1
|
Yang J, Gao M, Wang J, He C, Wang X, Liu L. Structural basis of copper binding by a dimeric periplasmic protein forming a six-helical bundle. J Inorg Biochem 2022; 229:111728. [DOI: 10.1016/j.jinorgbio.2022.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
|
2
|
Huang N, Mao J, Hu M, Wang X, Huo M. Responses to copper stress in the metal-resistant bacterium Cupriavidus gilardii CR3: a whole-transcriptome analysis. J Basic Microbiol 2019; 59:446-457. [PMID: 30900763 DOI: 10.1002/jobm.201800693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/20/2019] [Accepted: 02/06/2019] [Indexed: 11/12/2022]
Abstract
Microbial metal-resistance mechanisms are the basis for the application of microorganisms in metal bioremediation. Despite the available studies of bacterial molecular mechanisms to resistance metals ions (particularly copper), the understanding of bacterial metal resistance is very limited from the transcriptome perspective. Here, responses of the transcriptome (RNA-Seq) was investigated in Cupriavidus gilardii CR3 exposed to 0.5 mM copper, because strain CR3 had a bioremoval capacity of 38.5% for 0.5 mM copper. More than 24 million clean reads were obtained from six libraries and were aligned against the C. gilardii CR3 genome. A total of 310 genes in strain CR3 were significantly differentially expressed under copper stress. Apart from the routine copper resistance operons cus and cop known in previous studies, Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of differentially expressed genes indicated that the adenosine triphosphate-binding cassette transporter, amino acid metabolism, and negative chemotaxis collectively contribute to the copper-resistant process. More interestingly, we found that the genes associated with the type III secretion system were induced under copper stress. No such results were reordered in bacteria to date. Overall, this comprehensive network of copper responses is useful for further studies of the molecular mechanisms underlying responses to copper stress in bacteria.
Collapse
Affiliation(s)
- Ning Huang
- Engineering Lab for Water Pollution Control and Resources, Northeast Normal University, Changchun, People's Republic of China.,Key Laboratory of Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, People's Republic of China
| | - Juan Mao
- Key Laboratory of Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, People's Republic of China
| | - Mingzhong Hu
- Department of Environmental Engineering, School of Chemical Engineering, Changchun University of Technology, Changchun, People's Republic of China
| | - Xiaoyu Wang
- Engineering Lab for Water Pollution Control and Resources, Northeast Normal University, Changchun, People's Republic of China.,Key Laboratory of Wetland Ecology and Vegetation Restoration of National Environmental Protection, Northeast Normal University, Changchun, People's Republic of China
| | - Mingxin Huo
- Engineering Lab for Water Pollution Control and Resources, Northeast Normal University, Changchun, People's Republic of China
| |
Collapse
|
3
|
Huang N, Mao J, Zhao Y, Hu M, Wang X. Multiple Transcriptional Mechanisms Collectively Mediate Copper Resistance in Cupriavidus gilardii CR3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4609-4618. [PMID: 30920814 DOI: 10.1021/acs.est.8b06787] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacteria resist copper (Cu) stress by implementing several metabolic mechanisms. However, these mechanisms are not fully understood. We investigated the mechanism of Cu resistance in Cupriavidus gilardii CR3, a Cu-resistant bacterium with a fully sequenced, annotated genome. The growth of CR3 was inhibited by higher Cu concentrations (≥1.0 mM) but not by lower ones (≤0.5 mM). CR3 accumulated Cu intracellularly (ratios of intercellular to extracellular Cu were 11.6, 4.24, and 3.9 in 0.1, 0.5, and 1.5 mM Cu treatments, respectively). A comparative transcriptome analysis of CR3 respectively revealed 310 and 413 differentially expressed genes under 0.5 and 1.5 mM Cu stress, most of which were up-regulated under Cu treatment. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses uncovered several genotype-specific biological processes related to Cu stress. Besides revealing known Cu resistance-related genes, our global transcriptomics approach indicated that sulfur metabolism, iron-sulfur cluster, and cell secretion systems are involved in mediating Cu resistance in strain CR3. These results suggest that bacteria collectively use multiple systems to cope with Cu stress. Our findings concerning the global transcriptome response to Cu stress in CR3 provide new information for understanding the intricate regulatory network of Cu homeostasis in prokaryotes.
Collapse
Affiliation(s)
| | | | - Yan Zhao
- School of Chemistry and Environmental Engineering , Changchun University of Science and Technology , Changchun 130022 , P. R. China
| | - Mingzhong Hu
- School of Chemical Engineering , Changchun University of Technology , Changchun 130012 , P. R. China
| | | |
Collapse
|
4
|
Shenberger Y, Marciano O, Gottlieb HE, Ruthstein S. Insights into the N-terminal Cu(II) and Cu(I) binding sites of the human copper transporter CTR1. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1492717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yulia Shenberger
- The Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ortal Marciano
- The Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hugo E. Gottlieb
- The Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sharon Ruthstein
- The Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
5
|
Abstract
Copper (Cu) is indispensible for growth and development of human organisms. It is required for such fundamental and ubiquitous processes as respiration and protection against reactive oxygen species. Cu also enables catalytic activity of enzymes that critically contribute to the functional identity of many cells and tissues. Pigmentation, production of norepinephrine by the adrenal gland, the key steps in the formation of connective tissue, neuroendocrine signaling, wound healing - all these processes require Cu and depend on Cu entering the secretory pathway. To reach the Cu-dependent enzymes in a lumen of the trans-Golgi network and various vesicular compartments, Cu undertakes a complex journey crossing the extracellular and intracellular membranes and staying firmly on course while traveling in a cytosol. The proteins that assist Cu in this journey by mediating its entry, distribution, and export, have been identified. The accumulating data also indicate that the current model of cellular Cu homeostasis is still a "skeleton" that has to be fleshed out with many new details. This review summarizes recent data on the mechanisms responsible for Cu transfer to the secretory pathway. The emerging new concepts and gaps in our knowledge are discussed.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe street, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Valensin D, Padula EM, Hecel A, Luczkowski M, Kozlowski H. Specific binding modes of Cu(I) and Ag(I) with neurotoxic domain of the human prion protein. J Inorg Biochem 2015; 155:26-35. [PMID: 26606290 DOI: 10.1016/j.jinorgbio.2015.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/13/2015] [Accepted: 11/10/2015] [Indexed: 12/25/2022]
Abstract
Prion diseases are neurodegenerative disorders associated with a conformational change of the normal cellular isoform of the prion protein (PrP(C)) to an abnormal scrapie isoform (PrP(Sc)). human prion protein (hPrP(C)) is able to bind up to six Cu(II) ions. Four of them are distributed in the octarepeat domain, containing four tandem-repetitions of the sequence PHGGGWGQ. Immediately outside the octarepeat domain, in so called PrP amyloidogenic region, two additional and independent Cu(II) binding sites, encompassing His96 and His111 residues, respectively, are present. Considering the potential involvement of PrP in cellular redox homeostasis, investigations on Cu(I)-PrP interaction might be also biologically relevant. Interestingly, the amyloidogenic fragment of PrP contains a -M(X)nM- motif, known to act as Cu(I) binding site in different proteins. In order to shed more light on this issue, copper(I) and silver(I) interactions with model peptides derived from that region were analyzed. The results of our studies reveal that both metal ions are anchored to two thioether sulfurs of Met109 and Met112, respectively. Subsequent metal interaction and coordination to His96 and His111 imidazoles are primarily found for Cu(I) at physiological pH. Metal binding was also investigated in the presence of negatively charged micelles formed by the anionic surfactant, sodium dodecyl sulfate (SDS). Our results strongly support that metal binding mode strongly depends on the protein backbone structure. In particular we show that α-helix structuring of the amyloid PrP domain influences both the metal coordination sphere and the binding affinity.
Collapse
Affiliation(s)
- Daniela Valensin
- Department of Chemistry, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Emilia Maria Padula
- Department of Chemistry, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383 Wroclaw, Poland
| | - Marek Luczkowski
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383 Wroclaw, Poland
| | - Henryk Kozlowski
- Department of Chemistry, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
7
|
Monsieurs P, Hobman J, Vandenbussche G, Mergeay M, Van Houdt R. Response of Cupriavidus metallidurans CH34 to Metals. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20594-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
8
|
Stroud DA, Maher MJ, Lindau C, Vögtle FN, Frazier AE, Surgenor E, Mountford H, Singh AP, Bonas M, Oeljeklaus S, Warscheid B, Meisinger C, Thorburn DR, Ryan MT. COA6 is a mitochondrial complex IV assembly factor critical for biogenesis of mtDNA-encoded COX2. Hum Mol Genet 2015; 24:5404-15. [PMID: 26160915 DOI: 10.1093/hmg/ddv265] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/06/2015] [Indexed: 01/29/2023] Open
Abstract
Biogenesis of complex IV of the mitochondrial respiratory chain requires assembly factors for subunit maturation, co-factor attachment and stabilization of intermediate assemblies. A pathogenic mutation in COA6, leading to substitution of a conserved tryptophan for a cysteine residue, results in a loss of complex IV activity and cardiomyopathy. Here, we demonstrate that the complex IV defect correlates with a severe loss in complex IV assembly in patient heart but not fibroblasts. Complete loss of COA6 activity using gene editing in HEK293T cells resulted in a profound growth defect due to complex IV deficiency, caused by impaired biogenesis of the copper-bound mitochondrial DNA-encoded subunit COX2 and subsequent accumulation of complex IV assembly intermediates. We show that the pathogenic mutation in COA6 does not affect its import into mitochondria but impairs its maturation and stability. Furthermore, we show that COA6 has the capacity to bind copper and can associate with newly translated COX2 and the mitochondrial copper chaperone SCO1. Our data reveal that COA6 is intricately involved in the copper-dependent biogenesis of COX2.
Collapse
Affiliation(s)
- David A Stroud
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - Caroline Lindau
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - F-Nora Vögtle
- Institut für Biochemie und Molekularbiologie, ZBMZ, University of Freiburg, 79104 Freiburg, Germany
| | - Ann E Frazier
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, University of Melbourne and Department of Pediatrics, University of Melbourne, 3052 Melbourne, Australia and
| | - Elliot Surgenor
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Australia
| | - Hayley Mountford
- Murdoch Childrens Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, University of Melbourne and Department of Pediatrics, University of Melbourne, 3052 Melbourne, Australia and
| | - Abeer P Singh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - Matteo Bonas
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, 3086 Melbourne, Australia
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ, University of Freiburg, 79104 Freiburg, Germany, Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - David R Thorburn
- Institut für Biochemie und Molekularbiologie, ZBMZ, University of Freiburg, 79104 Freiburg, Germany
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Australia,
| |
Collapse
|
9
|
Cortes L, Wedd AG, Xiao Z. The functional roles of the three copper sites associated with the methionine-rich insert in the multicopper oxidase CueO fromE. coli. Metallomics 2015; 7:776-85. [DOI: 10.1039/c5mt00001g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The methionine-rich insert in the multicopper oxidase CueO fromE. coliaccommodates three copper sites that play distinct but related roles in Cu(i) extraction and oxidation and that induce robust cuprous oxidase activity under physiologically relevant conditions.
Collapse
Affiliation(s)
- Laura Cortes
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- ParkvilleAustralia
| | - Anthony G. Wedd
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- ParkvilleAustralia
| | - Zhiguang Xiao
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute
- University of Melbourne
- ParkvilleAustralia
| |
Collapse
|
10
|
Le Brun NE. Copper in Prokaryotes. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The ability of copper to cycle its oxidation state, and to form high-affinity complexes with a range of biologically relevant ligands, underpins the central role that this metal plays in prokaryotic processes such as respiration, oxidative stress response, the nitrogen cycle and pigmentation. However, the very properties that nature has exploited also mean that copper is extremely toxic. To minimize this toxicity, while also ensuring sufficient supply of the metal, complex systems of trafficking evolved to facilitate transport of copper (as Cu(I)) across membranes and its targeted distribution within the cytoplasm, membrane and periplasm. The past 20 years have seen our understanding of such systems grow enormously, and atomic/molecular and mechanistic detail of many of the major cellular trafficking components is now available. This chapter begins with a discussion of the chemistry of copper that is relevant for understanding the role of this metal throughout life. The subsequent focus is then on current understanding of copper homeostasis in prokaryotes, with eukaryotic copper homeostasis dealt with in the following chapters. The chapter aims to provide a chemical perspective on these complex biological systems, emphasizing the importance of thermodynamic and kinetic properties of copper and the complexes it forms.
Collapse
Affiliation(s)
- Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| |
Collapse
|
11
|
Young TR, Kirchner A, Wedd AG, Xiao Z. An integrated study of the affinities of the Aβ16 peptide for Cu(i) and Cu(ii): implications for the catalytic production of reactive oxygen species. Metallomics 2014; 6:505-17. [DOI: 10.1039/c4mt00001c] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Affinities of Aβ16 peptide and several selected variants for Cu(i) and Cu(ii) were determined with new probes and correlated to their binding modes and abilities in promoting ROS generation.
Collapse
Affiliation(s)
- Tessa R. Young
- The Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Victoria 3010, Australia
- School of Chemistry
- The University of Melbourne
| | - Angie Kirchner
- The Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Victoria 3010, Australia
- School of Chemistry
- The University of Melbourne
| | - Anthony G. Wedd
- The Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Victoria 3010, Australia
- School of Chemistry
- The University of Melbourne
| | - Zhiguang Xiao
- The Bio21 Molecular Science and Biotechnology Institute
- The University of Melbourne
- Victoria 3010, Australia
- School of Chemistry
- The University of Melbourne
| |
Collapse
|
12
|
Kozlowski H, Potocki S, Remelli M, Rowinska-Zyrek M, Valensin D. Specific metal ion binding sites in unstructured regions of proteins. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.01.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Abstract
As a trace element copper has an important role in cellular function like many other transition metals. Its ability to undergo redox changes [Cu(I) ↔ Cu(II)] makes copper an ideal cofactor in enzymes catalyzing electron transfers. However, this redox change makes copper dangerous for a cell since it is able to be involved in Fenton-like reactions creating reactive oxygen species (ROS). Cu(I) also is a strong soft metal and can attack and destroy iron-sulfur clusters thereby releasing iron which can in turn cause oxidative stress. Therefore, copper homeostasis has to be highly balanced to ensure proper cellular function while avoiding cell damage.Throughout evolution bacteria and archaea have developed a highly regulated balance in copper metabolism. While for many prokaryotes copper uptake seems to be unspecific, others have developed highly sophisticated uptake mechanisms to ensure the availability of sufficient amounts of copper. Within the cytoplasm copper is sequestered by various proteins and molecules, including specific copper chaperones, to prevent cellular damage. Copper-containing proteins are usually located in the cytoplasmic membrane with the catalytic domain facing the periplasm, in the periplasm of Gram-negative bacteria, or they are secreted, limiting the necessity of copper to accumulate in the cytoplasm. To prevent cellular damage due to excess copper, bacteria and archaea have developed various copper detoxification strategies. In this chapter we attempt to give an overview of the mechanisms employed by bacteria and archaea to handle copper and the importance of the metal for cellular function as well as in the global nutrient cycle.
Collapse
Affiliation(s)
- Christopher Rensing
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1870, Frederiksberg C, Denmark
| | | |
Collapse
|
14
|
Xiao Z, Gottschlich L, van der Meulen R, Udagedara SR, Wedd AG. Evaluation of quantitative probes for weaker Cu(i) binding sites completes a set of four capable of detecting Cu(i) affinities from nanomolar to attomolar. Metallomics 2013; 5:501-13. [DOI: 10.1039/c3mt00032j] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|