1
|
Saga Y, Yoshida N, Yamada S, Mizoguchi T, Tamiaki H. Biosynthesis of unnatural glycolipids possessing diyne moiety in the acyl chain in the green sulfur photosynthetic bacterium Chlorobaculum tepidum grown by supplementation of 10,12-heptadecadiynic acid. Biochem Biophys Rep 2017; 9:42-46. [PMID: 28955987 PMCID: PMC5614547 DOI: 10.1016/j.bbrep.2016.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/09/2016] [Accepted: 11/12/2016] [Indexed: 12/04/2022] Open
Abstract
Unnatural glycolipids possessing the diyne moiety in their acyl groups were successfully biosynthesized in the green sulfur photosynthetic bacterium Chlorobaculum (Cba.) tepidum by cultivation with supplementation of 10,12-heptadecadiynic acid. Monogalactosyldiacylglycerol (MGDG) and rhamnosylgalactosyldiacylglycerol (RGDG) esterified with one 10,12-heptadecadiynic acid were primarily formed in the cells, and small amounts of glycolipids esterified with the two unnatural fatty acids can also be detected. The relative ratio of these unnatural glycolipids occupied in the total glycolipids was estimated to be 49% based on HPLC analysis using a evaporative light scattering detector. These results indicate that the acyl groups in glycolipids, which play important roles in the formation of extramembranous antenna complexes called chlorosomes, can be modified in vivo by cultivation of green sulfur photosynthetic bacteria with exogenous synthetic fatty acids. Visible absorption and circular dichroism spectra of Cba. tepidum containing the unnatural glycolipids demonstrated the formation of chlorosomes, indicating that the unnatural glycolipids in this study did not interfere with the biogenesis of chlorosomes. Novel glycolipids possessing a diyne moiety in the acyl chain were biosynthesized. Supplemental fatty acids were used in the biosynthesis of glycolipids in the photosynthetic bacterium. The novel glycolipids did not inhibit the formation of photosynthetic antenna complexes.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Nozomi Yoshida
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shota Yamada
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
2
|
Tsukatani Y, Mizoguchi T, Thweatt J, Tank M, Bryant DA, Tamiaki H. Glycolipid analyses of light-harvesting chlorosomes from envelope protein mutants of Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2016; 128:235-241. [PMID: 26869354 DOI: 10.1007/s11120-016-0228-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Chlorosomes are large and efficient light-harvesting organelles in green photosynthetic bacteria, and they characteristically contain large numbers of bacteriochlorophyll c, d, or e molecules. Self-aggregated bacteriochlorophyll pigments are surrounded by a monolayer envelope membrane comprised of glycolipids and Csm proteins. Here, we analyzed glycolipid compositions of chlorosomes from the green sulfur bacterium Chlorobaculum tepidum mutants lacking one, two, or three Csm proteins by HPLC equipped with an evaporative light-scattering detector. The ratio of monogalactosyldiacylglyceride (MGDG) to rhamnosylgalactosyldiacylglyceride (RGDG) was smaller in chlorosomes from mutants lacking two or three proteins in CsmC/D/H motif family than in chlorosomes from the wild-type, whereas chlorosomes lacking CsmIJ showed relatively less RGDG than MGDG. The results suggest that the CsmC, CsmD, CsmH, and other chlorosome proteins are involved in organizing MGDG and RGDG and thereby affect the size and shape of the chlorosome.
Collapse
Affiliation(s)
- Yusuke Tsukatani
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Jennifer Thweatt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Pennsylvania, 16802, USA
- Department of Chemistry and Biochemistry, Montana State University, Montana, 59717, USA
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| |
Collapse
|
3
|
Wang Y, Freund DM, Magdaong NM, Urban VS, Frank HA, Hegeman AD, Tang JKH. Impact of esterified bacteriochlorophylls on the biogenesis of chlorosomes in Chloroflexus aurantiacus. PHOTOSYNTHESIS RESEARCH 2014; 122:69-86. [PMID: 24880610 DOI: 10.1007/s11120-014-0017-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
A chlorosome is an antenna complex located on the cytoplasmic side of the inner membrane in green photosynthetic bacteria that contains tens of thousands of self-assembled bacteriochlorophylls (BChls). Green bacteria are known to incorporate various esterifying alcohols at the C-17 propionate position of BChls in the chlorosome. The effect of these functional substitutions on the biogenesis of the chlorosome has not yet been fully explored. In this report, we address this question by investigating various esterified bacteriochlorophyll c (BChl c) homologs in the thermophilic green non-sulfur bacterium Chloroflexus aurantiacus. Cultures were supplemented with exogenous long-chain alcohols at 52 °C (an optimal growth temperature) and 44 °C (a suboptimal growth temperature), and the morphology, optical properties and exciton transfer characteristics of chlorosomes were investigated. Our studies indicate that at 44 °C Cfl. aurantiacus synthesizes more carotenoids, incorporates more BChl c homologs with unsaturated and rigid polyisoprenoid esterifying alcohols and produces more heterogeneous BChl c homologs in chlorosomes. Substitution of phytol for stearyl alcohol of BChl c maintains similar morphology of the intact chlorosome and enhances energy transfer from the chlorosome to the membrane-bound photosynthetic apparatus. Different morphologies of the intact chlorosome versus in vitro BChl aggregates are suggested by small-angle neutron scattering. Additionally, phytol cultures and 44 °C cultures exhibit slow assembly of the chlorosome. These results suggest that the esterifying alcohol of BChl c contributes to long-range organization of BChls, and that interactions between BChls with other components are important to the assembly of the chlorosome. Possible mechanisms for how esterifying alcohols affect the biogenesis of the chlorosome are discussed.
Collapse
Affiliation(s)
- Yaya Wang
- Department of Chemistry and Biochemistry, Clark University, Worcester, MA, 01610, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Tang JKH, Saikin SK, Pingali SV, Enriquez MM, Huh J, Frank HA, Urban VS, Aspuru-Guzik A. Temperature and carbon assimilation regulate the chlorosome biogenesis in green sulfur bacteria. Biophys J 2014; 105:1346-56. [PMID: 24047985 DOI: 10.1016/j.bpj.2013.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 11/16/2022] Open
Abstract
Green photosynthetic bacteria adjust the structure and functionality of the chlorosome-the light-absorbing antenna complex-in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.
Collapse
|
5
|
Pšenčík J, Butcher SJ, Tuma R. Chlorosomes: Structure, Function and Assembly. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Kovács SÁ, Bricker WP, Niedzwiedzki DM, Colletti PF, Lo CS. Computational determination of the pigment binding motif in the chlorosome protein a of green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2013; 118:231-247. [PMID: 24078352 DOI: 10.1007/s11120-013-9920-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
We present a molecular-scale model of Bacteriochlorophyll a (BChl a) binding to the chlorosome protein A (CsmA) of Chlorobaculum tepidum, and the aggregated pigment–protein dimer, as determined from protein–ligand docking and quantum chemistry calculations. Our calculations provide strong evidence that the BChl a molecule is coordinated to the His25 residue of CsmA, with the magnesium center of the bacteriochlorin ring situated\3 A° from the imidazole nitrogen atom of the histidine sidechain, and the phytyl tail aligned along the nonpolar residues of the a-helix of CsmA. We also confirm that the Qy band in the absorption spectra of BChl a experiences a large (?16 to ?43 nm) redshift when aggregated with another BChl a molecule in the CsmA dimer, compared to the BChl a in solvent; this redshift has been previously established by experimental researchers. We propose that our model of the BChl a–CsmA binding motif, where the dimer contains parallel aligned N-terminal regions, serves as the smallest repeating unit in a larger model of the para-crystalline chlorosome baseplate protein.
Collapse
|
7
|
Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for acid resistance of green bacterial antenna systems. Bioorg Med Chem 2013; 21:3689-94. [DOI: 10.1016/j.bmc.2013.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/21/2022]
|
8
|
Tang JKH, Xu Y, Muhlmann GM, Zare F, Khin Y, Tam SW. Temperature shift effect on the Chlorobaculum tepidum chlorosomes. PHOTOSYNTHESIS RESEARCH 2013; 115:23-41. [PMID: 23435510 DOI: 10.1007/s11120-013-9800-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
Chlorobaculum [Cba.] tepidum is known to grow optimally at 48-52 °C and can also be cultured at ambient temperatures. In this paper, we prepared constant temperature, temperature shift, and temperature shift followed by backshift cultures and investigated the intrinsic properties and spectral features of chlorosomes from those cultures using various approaches, including temperature-dependent measurements on circular dichroism (CD), UV-visible, and dynamic light scattering. Our studies indicate that (1) chlorosomes from constant temperature cultures at 50 and 30 °C exhibited more resistance to heat relative to temperature shift cultures; (2) as temperature increases bacteriochlorophyll c (BChl c) in chlorosomes is prone to demetalation, which forms bacteriopheophytin c, and degradation under aerobic conditions. Some BChl c aggregates inside reduced chlorosomes prepared in low-oxygen environments can reform after heat treatments; (3) temperature shift cultures synthesize and incorporate more BChl c homologs with a smaller substituent at C-8 on the chlorin ring and less BChl c homologs with a larger long-chain alcohol at C-17(3) versus constant-temperature cultures. We hypothesize that the long-chain alcohol at C-17(3) (and perhaps together with the substituent at C-8) may account for thermal stability of chlorosomes and the substituent at C-8 may assist self-assembling BChls; and (4) while almost identical absorption spectra are detected, chlorosomes from different growth conditions exhibited differences in the rotational length of the CD signal, and aerobic and reduced chlorosomes also display different Qy CD intensities. Further, chlorosomes exhibited changes of CD features in response to temperature increases. Additionally, we compare temperature-dependent studies for the Cba. tepidum chlorosomes and previous studies for the Chloroflexus aurantiacus chlorosomes. Together, our work provides useful and novel insights on the properties and organization of chlorosomes.
Collapse
|
9
|
Mizoguchi T, Harada J, Yoshitomi T, Tamiaki H. A variety of glycolipids in green photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2013; 114:179-188. [PMID: 23420454 DOI: 10.1007/s11120-013-9802-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/08/2013] [Indexed: 06/01/2023]
Abstract
The compositions of glycolipids in the following seven strains of green photosynthetic bacteria were investigated at the molecular level using LC-MS coupled with an evaporative light scattering detector: Chlorobium (Chl.) limicola strains Larsen (30 °C as the optimal cultivation temperature) and DSM245 (30 °C), Chlorobaculum (Cba.) tepidum strain ATCC49652 (45 °C), Cba. parvum strain NCIB8327 (30 °C), Cba. limnaeum strain 1549 (30 °C), Chl. phaeovibrioides DSM269 (30 °C), and Chloroflexus (Cfl.) aurantiacus strain J-10-fl (55 °C). Dependence of the molecular structures of glycolipids including the chain-length of their acyl groups upon bacterial cultivation temperatures was clearly observed. The organisms with their optimal temperatures of 30, 45, and 55 °C dominantly accumulated glycolipids possessing the acyl chains in the range of C(15)-C(16), C(16)-C(17), and C(18)-C(20), respectively. Cba. tepidum with an optimal temperature of 45 °C preferred the insertion of a methylene group to produce finally a C(17)-cyclopropane chain. Cfl. aurantiacus cultured optimally at 55 °C caused a drastic increase in the chain-length. Notably, the length of such acyl groups corresponded to that of the esterifying chain in the 17-propionate residues of self-aggregative bacteriochlorophylls-c/d/e, indicating stabilization of their supramolecular structures through hydrophobic interactions among those hydrocarbon chains. Based on the detailed compositions of glycolipids, a survival strategy of green photosynthetic bacteria grown in the wide range of temperatures is discussed.
Collapse
Affiliation(s)
- Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | | | | |
Collapse
|