1
|
Lindemeier D, Graubner W, Mehner-Breitfeld D, Malešević M, Brüser T. Positive charges promote the recognition of proteins by the chaperone SlyD from Escherichia coli. PLoS One 2024; 19:e0305823. [PMID: 38917203 PMCID: PMC11198818 DOI: 10.1371/journal.pone.0305823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
SlyD is a widely-occurring prokaryotic FKBP-family prolyl isomerase with an additional chaperone domain. Often, such as in Escherichia coli, a third domain is found at its C-terminus that binds nickel and provides it for nickel-enzyme biogenesis. SlyD has been found to bind signal peptides of proteins that are translocated by the Tat pathway, a system for the transport of folded proteins across membranes. Using peptide arrays to analyze these signal peptide interactions, we found that SlyD interacted only with positively charged peptides, with a preference for arginines over lysines, and large hydrophobic residues enhanced binding. Especially a twin-arginine motif was recognized, a pair of highly conserved arginines adjacent to a stretch of hydrophobic residues. Using isothermal titration calorimetry (ITC) with purified SlyD and a signal peptide-containing model Tat substrate, we could show that the wild type twin-arginine signal peptide was bound with higher affinity than an RR>KK mutated variant, confirming that positive charges are recognized by SlyD, with a preference of arginines over lysines. The specific role of negative charges of the chaperone domain surface and of hydrophobic residues in the chaperone active site was further analyzed by ITC of mutated SlyD variants. Our data show that the supposed key hydrophobic residues of the active site are indeed crucial for binding, and that binding is influenced by negative charges on the chaperone domain. Recognition of positive charges is likely achieved by a large negatively charged surface region of the chaperone domain, which is highly conserved although individual positions are variable.
Collapse
Affiliation(s)
- Daniel Lindemeier
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| | - Wenke Graubner
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| | | | - Miroslav Malešević
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
2
|
Dreydoppel M, Balbach J, Weininger U. Monitoring protein unfolding transitions by NMR-spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2022; 76:3-15. [PMID: 34984658 PMCID: PMC9018662 DOI: 10.1007/s10858-021-00389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 06/01/2023]
Abstract
NMR-spectroscopy has certain unique advantages for recording unfolding transitions of proteins compared e.g. to optical methods. It enables per-residue monitoring and separate detection of the folded and unfolded state as well as possible equilibrium intermediates. This allows a detailed view on the state and cooperativity of folding of the protein of interest and the correct interpretation of subsequent experiments. Here we summarize in detail practical and theoretical aspects of such experiments. Certain pitfalls can be avoided, and meaningful simplification can be made during the analysis. Especially a good understanding of the NMR exchange regime and relaxation properties of the system of interest is beneficial. We show by a global analysis of signals of the folded and unfolded state of GB1 how accurate values of unfolding can be extracted and what limits different NMR detection and unfolding methods. E.g. commonly used exchangeable amides can lead to a systematic under determination of the thermodynamic protein stability. We give several perspectives of how to deal with more complex proteins and how the knowledge about protein stability at residue resolution helps to understand protein properties under crowding conditions, during phase separation and under high pressure.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
3
|
Denic M, Turlin E, Michel V, Fischer F, Khorasani-Motlagh M, Zamble D, Vinella D, de Reuse H. A novel mode of control of nickel uptake by a multifunctional metallochaperone. PLoS Pathog 2021; 17:e1009193. [PMID: 33444370 PMCID: PMC7840056 DOI: 10.1371/journal.ppat.1009193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/27/2021] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Cellular metal homeostasis is a critical process for all organisms, requiring tight regulation. In the major pathogen Helicobacter pylori, the acquisition of nickel is an essential virulence determinant as this metal is a cofactor for the acid-resistance enzyme, urease. Nickel uptake relies on the NixA permease and the NiuBDE ABC transporter. Till now, bacterial metal transporters were reported to be controlled at their transcriptional level. Here we uncovered post-translational regulation of the essential Niu transporter in H. pylori. Indeed, we demonstrate that SlyD, a protein combining peptidyl-prolyl isomerase (PPIase), chaperone, and metal-binding properties, is required for the activity of the Niu transporter. Using two-hybrid assays, we found that SlyD directly interacts with the NiuD permease subunit and identified a motif critical for this contact. Mutants of the different SlyD functional domains were constructed and used to perform in vitro PPIase activity assays and four different in vivo tests measuring nickel intracellular accumulation or transport in H. pylori. In vitro, SlyD PPIase activity is down-regulated by nickel, independently of its C-terminal region reported to bind metals. In vivo, a role of SlyD PPIase function was only revealed upon exposure to high nickel concentrations. Most importantly, the IF chaperone domain of SlyD was shown to be mandatory for Niu activation under all in vivo conditions. These data suggest that SlyD is required for the active functional conformation of the Niu permease and regulates its activity through a novel mechanism implying direct protein interaction, thereby acting as a gatekeeper of nickel uptake. Finally, in agreement with a central role of SlyD, this protein is essential for the colonization of the mouse model by H. pylori. Metal ions are essential for the viability of all living organisms. Indeed, more than one-third of all proteins need metal cofactors for their function. Intracellular metal concentrations require tight control as non-physiological amounts are very toxic. In particular, nickel plays a unique role in Helicobacter pylori, a bacterial pathogen that colonizes the stomach of about half of the human population worldwide and is associated with the development of gastric cancer. Nickel is essential for H. pylori as it is the cofactor of urease, an enzyme indispensable for resistance to the gastric acidity of the stomach and thus for in vivo colonization. To import nickel despite its scarcity in the human body, H. pylori requires efficient uptake mechanisms. Till now, control of nickel uptake was only reported to rely on transcriptional regulators. In the present study, we uncovered a novel mechanism of regulation of nickel acquisition. SlyD, a multifunctional enzyme was found to control, by direct protein interaction, the activity of an essential nickel uptake system in H. pylori. We revealed that the SlyD chaperone activity is mandatory for the active conformation and thus functionality of the nickel permease.
Collapse
Affiliation(s)
- Milica Denic
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
- Université de Paris, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Evelyne Turlin
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
| | - Valérie Michel
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, Strasbourg, France
| | | | - Deborah Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Vinella
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
- * E-mail: (DV); (HDR)
| | - Hilde de Reuse
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Paris, France
- * E-mail: (DV); (HDR)
| |
Collapse
|
4
|
Köhn B, Kovermann M. All atom insights into the impact of crowded environments on protein stability by NMR spectroscopy. Nat Commun 2020; 11:5760. [PMID: 33188202 PMCID: PMC7666220 DOI: 10.1038/s41467-020-19616-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 10/23/2020] [Indexed: 01/16/2023] Open
Abstract
The high density of macromolecules affecting proteins due to volume exclusion has been discussed in theory but numerous in vivo experiments cannot be sufficiently understood taking only pure entropic stabilization into account. Here, we show that the thermodynamic stability of a beta barrel protein increases equally at all atomic levels comparing crowded environments with dilute conditions by applying multidimensional high-resolution NMR spectroscopy in a systematic manner. Different crowding agents evoke a pure stabilization cooperatively and do not disturb the surface or integrity of the protein fold. The here developed methodology provides a solid base that can be easily expanded to incorporate e.g. binding partners to recognize functional consequences of crowded conditions. Our results are relevant to research projects targeting soluble proteins in vivo as it can be anticipated that their thermodynamic stability increase comparably and has consequently to be taken into account to coherently understand intracellular processes.
Collapse
Affiliation(s)
- Birgit Köhn
- Department of Chemistry, University of Konstanz, Universitätsstrasse. 10, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology KoRS-CB, University of Konstanz, Universitätsstrasse. 10, 78457, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, Universitätsstrasse. 10, 78457, Konstanz, Germany.
- Konstanz Research School Chemical Biology KoRS-CB, University of Konstanz, Universitätsstrasse. 10, 78457, Konstanz, Germany.
| |
Collapse
|
5
|
Conformational and functional characterization of artificially conjugated non-canonical ubiquitin dimers. Sci Rep 2019; 9:19991. [PMID: 31882959 PMCID: PMC6934565 DOI: 10.1038/s41598-019-56458-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022] Open
Abstract
Ubiquitylation is an eminent posttranslational modification referring to the covalent attachment of single ubiquitin molecules or polyubiquitin chains to a target protein dictating the fate of such labeled polypeptide chains. Here, we have biochemically produced artificially Lys11-, and Lys27-, and Lys63-linked ubiquitin dimers based on click-chemistry generating milligram quantities in high purity. We show that the artificial linkage used for the conjugation of two ubiquitin moieties represents a fully reliable surrogate of the natural isopeptide bond by acquiring highly resolved nuclear magnetic resonance (NMR) spectroscopic data including ligand binding studies. Extensive coarse grained and atomistic molecular dynamics (MD) simulations allow to extract structures representing the ensemble of domain-domain conformations used to verify the experimental data. Advantageously, this methodology does not require individual isotopic labeling of both ubiquitin moieties as NMR data have been acquired on the isotopically labeled proximal moiety and complementary MD simulations have been used to fully interpret the experimental data in terms of domain-domain conformation. This combined approach intertwining NMR spectroscopy with MD simulations makes it possible to describe the conformational space non-canonically Lys11-, and Lys27-linked ubiquitin dimers occupy in a solution averaged ensemble by taking atomically resolved information representing all residues in ubiquitin dimers into account.
Collapse
|
6
|
In-Cell NMR: Analysis of Protein-Small Molecule Interactions, Metabolic Processes, and Protein Phosphorylation. Int J Mol Sci 2019; 20:ijms20020378. [PMID: 30658393 PMCID: PMC6359726 DOI: 10.3390/ijms20020378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 01/31/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy enables the non-invasive observation of biochemical processes, in living cells, at comparably high spectral and temporal resolution. Preferably, means of increasing the detection limit of this powerful analytical method need to be applied when observing cellular processes under physiological conditions, due to the low sensitivity inherent to the technique. In this review, a brief introduction to in-cell NMR, protein–small molecule interactions, posttranslational phosphorylation, and hyperpolarization NMR methods, used for the study of metabolites in cellulo, are presented. Recent examples of method development in all three fields are conceptually highlighted, and an outlook into future perspectives of this emerging area of NMR research is given.
Collapse
|
7
|
Geitner AJ, Weininger U, Paulsen H, Balbach J, Kovermann M. Structure-Based Insights into the Dynamics and Function of Two-Domain SlpA from Escherichia coli. Biochemistry 2017; 56:6533-6543. [PMID: 29155566 DOI: 10.1021/acs.biochem.7b00786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SlpA (SlyD-like protein A) comprises two domains, a FK506 binding domain (FKBP fold) of moderate prolyl cis/trans-isomerase activity and an inserted in flap (IF) domain that hosts its chaperone activity. Here we present the nuclear magnetic resonance (NMR) solution structure of apo Escherichia coli SlpA determined by NMR that mirrors the structural properties seen for various SlyD homologues. Crucial structural differences in side-chain orientation arise for F37, which points directly into the hydrophobic core of the active site. It forms a prominent aromatic stacking with F15, one of the key residues for PPIase activity, thus giving a possible explanation for the inherently low PPIase activity of SlpA. The IF domain reveals the highest stability within the FKBP-IF protein family, most likely arising from an aromatic cluster formed by four phenylalanine residues. Both the thermodynamic stability and the PPIase and chaperone activity let us speculate that SlpA is a backup system for homologous bacterial systems under unfavorable conditions.
Collapse
Affiliation(s)
| | - Ulrich Weininger
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany
| | - Hauke Paulsen
- Institut für Physik, Universität Lübeck , Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Jochen Balbach
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany.,Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany
| | - Michael Kovermann
- Institut für Physik, Biophysik, Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany.,Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine (MZP), Martin-Luther-Universität Halle-Wittenberg , D-06099 Halle (Saale), Germany.,Universität Konstanz , Fachbereich Chemie, Universitätsstraße 10, D-78457 Konstanz, Germany
| |
Collapse
|
8
|
Tang T, Jo A, Deng J, Ellena JF, Lazar IM, Davis RM, Capelluto DGS. Structural, thermodynamic, and phosphatidylinositol 3-phosphate binding properties of Phafin2. Protein Sci 2017; 26:814-823. [PMID: 28152563 PMCID: PMC5368057 DOI: 10.1002/pro.3128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 02/02/2023]
Abstract
Phafin2 is a phosphatidylinositol 3-phosphate (PtdIns(3)P) binding protein involved in the regulation of endosomal cargo trafficking and lysosomal induction of autophagy. Binding of Phafin2 to PtdIns(3)P is mediated by both its PH and FYVE domains. However, there are no studies on the structural basis, conformational stability, and lipid interactions of Phafin2 to better understand how this protein participates in signaling at the surface of endomembrane compartments. Here, we show that human Phafin2 is a moderately elongated monomer of ∼28 kDa with an intensity-average hydrodynamic diameter of ∼7 nm. Circular dichroism (CD) analysis indicates that Phafin2 exhibits an α/β structure and predicts ∼40% random coil content in the protein. Heteronuclear NMR data indicates that a unique conformation of Phafin2 is present in solution and dispersion of resonances suggests that the protein exhibits random coiled regions, in agreement with the CD data. Phafin2 is stable, displaying a melting temperature of 48.4°C. The folding-unfolding curves, obtained using urea- and guanidine hydrochloride-mediated denaturation, indicate that Phafin2 undergoes a two-state native-to-denatured transition. Analysis of these transitions shows that the free energy change for urea- and guanidine hydrochloride-induced Phafin2 denaturation in water is ∼4 kcal mol-1 . PtdIns(3)P binding to Phafin2 occurs with high affinity, triggering minor conformational changes in the protein. Taken together, these studies represent a platform for establishing the structural basis of Phafin2 molecular interactions and the role of the two potentially redundant PtdIns(3)P-binding domains of the protein in endomembrane compartments.
Collapse
Affiliation(s)
- Tuo‐Xian Tang
- Protein Signaling Domains Laboratory, Department of Biological SciencesBiocomplexity Institute, and Center for Soft Matter and Biological Physics, Virginia TechBlacksburgVirginia24061
| | - Ami Jo
- Department of Chemical EngineeringVirginia TechBlacksburgVirginia24061
| | - Jingren Deng
- Department of Biological SciencesVirginia TechBlacksburgVirginia24061
| | - Jeffrey F. Ellena
- Biomolecular Magnetic Resonance Facility, University of VirginiaCharlottesvilleVirginia22904
| | - Iulia M. Lazar
- Department of Biological SciencesVirginia TechBlacksburgVirginia24061
| | - Richey M. Davis
- Department of Chemical EngineeringVirginia TechBlacksburgVirginia24061
| | - Daniel G. S. Capelluto
- Protein Signaling Domains Laboratory, Department of Biological SciencesBiocomplexity Institute, and Center for Soft Matter and Biological Physics, Virginia TechBlacksburgVirginia24061
| |
Collapse
|
9
|
Kumar A, Balbach J. Targeting the molecular chaperone SlyD to inhibit bacterial growth with a small molecule. Sci Rep 2017; 7:42141. [PMID: 28176839 PMCID: PMC5296862 DOI: 10.1038/srep42141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Molecular chaperones are essential molecules for cell growth, whereby they maintain protein homeostasis. Because of their central cellular function, bacterial chaperones might be potential candidates for drug targets. Antimicrobial resistance is currently one of the greatest threats to human health, with gram-negative bacteria being of major concern. We found that a Cu2+ complex readily crosses the bacterial cell wall and inhibits SlyD, which is a molecular chaperone, cis/trans peptidyl prolyl isomerise (PPIase) and involved in various other metabolic pathways. The Cu2+ complex binds to the active sites of SlyD, which suppresses its PPIase and chaperone activities. Significant cell growth retardation could be observed for pathogenic bacteria (e.g., Staphylococcus aureus and Pseudomonas aeruginosa). We anticipate that rational development of drugs targeting molecular chaperones might help in future control of pathogenic bacterial growth, in an era of rapidly increasing antibiotic resistance.
Collapse
Affiliation(s)
- Amit Kumar
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Physics, Biophysics, Martin Luther University, Halle, Wittenberg, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University, Halle, Wittenberg, Germany
- Centre for Structure und Dynamics of Proteins (MZP), Martin Luther University Halle, Wittenberg, Germany
| |
Collapse
|
10
|
Quistgaard EM, Weininger U, Ural-Blimke Y, Modig K, Nordlund P, Akke M, Löw C. Molecular insights into substrate recognition and catalytic mechanism of the chaperone and FKBP peptidyl-prolyl isomerase SlyD. BMC Biol 2016; 14:82. [PMID: 27664121 PMCID: PMC5034536 DOI: 10.1186/s12915-016-0300-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/18/2016] [Indexed: 11/25/2022] Open
Abstract
Background Peptidyl-prolyl isomerases (PPIases) catalyze cis/trans isomerization of peptidyl-prolyl bonds, which is often rate-limiting for protein folding. SlyD is a two-domain enzyme containing both a PPIase FK506-binding protein (FKBP) domain and an insert-in-flap (IF) chaperone domain. To date, the interactions of these domains with unfolded proteins have remained rather obscure, with structural information on binding to the FKBP domain being limited to complexes involving various inhibitor compounds or a chemically modified tetrapeptide. Results We have characterized the binding of 15-residue-long unmodified peptides to SlyD from Thermus thermophilus (TtSlyD) in terms of binding thermodynamics and enzyme kinetics through the use of isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, and site-directed mutagenesis. We show that the affinities and enzymatic activity of TtSlyD towards these peptides are much higher than for the chemically modified tetrapeptides that are typically used for activity measurements on FKBPs. In addition, we present a series of crystal structures of TtSlyD with the inhibitor FK506 bound to the FKBP domain, and with 15-residue-long peptides bound to either one or both domains, which reveals that substrates bind in a highly adaptable fashion to the IF domain through β-strand augmentation, and can bind to the FKBP domain as both types VIa1 and VIb-like cis-proline β-turns. Our results furthermore provide important clues to the catalytic mechanism and support the notion of inter-domain cross talk. Conclusions We found that 15-residue-long unmodified peptides can serve as better substrate mimics for the IF and FKBP domains than chemically modified tetrapeptides. We furthermore show how such peptides are recognized by each of these domains in TtSlyD, and propose a novel general model for the catalytic mechanism of FKBPs that involves C-terminal rotation around the peptidyl-prolyl bond mediated by stabilization of the twisted transition state in the hydrophobic binding site. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0300-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden.,Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22603, Hamburg, Germany
| | - Ulrich Weininger
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Yonca Ural-Blimke
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22603, Hamburg, Germany
| | - Kristofer Modig
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Pär Nordlund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden.,School of Biological Sciences, Nanyang Technological University, 639798, Singapore, Singapore
| | - Mikael Akke
- Department of Biophysical Chemistry, Center for Molecular Protein Science, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Christian Löw
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden. .,Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Notkestrasse 85, D-22603, Hamburg, Germany.
| |
Collapse
|
11
|
Schmidpeter PAM, Schmid FX. Prolyl isomerization and its catalysis in protein folding and protein function. J Mol Biol 2015; 427:1609-31. [PMID: 25676311 DOI: 10.1016/j.jmb.2015.01.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/30/2015] [Indexed: 12/20/2022]
Abstract
Prolyl isomerizations are intrinsically slow processes. They determine the rates of many protein folding reactions and control regulatory events in folded proteins. Prolyl isomerases are able to catalyze these isomerizations, and thus, they have the potential to assist protein folding and to modulate protein function. Here, we provide examples for how prolyl isomerizations limit protein folding and are accelerated by prolyl isomerases and how native-state prolyl isomerizations regulate protein functions. The roles of prolines in protein folding and protein function are closely interrelated because both of them depend on the coupling between cis/trans isomerization and conformational changes that can involve extended regions of a protein.
Collapse
Affiliation(s)
- Philipp A M Schmidpeter
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Franz X Schmid
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biologie, Universität Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
12
|
Kovermann M, Schmid FX, Balbach J. Molecular function of the prolyl cis/trans isomerase and metallochaperone SlyD. Biol Chem 2014; 394:965-75. [PMID: 23585180 DOI: 10.1515/hsz-2013-0137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/26/2013] [Indexed: 11/15/2022]
Abstract
SlyD is a bacterial two-domain protein that functions as a molecular chaperone, a prolyl cis/trans isomerase, and a nickel-binding protein. This review summarizes recent findings about the molecular enzyme mechanism of SlyD. The chaperone function located in one domain of SlyD is involved in twin-arginine translocation and increases the catalytic efficiency of the prolyl cis/trans isomerase domain in protein folding by two orders of magnitude. The C-terminal tail of SlyD binds Ni2+ ions and supplies them for the maturation of [NiFe] hydrogenases. A combined biochemical and biophysical analysis revealed the molecular basis of the delicate interplay of the different domains of SlyD for optimal function.
Collapse
Affiliation(s)
- Michael Kovermann
- Institut für Physik, Biophysik, und Mitteldeutsches Zentrum für Struktur und Dynamik der Proteine MZP, Martin-Luther Universität Halle-Wittenberg, D-06120 Halle, Germany
| | | | | |
Collapse
|
13
|
Generation of a Highly Active Folding Enzyme by Combining a Parvulin-Type Prolyl Isomerase from SurA with an Unrelated Chaperone Domain. J Mol Biol 2013; 425:4089-98. [DOI: 10.1016/j.jmb.2013.06.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022]
|
14
|
Kovermann M, Balbach J. Dynamic control of the prolyl isomerase function of the dual-domain SlyD protein. Biophys Chem 2013; 171:16-23. [DOI: 10.1016/j.bpc.2012.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/22/2012] [Accepted: 11/22/2012] [Indexed: 12/13/2022]
|
15
|
Wang P. Nanoscale Engineering for Smart Biocatalysts with Fine-Tuned Properties and Functionalities. Top Catal 2012. [DOI: 10.1007/s11244-012-9904-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Quistgaard EM, Nordlund P, Löw C. High‐resolution insights into binding of unfolded polypeptides by the PPIase chaperone SlpA. FASEB J 2012; 26:4003-13. [DOI: 10.1096/fj.12-208397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Esben M. Quistgaard
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Pär Nordlund
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- School of Biological SciencesNanyang Technological UniversitySingapore
| | - Christian Löw
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| |
Collapse
|