI: 10.1007/978-1-4939-9532-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein fatty-acylation is an important posttranslational modification (PTM) and has been associated with many fundamental biological processes. Sirtuins, the nicotinamide adenine dinucleotide (NAD)-dependent class of histone deacetylases have been reported to possess lysine defatty-acylase activity. Comprehensive substrate profiling of sirtuins will help to establish the function of both protein lysine fatty acylation and its regulation by sirtuins. Here, we describe a chemical proteomic strategy to globally profile sirtuin defatty-acylation substrates and a fluorescent labeling method to validate sirtuin substrates.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Nicole A Spiegelman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
24
|
Liu W, Zhou Y, Peng T, Zhou P, Ding X, Li Z, Zhong H, Xu Y, Chen S, Hang HC, Shao F. N ε-fatty acylation of multiple membrane-associated proteins by Shigella IcsB effector to modulate host function. Nat Microbiol 2018; 3:996-1009. [PMID: 30061757 PMCID: PMC6466622 DOI: 10.1038/s41564-018-0215-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 06/27/2018] [Indexed: 11/09/2022]
Abstract
Shigella flexneri, an intracellular Gram-negative bacterium causative for shigellosis, employs a type III secretion system to deliver virulence effectors into host cells. One such effector, IcsB, is critical for S. flexneri intracellular survival and pathogenesis, but its mechanism of action is unknown. Here, we discover that IcsB is an 18-carbon fatty acyltransferase catalysing lysine Nε-fatty acylation. IcsB disrupted the actin cytoskeleton in eukaryotes, resulting from Nε-fatty acylation of RhoGTPases on lysine residues in their polybasic region. Chemical proteomic profiling identified about 60 additional targets modified by IcsB during infection, which were validated by biochemical assays. Most IcsB targets are membrane-associated proteins bearing a lysine-rich polybasic region, including members of the Ras, Rho and Rab families of small GTPases. IcsB also modifies SNARE proteins and other non-GTPase substrates, suggesting an extensive interplay between S. flexneri and host membrane trafficking. IcsB is localized on the Shigella-containing vacuole to fatty-acylate its targets. Knockout of CHMP5-one of the IcsB targets and a component of the ESCRT-III complex-specifically affected S. flexneri escape from host autophagy. The unique Nε-fatty acyltransferase activity of IcsB and its altering of the fatty acylation landscape of host membrane proteomes represent an unprecedented mechanism in bacterial pathogenesis.
Collapse
Affiliation(s)
- Wang Liu
- College of Life Science, Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Yan Zhou
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Peng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Ping Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Xiaojun Ding
- National Institute of Biological Sciences, Beijing, China
| | - Zilin Li
- National Institute of Biological Sciences, Beijing, China
| | - Haoyu Zhong
- National Institute of Biological Sciences, Beijing, China
| | - Yue Xu
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
25
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Schey KL, Petrova RS, Gletten RB, Donaldson PJ. The Role of Aquaporins in Ocular Lens Homeostasis. Int J Mol Sci 2017; 18:E2693. [PMID: 29231874 PMCID: PMC5751294 DOI: 10.3390/ijms18122693] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Abstract: Aquaporins (AQPs), by playing essential roles in the maintenance of ocular lens homeostasis, contribute to the establishment and maintenance of the overall optical properties of the lens over many decades of life. Three aquaporins, AQP0, AQP1 and AQP5, each with distinctly different functional properties, are abundantly and differentially expressed in the different regions of the ocular lens. Furthermore, the diversity of AQP functionality is increased in the absence of protein turnover by age-related modifications to lens AQPs that are proposed to alter AQP function in the different regions of the lens. These regional differences in AQP functionality are proposed to contribute to the generation and directionality of the lens internal microcirculation; a system of circulating ionic and fluid fluxes that delivers nutrients to and removes wastes from the lens faster than could be achieved by passive diffusion alone. In this review, we present how regional differences in lens AQP isoforms potentially contribute to this microcirculation system by highlighting current areas of investigation and emphasizing areas where future work is required.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA.
| | - Rosica S Petrova
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand.
| | - Romell B Gletten
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37240, USA.
| | - Paul J Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand.
- School of Optometry and Vison Sciences, New Zealand National Eye Centre, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
27
|
Chen BJ, Lam TC, Liu LQ, To CH. Post-translational modifications and their applications in eye research (Review). Mol Med Rep 2017; 15:3923-3935. [PMID: 28487982 DOI: 10.3892/mmr.2017.6529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/22/2017] [Indexed: 02/05/2023] Open
Abstract
Gene expression is the process by which genetic information is used for the synthesis of a functional gene product, and ultimately regulates cell function. The increase of biological complexity from genome to proteome is vast, and the post-translational modification (PTM) of proteins contribute to this complexity. The study of protein expression and PTMs has attracted attention in the post‑genomic era. Due to the limited capability of conventional biochemical techniques in the past, large‑scale PTM studies were technically challenging. The introduction of effective protein separation methods, specific PTM purification strategies and advanced mass spectrometers has enabled the global profiling of PTMs and the identification of a targeted PTM within the proteome. The present review provides an overview of current proteomic technologies being applied in eye research, with a particular focus on studies of PTMs in ocular tissues and ocular diseases.
Collapse
Affiliation(s)
- Bing-Jie Chen
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P.R. China
| | - Long-Qian Liu
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chi-Ho To
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P.R. China
| |
Collapse
|
28
|
Angel PM, Baldwin HS, Gottlieb Sen D, Su YR, Mayer JE, Bichell D, Drake RR. Advances in MALDI imaging mass spectrometry of proteins in cardiac tissue, including the heart valve. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:927-935. [PMID: 28341601 DOI: 10.1016/j.bbapap.2017.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/15/2017] [Accepted: 03/20/2017] [Indexed: 01/01/2023]
Abstract
Significant progress has been made for tissue imaging of proteins using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS). These advancements now facilitate mapping of a wide range of proteins, peptides, and post-translational modifications in a wide variety of tissues; however, the use of MALDI IMS to detect proteins from cardiac tissue is limited. This review discusses the most recent advances in protein imaging and demonstrates application to cardiac tissue, including the heart valve. Protein imaging by MALDI IMS allows multiplexed histological mapping of proteins and protein components that are inaccessible by antibodies and should be considered an important tool for basic and clinical cardiovascular research. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Peggi M Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, USA; Medical University of South Carolina Proteomics Center, Medical University of South Carolina, Charleston, USA.
| | - H Scott Baldwin
- Department of Pediatrics and Cell Development and Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Yan Ru Su
- Department of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John E Mayer
- Department of Cardiac Surgery, Boston Children's Hospital & Harvard Medical School, Boston, MA, USA
| | - David Bichell
- Division of Pediatric Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, USA; Medical University of South Carolina Proteomics Center, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
29
|
Ismail VS, Mosely JA, Tapodi A, Quinlan RA, Sanderson JM. The lipidation profile of aquaporin-0 correlates with the acyl composition of phosphoethanolamine lipids in lens membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2763-2768. [DOI: 10.1016/j.bbamem.2016.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 12/27/2022]
|
30
|
Thinon E, Percher A, Hang HC. Bioorthogonal Chemical Reporters for Monitoring Unsaturated Fatty-Acylated Proteins. Chembiochem 2016; 17:1800-1803. [PMID: 27350074 DOI: 10.1002/cbic.201600213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/11/2022]
Abstract
Dietary unsaturated fatty acids, such as oleic acid, have been shown to be covalently incorporated into a small subset of proteins, but the generality and diversity of this protein modification has not been studied. We synthesized unsaturated fatty-acid chemical reporters and determined their protein targets in mammalian cells. The reporters can induce the formation of lipid droplets and be incorporated site-specifically onto known fatty-acylated proteins and label many proteins in mammalian cells. Quantitative proteomics analysis revealed that unsaturated fatty acids modify similar protein targets to saturated fatty acids, including several immunity-associated proteins. This demonstrates that unsaturated fatty acids can directly modify many proteins to exert their unique and often beneficial physiological effects in vivo.
Collapse
Affiliation(s)
- Emmanuelle Thinon
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.,The Crick Institute, 215 Euston Road, London, NW1 2BE, UK
| | - Avital Percher
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
31
|
Wang Z, Schey KL. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells. Invest Ophthalmol Vis Sci 2016; 56:8349-60. [PMID: 26747763 DOI: 10.1167/iovs.15-18273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. METHODS Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. RESULTS A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. CONCLUSIONS These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.
Collapse
|
32
|
Wenke JL, Rose KL, Spraggins JM, Schey KL. MALDI Imaging Mass Spectrometry Spatially Maps Age-Related Deamidation and Truncation of Human Lens Aquaporin-0. Invest Ophthalmol Vis Sci 2016; 56:7398-405. [PMID: 26574799 DOI: 10.1167/iovs.15-18117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To spatially map human lens Aquaporin-0 (AQP0) protein modifications, including lipidation, truncation, and deamidation, from birth through middle age using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). METHODS Human lens sections were water-washed to facilitate detection of membrane protein AQP0. We acquired MALDI images from eight human lenses ranging in age from 2 months to 63 years. In situ tryptic digestion was used to generate peptides of AQP0 and peptide images were acquired on a 15T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Peptide extracts were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and database searched to identify peptides observed in MALDI imaging experiments. RESULTS Unmodified, truncated, and fatty acid-acylated forms of AQP0 were detected in protein imaging experiments. Full-length AQP0 was fatty acid acylated in the core and cortex of young (2- and 4-month) lenses. Acylated and unmodified AQP0 were C-terminally truncated in older lens cores. Deamidated tryptic peptides (+0.9847 Da) were mass resolved from unmodified peptides by FTICR MS. Peptide images revealed differential localization of un-, singly-, and doubly-deamidated AQP0 C-terminal peptide (239-263). Deamidation was present at 4 months and increases with age. Liquid chromatography-MS/MS results indicated N246 undergoes deamidation more rapidly than N259. CONCLUSIONS Results indicated AQP0 fatty acid acylation and deamidation occur during early development. Progressive age-related AQP0 processing, including deamidation and truncation, was mapped in human lenses as a function of age. The localization of these modified AQP0 forms suggests where AQP0 functions may change throughout lens development and aging.
Collapse
|
33
|
Lahiri S, Sun N, Buck A, Imhof A, Walch A. MALDI imaging mass spectrometry as a novel tool for detecting histone modifications in clinical tissue samples. Expert Rev Proteomics 2016; 13:275-84. [DOI: 10.1586/14789450.2016.1146598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Hannoush RN. Synthetic protein lipidation. Curr Opin Chem Biol 2015; 28:39-46. [DOI: 10.1016/j.cbpa.2015.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/26/2015] [Indexed: 12/19/2022]
|
35
|
Abstract
Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and transmembrane proteins via a labile thioester linkage. Addition of lipid results in increases in protein hydrophobicity that can impact on protein structure, assembly, maturation, trafficking, and function. The recent explosion in global S-acylation (palmitoyl) proteomic profiling as a result of improved biochemical tools to assay S-acylation, in conjunction with the recent identification of enzymes that control protein S-acylation and de-acylation, has opened a new vista into the physiological function of S-acylation. This review introduces key features of S-acylation and tools to interrogate this process, and highlights the eclectic array of proteins regulated including membrane receptors, ion channels and transporters, enzymes and kinases, signaling adapters and chaperones, cell adhesion, and structural proteins. We highlight recent findings correlating disruption of S-acylation to pathophysiology and disease and discuss some of the major challenges and opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J Shipston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, United Kingdom; and Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Montigny C, Decottignies P, Le Maréchal P, Capy P, Bublitz M, Olesen C, Møller JV, Nissen P, le Maire M. S-palmitoylation and s-oleoylation of rabbit and pig sarcolipin. J Biol Chem 2014; 289:33850-61. [PMID: 25301946 DOI: 10.1074/jbc.m114.590307] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sarcolipin (SLN) is a regulatory peptide present in sarcoplasmic reticulum (SR) from skeletal muscle of animals. We find that native rabbit SLN is modified by a fatty acid anchor on Cys-9 with a palmitic acid in about 60% and, surprisingly, an oleic acid in the remaining 40%. SLN used for co-crystallization with SERCA1a (Winther, A. M., Bublitz, M., Karlsen, J. L., Moller, J. V., Hansen, J. B., Nissen, P., and Buch-Pedersen, M. J. (2013) Nature 495, 265-2691; Ref. 1) is also palmitoylated/oleoylated, but is not visible in crystal structures, probably due to disorder. Treatment with 1 m hydroxylamine for 1 h removes the fatty acids from a majority of the SLN pool. This treatment did not modify the SERCA1a affinity for Ca(2+) but increased the Ca(2+)-dependent ATPase activity of SR membranes indicating that the S-acylation of SLN or of other proteins is required for this effect on SERCA1a. Pig SLN is also fully palmitoylated/oleoylated on its Cys-9 residue, but in a reverse ratio of about 40/60. An alignment of 67 SLN sequences from the protein databases shows that 19 of them contain a cysteine and the rest a phenylalanine at position 9. Based on a cladogram, we postulate that the mutation from phenylalanine to cysteine in some species is the result of an evolutionary convergence. We suggest that, besides phosphorylation, S-acylation/deacylation also regulates SLN activity.
Collapse
Affiliation(s)
- Cédric Montigny
- From the Laboratoire des Protéines Membranaires, UMR 8221, Commissariat à l'Energie Atomique (CEA), Université Paris-Sud and Centre National de la Recherche Scientifique (CNRS), F91191, Gif-sur-Yvette, France
| | - Paulette Decottignies
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, Université Paris-Sud, F91400, Orsay, France
| | - Pierre Le Maréchal
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS UMR 8619, Université Paris-Sud, F91400, Orsay, France
| | - Pierre Capy
- Laboratoire Evolution, Génomes et Spéciation, CNRS UPR 9034, Centre de Recherche de Gif and Université Paris-Sud, F91190, Gif-sur-Yvette, France
| | - Maike Bublitz
- Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, and
| | - Claus Olesen
- Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, and Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Jesper Vuust Møller
- Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, and
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease, PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, and
| | - Marc le Maire
- From the Laboratoire des Protéines Membranaires, UMR 8221, Commissariat à l'Energie Atomique (CEA), Université Paris-Sud and Centre National de la Recherche Scientifique (CNRS), F91191, Gif-sur-Yvette, France,
| |
Collapse
|
37
|
Shipston MJ. Ion channel regulation by protein S-acylation. J Gen Physiol 2014; 143:659-78. [PMID: 24821965 PMCID: PMC4035745 DOI: 10.1085/jgp.201411176] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/18/2014] [Indexed: 01/09/2023] Open
Abstract
Protein S-acylation, the reversible covalent fatty-acid modification of cysteine residues, has emerged as a dynamic posttranslational modification (PTM) that controls the diversity, life cycle, and physiological function of numerous ligand- and voltage-gated ion channels. S-acylation is enzymatically mediated by a diverse family of acyltransferases (zDHHCs) and is reversed by acylthioesterases. However, for most ion channels, the dynamics and subcellular localization at which S-acylation and deacylation cycles occur are not known. S-acylation can control the two fundamental determinants of ion channel function: (1) the number of channels resident in a membrane and (2) the activity of the channel at the membrane. It controls the former by regulating channel trafficking and the latter by controlling channel kinetics and modulation by other PTMs. Ion channel function may be modulated by S-acylation of both pore-forming and regulatory subunits as well as through control of adapter, signaling, and scaffolding proteins in ion channel complexes. Importantly, cross-talk of S-acylation with other PTMs of both cysteine residues by themselves and neighboring sites of phosphorylation is an emerging concept in the control of ion channel physiology. In this review, I discuss the fundamentals of protein S-acylation and the tools available to investigate ion channel S-acylation. The mechanisms and role of S-acylation in controlling diverse stages of the ion channel life cycle and its effect on ion channel function are highlighted. Finally, I discuss future goals and challenges for the field to understand both the mechanistic basis for S-acylation control of ion channels and the functional consequence and implications for understanding the physiological function of ion channel S-acylation in health and disease.
Collapse
Affiliation(s)
- Michael J Shipston
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD Scotland, UK
| |
Collapse
|
38
|
Németh-Cahalan KL, Clemens DM, Hall JE. Regulation of AQP0 water permeability is enhanced by cooperativity. ACTA ACUST UNITED AC 2013; 141:287-95. [PMID: 23440275 PMCID: PMC3581697 DOI: 10.1085/jgp.201210884] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aquaporin 0 (AQP0), essential for lens clarity, is a tetrameric protein composed of four identical monomers, each of which has its own water pore. The water permeability of AQP0 expressed in Xenopus laevis oocytes can be approximately doubled by changes in calcium concentration or pH. Although each monomer pore functions as a water channel, under certain conditions the pores act cooperatively. In other words, the tetramer is the functional unit. In this paper, we show that changes in external pH and calcium can induce an increase in water permeability that exhibits either a positive cooperativity switch-like increase in water permeability or an increase in water permeability in which each monomer acts independently and additively. Because the concentrations of calcium and hydrogen ions increase toward the center of the lens, a concentration signal could trigger a regulatory change in AQP0 water permeability. It thus seems plausible that the cooperative modes of water permeability regulation by AQP0 tetramers mediated by decreased pH and elevated calcium are the physiologically important ones in the living lens.
Collapse
Affiliation(s)
- Karin L Németh-Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
39
|
Acyl Transfer from Membrane Lipids to Peptides Is a Generic Process. J Mol Biol 2013; 425:4379-87. [DOI: 10.1016/j.jmb.2013.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/24/2013] [Accepted: 07/10/2013] [Indexed: 12/24/2022]
|
40
|
Angel PM, Caprioli RM. Matrix-assisted laser desorption ionization imaging mass spectrometry: in situ molecular mapping. Biochemistry 2013; 52:3818-28. [PMID: 23259809 PMCID: PMC3864574 DOI: 10.1021/bi301519p] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples.
Collapse
Affiliation(s)
- Peggi M. Angel
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University Medical Center, 465 21st Avenue South, MRB III Suite 9160, Nashville, Tennessee 37232, United States
| | - Richard M. Caprioli
- Mass Spectrometry Research Center and Department of Biochemistry, Medicine, Pharmacology, and Chemistry, Vanderbilt University Medical Center, 465 21st Avenue South, MRB III Suite 9160, Nashville, Tennessee 37232, United States
| |
Collapse
|
41
|
Tong J, Canty JT, Briggs MM, McIntosh TJ. The water permeability of lens aquaporin-0 depends on its lipid bilayer environment. Exp Eye Res 2013; 113:32-40. [PMID: 23680159 DOI: 10.1016/j.exer.2013.04.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/16/2013] [Accepted: 04/30/2013] [Indexed: 01/07/2023]
Abstract
Aquaporin-0 (AQP0), the primary water channel in lens fiber cells, is critical to lens development, organization, and function. In the avascular lens there is thought to be an internal microcirculation associated with fluid movement. Although AQP0 is known to be important in fluid fluxes across membranes, the water permeability of this channel has only been measured in Xenopus oocytes and in outer lens cortical membranes, but not in inner nuclear membranes, which have an increased cholesterol/phospholipid ratio. Here we measure the unit water permeability of AQP0 in different proteoliposomes with cholesterol/phospholipid ratios and external pHs similar to those found in the cortex and nucleus of the lens. Osmotic stress measurements were performed with proteoliposomes containing AQP0 and three different lipids mixtures: (1) phosphatidylcholine (PC) and phosphatidylglycerol (PG), (2) PC, PG, with 40 mol% cholesterol, and (3) sphingomyelin (SM), PG, with 40 mol% cholesterol. At pH 7.5 the unit permeabilities of AQP0 were 3.5 ± 0.5 × 10(-14) cm(3)/s (mean ± SEM), 1.1 ± 0.1 × 10(-14) cm(3)/s, and 0.50 ± 0.04 × 10(-14) cm(3)/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. For lipid mixtures at pH 6.5, corresponding to conditions found in the lens nucleus, the AQP0 permeabilities were 1.5 ± 0.4 × 10(-14) cm(3)/s and 0.76 ± 0.03 × 10(-14) cm(3)/s in PC:PG:cholesterol and SM:PG:cholesterol, respectively. Thus, although AQP0 unit permeability can be modified by changes in pH, it is also sensitive to changes in bilayer lipid composition, and decreases with increasing cholesterol and SM content. These data imply that AQP0 water permeability is regulated by bilayer lipid composition, so that AQP0 permeability would be significantly less in the lens nucleus than in the lens cortex.
Collapse
Affiliation(s)
- Jihong Tong
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
42
|
Schey KL, Grey AC, Nicklay JJ. Mass spectrometry of membrane proteins: a focus on aquaporins. Biochemistry 2013; 52:3807-17. [PMID: 23394619 DOI: 10.1021/bi301604j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane proteins are abundant, critically important biomolecules that conduct essential functions in all cells and are the targets of a significant number of therapeutic drugs. However, the analysis of their expression, modification, protein-protein interactions, and structure by mass spectrometry has lagged behind similar studies of soluble proteins. Here we review the limitations to analysis of integral membrane and membrane-associated proteins and highlight advances in sample preparation and mass spectrometry methods that have led to the successful analysis of this protein class. Advances in the analysis of membrane protein posttranslational modification, protein-protein interaction, protein structure, and tissue distributions by imaging mass spectrometry are discussed. Furthermore, we focus our discussion on the application of mass spectrometry for the analysis of aquaporins as a prototypical integral membrane protein and how advances in analytical methods have revealed new biological insights into the structure and function of this family of proteins.
Collapse
Affiliation(s)
- Kevin L Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.
| | | | | |
Collapse
|
43
|
Wang Z, Han J, David LL, Schey KL. Proteomics and phosphoproteomics analysis of human lens fiber cell membranes. Invest Ophthalmol Vis Sci 2013; 54:1135-43. [PMID: 23349431 DOI: 10.1167/iovs.12-11168] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE The human lens fiber cell insoluble membrane fraction contains important membrane proteins, cytoskeletal proteins, and cytosolic proteins that are strongly associated with the membrane. The purpose of this study was to characterize the lens fiber cell membrane proteome and phosphoproteome from human lenses. METHODS HPLC-mass spectrometry-based multidimensional protein identification technology (MudPIT), without or with phosphopeptide enrichment, was applied to study the proteome and phosphoproteome of lens fiber cell membranes, respectively. RESULTS In total, 951 proteins were identified, including 379 integral membrane and membrane-associated proteins. Enriched gene categories and pathways based on the proteomic analysis include carbohydrate metabolism (glycolysis/gluconeogenesis, pentose phosphate pathway, pyruvate metabolism), proteasome, cell-cell signaling and communication (GTP binding, gap junction, focal adhesion), glutathione metabolism, and actin regulation. The combination of TiO(2) phosphopeptide enrichment and MudPIT analysis revealed 855 phosphorylation sites on 271 proteins, including 455 phosphorylation sites that have not been previously identified. PKA, PKC, CKII, p38MAPK, and RSK are predicted as the major kinases for phosphorylation on the sites identified in the human lens membrane fraction. CONCLUSIONS The results presented herein significantly expand the characterized proteome and phosphoproteome of the human lens fiber cell and provide a valuable reference for future research in studies of lens development and disease.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | |
Collapse
|
44
|
Le CH, Han J, Borchers CH. Dithranol as a MALDI Matrix for Tissue Imaging of Lipids by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 2012; 84:8391-8. [DOI: 10.1021/ac301901s] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cuong H. Le
- University of Victoria-Genome
BC Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101−4464 Markham Street,
Victoria, British Columbia V8Z 7X8, Canada
- Department of Biochemistry and
Microbiology, University of Victoria, 3800
Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Jun Han
- University of Victoria-Genome
BC Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101−4464 Markham Street,
Victoria, British Columbia V8Z 7X8, Canada
| | - Christoph H. Borchers
- University of Victoria-Genome
BC Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101−4464 Markham Street,
Victoria, British Columbia V8Z 7X8, Canada
- Department of Biochemistry and
Microbiology, University of Victoria, 3800
Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
45
|
Cambi A, Lidke DS. Nanoscale membrane organization: where biochemistry meets advanced microscopy. ACS Chem Biol 2012; 7:139-49. [PMID: 22004174 DOI: 10.1021/cb200326g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the molecular mechanisms that shape an effective cellular response is a fundamental question in biology. Biochemical measurements have revealed critical information about the order of protein-protein interactions along signaling cascades but lack the resolution to determine kinetics and localization of interactions on the plasma membrane. Furthermore, the local membrane environment influences membrane receptor distributions and dynamics, which in turn influences signal transduction. To measure dynamic protein interactions and elucidate the consequences of membrane architecture interplay, direct measurements at high spatiotemporal resolution are needed. In this review, we discuss the biochemical principles regulating membrane nanodomain formation and protein function, ranging from the lipid nanoenvironment to the cortical cytoskeleton. We also discuss recent advances in fluorescence microscopy that are making it possible to quantify protein organization and biochemical events at the nanoscale in the living cell membrane.
Collapse
Affiliation(s)
- Alessandra Cambi
- Department of Tumor Immunology,
Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Diane S. Lidke
- Department of Pathology and
Cancer Research and Treatment Center, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
46
|
Understanding the α-crystallin cell membrane conjunction. Mol Vis 2011; 17:2798-807. [PMID: 22219626 PMCID: PMC3245837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 10/21/2011] [Indexed: 11/30/2022] Open
Abstract
PURPOSE It is well established that levels of soluble α-crystallin in the lens cytoplasm fall steadily with age, accompanied by a corresponding increase in the amount of membrane-bound α-crystallin. Less well understood, is the mechanism driving this age-dependent membrane association. The aim of this study was to investigate the role of the membrane and its associated proteins and peptides in the binding of α-crystallin. METHODS Fiber cell membranes from human and bovine lenses were separated from soluble proteins by centrifugation. Membranes were stripped of associated proteins with successive aqueous, urea, and alkaline solutions. Protein constituents of the respective membrane isolates were examined by SDS-PAGE and western immunoblotting. Recombinant αA- and αB-crystallins were fluorescently-labeled with Alexa350® dye and incubated with the membrane isolates and the binding capacity of membrane for α-crystallin was determined. RESULTS The binding capacity of human membranes was consistently higher than that of bovine membranes. Urea- and alkali-treated membranes from the nucleus had similar binding capacities for αA-crystallin, which were significantly higher than both cortical membrane extracts. αB-Crystallin also had a higher affinity for nuclear membrane. However, urea-treated nuclear membrane had three times the binding capacity for αB-crystallin as compared to the alkali-treated nuclear membrane. Modulation of the membrane-crystallin interaction was achieved by the inclusion of an NH₂-terminal peptide of αB-crystallin in the assays, which significantly increased the binding. Remarkably, following extraction with alkali, full length αA- and αB-crystallins were found to remain associated with both bovine and human lens membranes. CONCLUSIONS Fiber cell membrane isolated from the lens has an inherent capacity to bind α-crystallin. For αB-crystallin, this binding was found to be proportional to the level of extrinsic membrane proteins in cells isolated from the lens nucleus, indicating these proteins may play a role in the recruitment of αB-crystallin. No such relationship was evident for αA-crystallin in the nucleus, or for cortical membrane binding. Intrinsic lens peptides, which increase in abundance with age, may also function to modulate the interaction between soluble α-crystallin and the membrane. In addition, the tight association between α-crystallin and the lens membrane suggests that the protein may be an intrinsic component of the membrane structure.
Collapse
|
47
|
Gutierrez DB, Garland D, Schey KL. Spatial analysis of human lens aquaporin-0 post-translational modifications by MALDI mass spectrometry tissue profiling. Exp Eye Res 2011; 93:912-20. [PMID: 22036630 DOI: 10.1016/j.exer.2011.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 10/16/2022]
Abstract
Aquaporin-0 (AQP0), the major integral membrane protein in lens fiber cells, becomes highly modified with increasing age. The functional consequences of these modifications are being revealed, and the next step is to determine how these modifications affect the ocular lens, which is directly related to their abundances and spatial distributions. The aim of this study was to utilize matrix-assisted laser desorption ionization (MALDI) direct tissue profiling methods, which produce spatially-resolved protein profiles, to map and quantify AQP0 post-translational modifications (PTMs). Direct tissue profiling was performed using frozen, equatorial human lens sections of various ages prepared by conditions optimized for MALDI mass spectrometry profiling of membrane proteins. Modified forms of AQP0 were identified and further investigated using liquid chromatography tandem mass spectrometry (LC-MS/MS). The distributions of unmodified, truncated, and oleoylated forms of AQP0 were examined with a maximum spatial resolution of 500 μm. Direct tissue profiling of intact human lens sections provided high quality, spatially-resolved, relative quantitative information of AQP0 and its modified forms indicating that 50% of AQP0 is truncated at a fiber cell age of 24 ± 1 year in all lenses examined. Furthermore, direct tissue profiling also revealed previously unidentified AQP0 modifications including N-terminal acetylation and carbamylation. N-terminal acetylation appears to provide a protective effect against N-terminal truncation.
Collapse
Affiliation(s)
- Danielle B Gutierrez
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, MD, USA
| | | | | |
Collapse
|
48
|
Martin DDO, Beauchamp E, Berthiaume LG. Post-translational myristoylation: Fat matters in cellular life and death. Biochimie 2011; 93:18-31. [PMID: 21056615 DOI: 10.1016/j.biochi.2010.10.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/23/2010] [Indexed: 01/15/2023]
Abstract
Myristoylation corresponds to the irreversible covalent linkage of the 14-carbon saturated fatty acid, myristic acid, to the N-terminal glycine of many eukaryotic and viral proteins. It is catalyzed by N-myristoyltransferase. Typically, the myristate moiety participates in protein subcellular localization by facilitating protein-membrane interactions as well as protein-protein interactions. Myristoylated proteins are crucial components of a wide variety of functions, which include many signalling pathways, oncogenesis or viral replication. Initially, myristoylation was described as a co-translational reaction that occurs after the removal of the initiator methionine residue. However, it is now well established that myristoylation can also occur post-translationally in apoptotic cells. Indeed, during apoptosis hundreds of proteins are cleaved by caspases and in many cases this cleavage exposes an N-terminal glycine within a cryptic myristoylation consensus sequence, which can be myristoylated. The principal objective of this review is to provide an overview on the implication of myristoylation in health and disease with a special emphasis on post-translational myristoylation. In addition, new advancements in the detection and identification of myristoylated proteins are also briefly reviewed.
Collapse
Affiliation(s)
- Dale D O Martin
- Department of Cell Biology, School of Molecular and Systems Medicine, MSB-5-55, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|