1
|
Staroňová T, Holčáková J, Voňka P, Hrstka R, Ostatná V. Impact of galectin-1's redox state on its lectin activity and monomer-dimer equilibrium. Focusing on oxidized Gal-1. Int J Biol Macromol 2025; 295:139452. [PMID: 39755294 DOI: 10.1016/j.ijbiomac.2025.139452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Galectin-1 (Gal-1) displays unique sensitivity to oxidative inactivation which appears critical in regulating its spatial and temporal activity. The two physicochemical states, i.e. monomer-dimer equilibrium and redox states, are related to Gal-1 varying functionality. In this work, we used chronopotentiometric stripping analysis, intrinsic fluorescence spectroscopy, and mobility shift assay to follow changes in the structure and lectin activity of reduced and oxidized Gal-1 forms. Our results show that monomers and dimers are similarly distributed under mild reduction and oxidation conditions. Gal-1 after its oxidation consists of at least three different monomeric forms while reduced Gal-1 only one. Lectin activity, affinity to N-acetyllactosamine, is relatively similar for low Gal-1 concentrations for both, reduced and oxidized Gal-1. However, at higher Gal-1 concentrations, we observed a ten times higher affinity for reduced than oxidized form. Further, our data indicate that the monoclonal antibodies bind preferentially to Gal-1 dimers and specifically to only some forms of its oxidized form.
Collapse
Affiliation(s)
- Tatiana Staroňová
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Královopolská 135, 61200 Brno, Czech Republic
| | - Jitka Holčáková
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Petr Voňka
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Roman Hrstka
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Veronika Ostatná
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Královopolská 135, 61200 Brno, Czech Republic.
| |
Collapse
|
2
|
Lin SY, Schmidt EN, Takahashi-Yamashiro K, Macauley MS. Roles for Siglec-glycan interactions in regulating immune cells. Semin Immunol 2024; 77:101925. [PMID: 39706106 DOI: 10.1016/j.smim.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Cell surface complex carbohydrates, known as glycans, are positioned to be the first point of contact between two cells. Indeed, interactions between glycans with glycan-binding can modulate cell-cell interactions. This concept is particularly relevant for immune cells, which use an array of glycan-binding proteins to help in the process of differentiating 'self' from 'non-self'. This is exemplified by the sialic acid-binding immunoglobulin-type lectins (Siglecs), which recognize sialic acid. Given that sialic acid is relatively unique to vertebrates, immune cells leverage Siglecs to recognize sialic acid as a marker of 'self'. Siglecs serve many biological roles, with most of these functions regulated through interactions with their sialoglycan ligands. In this review, we provide a comprehensive update on the ligands of Siglecs and how Siglec-sialoglycan interactions help regulate immune cells in the adaptive and innate immune system.
Collapse
Affiliation(s)
- Sung-Yao Lin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Charbonneau AA, Reicks EJ, Cambria JF, Inman J, Danley D, Shockley EA, Davion R, Salgado I, Norton EG, Corbett LJ, Hanacek LE, Jensen JG, Kibodeaux MA, Kirkpatrick TK, Rausch KM, Roth SR, West B, Wilson KE, Lawrence CM, Cloninger MJ. CUREs for high-level Galectin-3 expression. Protein Expr Purif 2024; 221:106516. [PMID: 38801985 DOI: 10.1016/j.pep.2024.106516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/29/2024]
Abstract
Galectins are a large and diverse protein family defined by the presence of a carbohydrate recognition domain (CRD) that binds β-galactosides. They play important roles in early development, tissue regeneration, immune homeostasis, pathogen recognition, and cancer. In many cases, studies that examine galectin biology and the effect of manipulating galectins are aided by, or require the ability to express and purify, specific members of the galectin family. In many cases, E. coli is employed as a heterologous expression system, and galectin expression is induced with isopropyl β-galactoside (IPTG). Here, we show that galectin-3 recognizes IPTG with micromolar affinity and that as IPTG induces expression, newly synthesized galectin can bind and sequester cytosolic IPTG, potentially repressing further expression. To circumvent this putative inhibitory feedback loop, we utilized an autoinduction protocol that lacks IPTG, leading to significantly increased yields of galectin-3. Much of this work was done within the context of a course-based undergraduate research experience, indicating the ease and reproducibility of the resulting expression and purification protocols.
Collapse
Affiliation(s)
| | - Elizabeth J Reicks
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - John F Cambria
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jacob Inman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Daria Danley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Emmie A Shockley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Ravenor Davion
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Isabella Salgado
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Erienne G Norton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Lucy J Corbett
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Lucy E Hanacek
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jordan G Jensen
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Marguerite A Kibodeaux
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Tess K Kirkpatrick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Keilen M Rausch
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Samantha R Roth
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Bernadette West
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Kenai E Wilson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
4
|
Ahamed F, Eppler N, Jones E, Zhang Y. Understanding Macrophage Complexity in Metabolic Dysfunction-Associated Steatotic Liver Disease: Transitioning from the M1/M2 Paradigm to Spatial Dynamics. LIVERS 2024; 4:455-478. [PMID: 39328386 PMCID: PMC11426415 DOI: 10.3390/livers4030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses metabolic dysfunction-associated fatty liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), with MASH posing a risk of progression to cirrhosis and hepatocellular carcinoma (HCC). The global prevalence of MASLD is estimated at approximately a quarter of the population, with significant healthcare costs and implications for liver transplantation. The pathogenesis of MASLD involves intrahepatic liver cells, extrahepatic components, and immunological aspects, particularly the involvement of macrophages. Hepatic macrophages are a crucial cellular component of the liver and play important roles in liver function, contributing significantly to tissue homeostasis and swift responses during pathophysiological conditions. Recent advancements in technology have revealed the remarkable heterogeneity and plasticity of hepatic macrophage populations and their activation states in MASLD, challenging traditional classification methods like the M1/M2 paradigm and highlighting the coexistence of harmful and beneficial macrophage phenotypes that are dynamically regulated during MASLD progression. This complexity underscores the importance of considering macrophage heterogeneity in therapeutic targeting strategies, including their distinct ontogeny and functional phenotypes. This review provides an overview of macrophage involvement in MASLD progression, combining traditional paradigms with recent insights from single-cell analysis and spatial dynamics. It also addresses unresolved questions and challenges in this area.
Collapse
Affiliation(s)
- Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
5
|
Jacob R, Gorek LS. Intracellular galectin interactions in health and disease. Semin Immunopathol 2024; 46:4. [PMID: 38990375 PMCID: PMC11239732 DOI: 10.1007/s00281-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 07/12/2024]
Abstract
In the galectin family, a group of lectins is united by their evolutionarily conserved carbohydrate recognition domains. These polypeptides play a role in various cellular processes and are implicated in disease mechanisms such as cancer, fibrosis, infection, and inflammation. Following synthesis in the cytosol, manifold interactions of galectins have been described both extracellularly and intracellularly. Extracellular galectins frequently engage with glycoproteins or glycolipids in a carbohydrate-dependent manner. Intracellularly, galectins bind to non-glycosylated proteins situated in distinct cellular compartments, each with multiple cellular functions. This diversity complicates attempts to form a comprehensive understanding of the role of galectin molecules within the cell. This review enumerates intracellular galectin interaction partners and outlines their involvement in cellular processes. The intricate connections between galectin functions and pathomechanisms are illustrated through discussions of intracellular galectin assemblies in immune and cancer cells. This underscores the imperative need to fully comprehend the interplay of galectins with the cellular machinery and to devise therapeutic strategies aimed at counteracting the establishment of galectin-based disease mechanisms.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany.
| | - Lena-Sophie Gorek
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany
| |
Collapse
|
6
|
Schattner M, Psaila B, Rabinovich GA. Shaping hematopoietic cell ecosystems through galectin-glycan interactions. Semin Immunol 2024; 74-75:101889. [PMID: 39405834 DOI: 10.1016/j.smim.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 11/18/2024]
Abstract
Hematopoiesis- the formation of blood cell components- continually replenishes the blood system during embryonic development and postnatal lifespans. This coordinated process requires the synchronized action of a broad range of cell surface associated proteins and soluble mediators, including growth factors, cytokines and lectins. Collectively, these mediators control cellular communication, signalling, commitment, proliferation, survival and differentiation. Here we discuss the role of galectins - an evolutionarily conserved family of glycan-binding proteins - in the establishment and dynamic remodelling of hematopoietic niches. We focus on the contribution of galectins to B and T lymphocyte development and selection, as well as studies highlighting the role of these proteins in myelopoiesis, with particular emphasis on erythropoiesis and megakaryopoiesis. Finally, we also highlight recent findings suggesting the role of galectin-1, a prototype member of this protein family, as a key pathogenic factor and therapeutic target in myelofibrosis. Through extracellular or intracellular mechanisms, galectins can influence the fate and function of distinct hematopoietic progenitors and fine-tune the final repertoire of blood cells, with critical implications in a wide range of physiologically vital processes including innate and adaptive immunity, immune tolerance programs, tissue repair, regeneration, angiogenesis, inflammation, coagulation and oxygen delivery. Additionally, positive or negative regulation of galectin-driven circuits may contribute to a broad range of blood cell disorders.
Collapse
Affiliation(s)
- Mirta Schattner
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Laboratorio de Trombosis Experimental e Inmunobiología de la Inflamación, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Ciudad de Buenos Aires 1425, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina.
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine and Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina.
| |
Collapse
|
7
|
Beyer S, Wehrmann M, Meister S, Trillsch F, Ganster F, Schmoeckel E, Corradini S, Mahner S, Jeschke U, Kessler M, Burges A, Kolben T. Expression of Intracellular Galectin-8 and -9 in Endometrial Cancer. Int J Mol Sci 2024; 25:6907. [PMID: 39000016 PMCID: PMC11241125 DOI: 10.3390/ijms25136907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Endometrial cancer (EC) is a common gynecological cancer worldwide. Treatment has been improved in recent years; however, in advanced stages, therapeutic options are still limited. The expression of galectins is increased in several tumor types and that they are involved in important cell processes. Large studies on endometrial cancer are still pending; Specimens of 225 patients with EC were immunohistochemically stained with antibodies for Gal-8 and Gal-9. Expression was correlated with histopathological variables. The cytosolic expression of both galectins is associated with grading and survival. Cytosolic Galectin-8 expression is a positive prognostic factor for overall survival (OS) and progression-free survival (PFS), while nuclear Gal-8 expression correlates only to OS. The cytosolic presence of Galectin-9 is correlated with a better prognosis regarding OS. Our results suggest that expression of both galectins is associated with OS and PFS in EC. Further studies are needed to understand the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Maya Wehrmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Franziska Ganster
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Elisa Schmoeckel
- Institute of Pathology, TUM School of Medicine and Health, Trogerstraße 18, 81675 Munich, Germany;
| | - Stefanie Corradini
- Department of Radiation-Oncology, University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
- Department of Obstetrics and Gynecology, University Hospital, Universitätsklinikum Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (M.W.); (S.M.); (F.T.); (F.G.); (S.M.); (U.J.); (M.K.); (A.B.); (T.K.)
| |
Collapse
|
8
|
Ramírez Hernández E, Hernández Zimbrón LF, Segura Pérez E, Sánchez Salgado JL, Pereyra Morales MA, Zenteno E. Galectin-9 and Tim-3 are upregulated in response to microglial activation induced by the peptide Amyloid-β (25-35). Neuropeptides 2024; 105:102426. [PMID: 38527407 DOI: 10.1016/j.npep.2024.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Galectins are a group of β-galactoside-binding lectins associated with regulating immunological response. In the brains of AD patients and 5xFAD (familial AD) mice, galectin-3 (Gal-3) was highly upregulated and found to be expressed in microglia associated with Aβ plaques. However, the participation of other galectins, specifically galectin-9 (Gal-9) and T-cell immunoglobulin and mucin domain 3 (Tim-3) receptors, are unknown in the inflammatory response. The experimental model of the Aβ25-35 peptide will allow us to study the mechanisms of neuroinflammation and describe the changes in the expression of the Gal-9 and Tim-3 receptor. This study aimed to evaluate whether Aβ25-35 peptide administration into the lateral ventricles of rats upregulated Gal-9 and Tim-3 implicated in the modulation of neuroinflammation. The vehicle or Aβ25-35 peptide (1 μg/μL) was bilaterally administered into the lateral ventricles of the rat, and control group. After the administration of the Aβ25-35 peptide, animals were tested for learning (day 29) and spatial memory (day 30) in the novel object recognition test (NOR). On day 31, hippocampus was examined for morphological changes by Nilss stain, biochemical changes by NO2 and MDA, immunohistochemical analysis by astrocytes (GFAP), microglia (Iba1), Gal-9 and Tim-3, and western blot. Our results show the administration of the Aβ25-35 peptide into the lateral ventricles of rats induce memory impairment in the NOR by increases the oxidative stress and inflammatory response. This result is associated with an upregulation of Gal-9 and Tim-3 predominantly detected in the microglia cells of Aβ25-35-treated rats with respect to the control group. Gal-9 and Tim-3 are upregulated in activated microglia that could modulate the inflammatory response and damage in neurodegenerative processes induced by the Aβ25-35 peptide. Therefore, we suggest that Gal-9 and Tim-3 participate in the inflammatory process induced by the administration of the Aβ25-35 peptide.
Collapse
Affiliation(s)
- Eleazar Ramírez Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | - Emmanuel Segura Pérez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Sánchez Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohamed Ali Pereyra Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Portincasa P, Khalil M, Mahdi L, Perniola V, Idone V, Graziani A, Baffy G, Di Ciaula A. Metabolic Dysfunction-Associated Steatotic Liver Disease: From Pathogenesis to Current Therapeutic Options. Int J Mol Sci 2024; 25:5640. [PMID: 38891828 PMCID: PMC11172019 DOI: 10.3390/ijms25115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The epidemiological burden of liver steatosis associated with metabolic diseases is continuously growing worldwide and in all age classes. This condition generates possible progression of liver damage (i.e., inflammation, fibrosis, cirrhosis, hepatocellular carcinoma) but also independently increases the risk of cardio-metabolic diseases and cancer. In recent years, the terminological evolution from "nonalcoholic fatty liver disease" (NAFLD) to "metabolic dysfunction-associated fatty liver disease" (MAFLD) and, finally, "metabolic dysfunction-associated steatotic liver disease" (MASLD) has been paralleled by increased knowledge of mechanisms linking local (i.e., hepatic) and systemic pathogenic pathways. As a consequence, the need for an appropriate classification of individual phenotypes has been oriented to the investigation of innovative therapeutic tools. Besides the well-known role for lifestyle change, a number of pharmacological approaches have been explored, ranging from antidiabetic drugs to agonists acting on the gut-liver axis and at a systemic level (mainly farnesoid X receptor (FXR) agonists, PPAR agonists, thyroid hormone receptor agonists), anti-fibrotic and anti-inflammatory agents. The intrinsically complex pathophysiological history of MASLD makes the selection of a single effective treatment a major challenge, so far. In this evolving scenario, the cooperation between different stakeholders (including subjects at risk, health professionals, and pharmaceutical industries) could significantly improve the management of disease and the implementation of primary and secondary prevention measures. The high healthcare burden associated with MASLD makes the search for new, effective, and safe drugs a major pressing need, together with an accurate characterization of individual phenotypes. Recent and promising advances indicate that we may soon enter the era of precise and personalized therapy for MASLD/MASH.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Perniola
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| | - Valeria Idone
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
- Aboca S.p.a. Società Agricola, 52037 Sansepolcro, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.K.); (L.M.); (V.P.); (V.I.); (A.D.C.)
| |
Collapse
|
10
|
Shariq M, Khan MF, Raj R, Ahsan N, Kumar P. PRKAA2, MTOR, and TFEB in the regulation of lysosomal damage response and autophagy. J Mol Med (Berl) 2024; 102:287-311. [PMID: 38183492 DOI: 10.1007/s00109-023-02411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Lysosomes function as critical signaling hubs that govern essential enzyme complexes. LGALS proteins (LGALS3, LGALS8, and LGALS9) are integral to the endomembrane damage response. If ESCRT fails to rectify damage, LGALS-mediated ubiquitination occurs, recruiting autophagy receptors (CALCOCO2, TRIM16, and SQSTM1) and VCP/p97 complex containing UBXN6, PLAA, and YOD1, initiating selective autophagy. Lysosome replenishment through biogenesis is regulated by TFEB. LGALS3 interacts with TFRC and TRIM16, aiding ESCRT-mediated repair and autophagy-mediated removal of damaged lysosomes. LGALS8 inhibits MTOR and activates TFEB for ATG and lysosomal gene transcription. LGALS9 inhibits USP9X, activates PRKAA2, MAP3K7, ubiquitination, and autophagy. Conjugation of ATG8 to single membranes (CASM) initiates damage repair mediated by ATP6V1A, ATG16L1, ATG12, ATG5, ATG3, and TECPR1. ATG8ylation or CASM activates the MERIT system (ESCRT-mediated repair, autophagy-mediated clearance, MCOLN1 activation, Ca2+ release, RRAG-GTPase regulation, MTOR modulation, TFEB activation, and activation of GTPase IRGM). Annexins ANAX1 and ANAX2 aid damage repair. Stress granules stabilize damaged membranes, recruiting FLCN-FNIP1/2, G3BP1, and NUFIP1 to inhibit MTOR and activate TFEB. Lysosomes coordinate the synergistic response to endomembrane damage and are vital for innate and adaptive immunity. Future research should unveil the collaborative actions of ATG proteins, LGALSs, TRIMs, autophagy receptors, and lysosomal proteins in lysosomal damage response.
Collapse
Affiliation(s)
- Mohd Shariq
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Mohammad Firoz Khan
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE.
| | - Reshmi Raj
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Nuzhat Ahsan
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| | - Pramod Kumar
- Quantlase Imaging Laboratory, Quantlase Lab LLC, Unit 1-8, Masdar City, Abu Dhabi, UAE
| |
Collapse
|
11
|
Yaylim İ, Aru M, Farooqi AA, Hakan MT, Buttari B, Arese M, Saso L. Regulation of Nrf2/Keap1 signaling pathway in cancer drug resistance by galectin-1: cellular and molecular implications. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:8. [PMID: 38434765 PMCID: PMC10905161 DOI: 10.20517/cdr.2023.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Oxidative stress is characterized by the deregulation of the redox state in the cells, which plays a role in the initiation of various types of cancers. The activity of galectin-1 (Gal-1) depends on the cell redox state and the redox state of the microenvironment. Gal-1 expression has been related to many different tumor types, as it plays important roles in several processes involved in cancer progression, such as apoptosis, cell migration, adhesion, and immune response. The erythroid-2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling pathway is a crucial mechanism involved in both cell survival and cell defense against oxidative stress. In this review, we delve into the cellular and molecular roles played by Gal-1 in the context of oxidative stress onset in cancer cells, particularly focusing on its involvement in activating the Nrf2/Keap1 signaling pathway. The emerging evidence concerning the anti-apoptotic effect of Gal-1, together with its ability to sustain the activation of the Nrf2 pathway in counteracting oxidative stress, supports the role of Gal-1 in the promotion of tumor cells proliferation, immuno-suppression, and anti-tumor drug resistance, thus highlighting that the inhibition of Gal-1 emerges as a potential strategy for the restraint and regression of tumor progression. Overall, a deeper understanding of the multi-functionality and disease-specific expression profiling of Gal-1 will be crucial for the design and development of novel Gal-1 inhibitors as anticancer agents. Excitingly, although it is still understudied, the ever-growing knowledge of the sophisticated interplay between Gal-1 and Nrf2/Keap1 will enable researchers to gain valuable insights into the underlying causes of carcinogenesis and metastasis.
Collapse
Affiliation(s)
- İlhan Yaylim
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
| | - Melek Aru
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
- Department of Medical Education, Istinye University Faculty of Medicine, Istanbul 34396, Turkiye
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Mehmet Tolgahan Hakan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, Rome 00161, Italy
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, Rome 00185, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome 00185, Italy
| |
Collapse
|
12
|
Johannes L, Shafaq-Zadah M, Dransart E, Wunder C, Leffler H. Endocytic Roles of Glycans on Proteins and Lipids. Cold Spring Harb Perspect Biol 2024; 16:a041398. [PMID: 37735065 PMCID: PMC10759989 DOI: 10.1101/cshperspect.a041398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Most cell surface proteins are decorated by glycans, and the plasma membrane is rich in glycosylated lipids. The mechanisms by which the enormous complexity of these glycan structures on proteins and lipids is exploited to control glycoprotein activity by setting their cell surface residence time and the ways by which they are taken up into cells are still under active investigation. Here, two mechanisms are presented, termed galectin lattices and glycolipid-lectin (GL-Lect)-driven endocytosis, which are among the most prominent to establish a link between glycan information and endocytosis. Types of glycans on glycoproteins and glycolipids are reviewed from the angle of their interaction with glycan-binding proteins that are at the heart of galectin lattices and GL-Lect-driven endocytosis. Examples are given to show how these mechanisms affect cellular functions ranging from cell migration and signaling to vascularization and immune modulation. Finally, outstanding challenges on the link between glycosylation and endocytosis are discussed.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, 75248 Paris Cedex 05, France
| | | | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, 75248 Paris Cedex 05, France
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Institut Curie, 75248 Paris Cedex 05, France
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 22362 Lund, Sweden
| |
Collapse
|
13
|
Sangro P, de la Torre Aláez M, Sangro B, D'Avola D. Metabolic dysfunction-associated fatty liver disease (MAFLD): an update of the recent advances in pharmacological treatment. J Physiol Biochem 2023; 79:869-879. [PMID: 36976456 PMCID: PMC10635944 DOI: 10.1007/s13105-023-00954-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is nowadays considered the liver manifestation of metabolic syndrome. Its prevalence is increasing worldwide in parallel to the epidemic of diabetes and obesity. MAFLD includes a wide spectrum of liver injury including simple steatosis and non-alcoholic steatohepatitis (NASH) that may lead to serious complications such as liver cirrhosis and liver cancer. The complexity of its pathophysiology and the intricate mechanisms underlying disease progression explains the huge variety of molecules targeting diverse biological mechanisms that have been tested in preclinical and clinical settings in the last two decades. Thanks to the large number of clinical trials of the last few years, most of them still ongoing, the pharmacotherapy scenario of MAFLD is rapidly evolving. The three major components of MAFLD, steatosis, inflammation, and fibrosis seem to be safely targeted with different agents at least in a large proportion of patients. Likely, in the next few years more than one drug will be approved for the treatment of MAFLD at different disease stages. The aim of this review is to synthesize the characteristics and the results of the most advanced clinical trials for the treatment of NASH to evaluate the recent advances of pharmacotherapy in this disease.
Collapse
Affiliation(s)
- Paloma Sangro
- Liver Unit Clínica, Universidad de Navarra, Madrid, Spain.
| | | | - Bruno Sangro
- Liver Unit Clínica, Universidad de Navarra, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Pamplona, Spain
| | - Delia D'Avola
- Liver Unit Clínica, Universidad de Navarra, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Pamplona, Spain
| |
Collapse
|
14
|
Massaro M, Cagnoni AJ, Medrano FJ, Pérez-Sáez JM, Abdullayev S, Belkhadem K, Mariño KV, Romero A, Roy R, Rabinovich GA. Selective modifications of lactose and N-acetyllactosamine with sulfate and aromatic bulky groups unveil unique structural insights in galectin-1-ligand recognition. Bioorg Med Chem 2023; 94:117480. [PMID: 37774448 DOI: 10.1016/j.bmc.2023.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Galectins, a family of endogenous glycan-binding proteins, play crucial roles in a broad range of physiological and pathological processes. Galectin-1 (Gal-1), a proto-type member of this family, is overexpressed in several cancers and plays critical roles in tumor-immune escape, angiogenesis and metastasis. Thus, generation of high-affinity Gal-1 inhibitors emerges as an attractive therapeutic approach for a wide range of neoplastic conditions. Small-molecule carbohydrate inhibitors based on lactose (Lac) and N-acetyllactosamine (LacNAc) structures have been tested showing different results. In this study, we evaluated Lac- and LacNAc-based compounds with specific chemical modifications at key positions as Gal-1 ligands by competitive solid-phase assays (SPA) and isothermal titration calorimetry (ITC). Both assays showed excellent correlation, highlighting that lactosides bearing bulky aromatic groups at the anomeric carbon and sulfate groups at the O3' position exhibited the highest binding affinities. To dissect the atomistic determinants for preferential affinity of the different tested Gal-1 ligands, molecular docking simulations were conducted and PRODIGY-LIG structure-based method was employed to predict binding affinity in protein-ligand complexes. Notably, calculated binding free energies derived from the molecular docking were in accordance with experimental values determined by SPA and ITC, showing excellent correlation between theoretical and experimental approaches. Moreover, this analysis showed that 3'-O-sulfate groups interact with residues of the Gal-1 subsite B, mainly with Asn33, while the ester groups of the aromatic anomeric group interact with Gly69 and Thr70 at Gal-1 subsite E, extending deeper into the pocket, which could account for the enhanced binding affinity. This study contributes to the rational design of highly optimized Gal-1 inhibitors to be further studied in cancer models and other pathologic conditions.
Collapse
Affiliation(s)
- Mora Massaro
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Francisco J Medrano
- Centro de Investigaciones Biológicas "Margarita Salas" (CIB), CSIC, E-28040 Madrid, Spain
| | - Juan M Pérez-Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Shuay Abdullayev
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada
| | - Karima Belkhadem
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Antonio Romero
- Centro de Investigaciones Biológicas "Margarita Salas" (CIB), CSIC, E-28040 Madrid, Spain.
| | - René Roy
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada.
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
15
|
Zhang H, Wang X, Wan Y, Liu L, Zhou J, Li P, Xu B. Discovery of N-Arylsulfonyl-Indole-2-Carboxamide Derivatives as Galectin-3 and Galectin-8 C-Terminal Domain Inhibitors. ACS Med Chem Lett 2023; 14:1257-1265. [PMID: 37736168 PMCID: PMC10510525 DOI: 10.1021/acsmedchemlett.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023] Open
Abstract
Both galectin-3 and galectin-8 are involved in cell adhesion, migration, apoptosis, angiogenesis, and inflammatory processes by recognizing galactose-containing glycoproteins. Inhibiting galectin-3/8 activities is a potential treatment for cancer and tissue fibrosis. Herein, a series of novel N-arylsulfonyl-5-aryloxy-indole-2-carboxamide derivatives was disclosed as dual inhibitors toward galectin-3 and galectin-8 C-terminal domain with Kd values of low micromolar level (Cpd53, gal-3: Kd= 4.12 μM, gal-8C: Kd= 6.04 μM; Cpd57, gal-3: Kd= 12.8 μM, gal-8C: Kd= 2.06 μM), which are the most potent and selective noncarbohydrate-based inhibitors toward gal-3/8 isoforms to date. The molecular docking investigations suggested that the unique amino acids Arg144 in galectin-3 and Ser213 in galectin-8C could contribute to their potency and selectivity. The scratch wound assay demonstrated that Cpd53 and Cpd57 were able to inhibit the MRC-5 lung fibroblast cells migration as well. This class of inhibitors could serve as a new starting point for further discovering structurally distinct gal-3 and gal-8C inhibitors to be used in cancer and tissue fibrosis treatment.
Collapse
Affiliation(s)
- Haoming Zhang
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanjun Wan
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes
Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
- CAMS
Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic
Disorder and Tumorigenesis, Beijing 100050, China
| | - Liheng Liu
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes
Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
- CAMS
Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic
Disorder and Tumorigenesis, Beijing 100050, China
| | - Jie Zhou
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pingping Li
- State
Key Laboratory of Bioactive Substance and Function of Natural Medicines,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Diabetes
Research Center of Chinese Academy of Medical Sciences, Beijing 100050, China
- CAMS
Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic
Disorder and Tumorigenesis, Beijing 100050, China
| | - Bailing Xu
- Beijing
Key Laboratory of Active Substances Discovery and Druggability Evaluation,
Institute of Materia Medica, Chinese Academy
of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
16
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
17
|
Campar A, Alves I, Santos-Pereira B, Nogueira R, Pinto MM, Vasconcelos C, Pinho SS. Muscle glycome in idiopathic inflammatory myopathies: Impact in IL-6 production and disease prognosis. iScience 2023; 26:107172. [PMID: 37404372 PMCID: PMC10316658 DOI: 10.1016/j.isci.2023.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/23/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIM) are a group of chronic autoimmune diseases mainly affecting proximal muscles. Absence of meaningful prognostic factors in IIM has hindered new therapies development. Glycans are essential molecules that regulate immunological tolerance and consequently the onset of autoreactive immune response. We showed that muscle biopsies from patients with IIM revealed a deficiency in the glycosylation pathway resulting in loss of branched N-glycans. At diagnosis, this glycosignature predicted disease relapse and treatment refractoriness. Peripheral CD4+ T cells from active-disease patients shown a deficiency in branched N-glycans, linked to increased IL-6 production. Glycan supplementation, restoring homeostatic glycosylation profile, led to a decrease in IL-6 levels. This study highlights the biological and clinical importance of glycosylation in IIM immunopathogenesis, providing a potential mechanism for IL-6 production. This pinpoints muscle glycome as promising biomarker for personalized follow-up and a potential target for new therapies in a patients' subgroup with an ominous evolution.
Collapse
Affiliation(s)
- Ana Campar
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Clinical Immunology Unit, Porto University Hospital Centre, Porto, Portugal
| | - Inês Alves
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rafaela Nogueira
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Department of Chemistry, NOVA School of Science and Technology, Lisbon, Portugal
| | | | - Carlos Vasconcelos
- Clinical Immunology Unit, Porto University Hospital Centre, Porto, Portugal
| | - Salomé S. Pinho
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Yang ZS, Lin CY, Khan MB, Hsu MC, Assavalapsakul W, Thitithanyanont A, Wang SF. Understanding the role of galectins toward influenza A virus infection. Expert Opin Ther Targets 2023; 27:927-937. [PMID: 37747065 DOI: 10.1080/14728222.2023.2263912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Influenza A virus (IAV) is highly contagious and causes respiratory diseases in birds, mammals, and humans. Some strains of IAV, whether from human or avian sources, have developed resistance to existing antiviral drugs. Therefore, the discovery of new influenza antiviral drugs and therapeutic approaches is crucial. Recent studies have shown that galectins (Gal), a group of β-galactose-binding lectins, play a role in regulating various viral infections, including IAVs. AREAS COVERED This review provides an overview of the roles of different galectins in IAV infection. We discuss the characteristics of galectins, their impact on IAV infection and spread, and highlight their positive or negative regulatory functions and potential mechanisms during IAV infection. Furthermore, we explore the potential application of galectins in IAV therapy. EXPERT OPINION Galectins were first identified in the mid-1970s, and currently, 15 mammalian galectins have been identified. While all galectin members possess the carbohydrate recognition domain (CRD) that interacts with β-galactoside, their regulatory functions vary in different DNA or RNA virus infections. Certain galectin members have been found to regulate IAV infection through diverse mechanisms. Therefore, a comprehensive understanding of their roles in IAV infection is essential, as it may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Zih-Syuan Yang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Muhammad Bilal Khan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Cheng Hsu
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Günther J, Galuska SP. A brief history of galectin evolution. Front Immunol 2023; 14:1147356. [PMID: 37457740 PMCID: PMC10343441 DOI: 10.3389/fimmu.2023.1147356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Galectins are a family of carbohydrate-binding proteins found in vertebrates in great abundance and diversity in terms of both structure and ligand-binding properties as well as physiological function. Proteins with clear relationships to vertebrate galectins are already found in primitive Bilateria. The increasing amount of accessible well-annotated bilaterian genomes has allowed us to reveal, through synteny analyses, a new hypothesis about the phylogenetic history of the galectin family in this animal group. Thus, we can trace the genomic localization of the putative ancestral Bilateria galectin back to the scallops as a still very primitive slow-evolving bilaterian lineage. Intriguingly, our analyses show that the primordial galectin of the Deuterostomata most likely exhibited galectin-8-like characteristics. This basal standing galectin is characterized by a tandem-repeat type with two carbohydrate recognition domains as well as by a sialic acid binding property of the N-terminal domain, which is typical for galectin-8. With the help of synteny, the amplification of this potential primordial galectin to the broad galectin cosmos of modern jawed vertebrates can be reconstructed. Therefore, it is possible to distinguish between the paralogs resulting from small-scale duplication and the ohnologues generated by whole-genome duplication. Our findings support a substantially new hypothesis about the origin of the various members of the galectin family in vertebrates. This allows us to reveal new theories on the kinship relationships of the galectins of Gnatostomata. In addition, we focus for the first time on the galectines of the Cyclostomata, which as a sister group of jawed vertebrates providing important insights into the evolutionary history of the entire subphylum. Our studies also highlight a previously neglected member of the galectin family, galectin-related protein 2. This protein appears to be a widespread ohnologue of the original tandem-repeat ancestor within Gnathostomata that has not been the focus of galectin research due to its nonclassical galactose binding sequence motif and the fact that it was lost during mammalian evolution.
Collapse
|
20
|
Feng C, Cross AS, Vasta GR. Galectin-1 mediates interactions between polymorphonuclear leukocytes and vascular endothelial cells, and promotes their extravasation during lipopolysaccharide-induced acute lung injury. Mol Immunol 2023; 156:127-135. [PMID: 36921487 PMCID: PMC10154945 DOI: 10.1016/j.molimm.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/29/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
The lung airway epithelial surface is heavily covered with sialic acids as the terminal carbohydrate on most cell surface glycoconjugates and can be removed by microbial neuraminidases or endogenous sialidases. By desialylating the lung epithelial surface, neuraminidase acts as an important virulence factor in many mucosal pathogens, such as influenza and S. pneumoniae. Desialylation exposes the subterminal galactosyl moieties - the binding glycotopes for galectins, a family of carbohydrate-recognition proteins playing important roles in various aspects of immune responses. Galectin-1 and galectin-3 have been extensively studied in their roles related to host immune responses, but some questions about their role(s) in leukocyte recruitment during lung bacterial infection remain unanswered. In this study, we found that both galectin-1 and galectin-3 bind to polymorphonuclear leukocytes (PMNs) and enhance the interaction of endothelial intercellular adhesion molecule-1 (ICAM-1) with PMNs, which is further increased by PMN desialylation. In addition, we observed that in vitro galectin-1 mediates the binding of PMNs, particularly desialylated PMNs, onto the endothelial cells. Finally, in a murine model for LPS-mediated acute lung injury, we observed that galectin-1 modulates PMN infiltration to the lung without altering the expression of chemoattractant cytokines. We conclude that galectins, particularly galectin-1, may function as adhesion molecules that mediate PMN-endothelial cell interactions, and modulate PMN infiltration during acute lung injury.
Collapse
Affiliation(s)
- Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alan S Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
21
|
Glycomimetic Peptides as Therapeutic Tools. Pharmaceutics 2023; 15:pharmaceutics15020688. [PMID: 36840010 PMCID: PMC9966187 DOI: 10.3390/pharmaceutics15020688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The entry of peptides into glycobiology has led to the development of a unique class of therapeutic tools. Although numerous and well-known peptides are active as endocrine regulatory factors that bind to specific receptors, and peptides have been used extensively as epitopes for vaccine production, the use of peptides that mimic sugars as ligands of lectin-type receptors has opened a unique approach to modulate activity of immune cells. Ground-breaking work that initiated the use of peptides as tools for therapy identified sugar mimetics by screening phage display libraries. The peptides that have been discovered show significant potential as high-avidity, therapeutic tools when synthesized as multivalent structures. Advantages of peptides over sugars as drugs for immune modulation will be illustrated in this review.
Collapse
|
22
|
Thong L, McElduff EJ, Henry MT. Trials and Treatments: An Update on Pharmacotherapy for Idiopathic Pulmonary Fibrosis. Life (Basel) 2023; 13:486. [PMID: 36836843 PMCID: PMC9963632 DOI: 10.3390/life13020486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrosing interstitial lung disease that occurs predominantly in the older population. There is increasing incidence and prevalence in IPF globally. The emergence of anti-fibrotic therapies in the last decade have improved patient survival though a cure is yet to be developed. In this review article, we aim to summarize the existing and novel pharmacotherapies for the treatment of IPF (excluding treatments for acute exacerbations), focusing on the current knowledge on the pathophysiology of the disease, mechanism of action of the drugs, and clinical trials.
Collapse
Affiliation(s)
- Lorraine Thong
- Department of Clinical Medicine, Trinity College Dublin, D08 W9RT Dublin, Ireland
| | - Enda James McElduff
- Department of Clinical Medicine, Royal College of Surgeons Ireland, D02 YN77 Dublin, Ireland
| | - Michael Thomas Henry
- Department of Respiratory Medicine, Cork University Hospital, T12 YE02 Cork, Ireland
| |
Collapse
|
23
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
24
|
Lete MG, Franconetti A, Bertuzzi S, Delgado S, Azkargorta M, Elortza F, Millet O, Jiménez-Osés G, Arda A, Jiménez-Barbero J. NMR Investigation of Protein-Carbohydrate Interactions: The Recognition of Glycans by Galectins Engineered with Fluorotryptophan Residues. Chemistry 2023; 29:e202202208. [PMID: 36343278 PMCID: PMC10107428 DOI: 10.1002/chem.202202208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Fluorine (19 F) incorporation into glycan-binding proteins (lectins) has been achieved and exploited to monitor the binding to carbohydrate ligands by nuclear magnetic resonance (NMR) spectroscopy. Galectins are a family of lectins that bind carbohydrates, generally with weak affinities, through a combination of intermolecular interactions including a key CH-π stacking involving a conserved tryptophan residue. Herein, Galectin-3 (Gal3) and Galectin-8 (Gal8) with one and two carbohydrate recognition domains (CRDs), respectively, were selected. Gal3 contains one Trp, whereas Gal8 contains three, one at each binding site and a third one not involved in sugar binding; these were substituted by the corresponding F-Trp analogues. The presence of fluorine did not significantly modify the affinity for glycan binding, which was in slow exchange on the 19 F NMR chemical-shift timescale, even for weak ligands, and allowed binding events taking place at two different binding sites within the same lectin to be individualized.
Collapse
Affiliation(s)
- Marta G Lete
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Antonio Franconetti
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Sara Bertuzzi
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Sandra Delgado
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Félix Elortza
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Oscar Millet
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Gonzalo Jiménez-Osés
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science Plaza Euskadi 5, 48009, Bilbao, Bizkaia, Spain
| | - Ana Arda
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science Plaza Euskadi 5, 48009, Bilbao, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science Plaza Euskadi 5, 48009, Bilbao, Bizkaia, Spain.,Department of Organic Chemistry II Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940, Leioa, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
25
|
Circulating galectin-1 delineates response to bevacizumab in melanoma patients and reprograms endothelial cell biology. Proc Natl Acad Sci U S A 2023; 120:e2214350120. [PMID: 36634146 PMCID: PMC9934167 DOI: 10.1073/pnas.2214350120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Blockade of vascular endothelial growth factor (VEGF) signaling with bevacizumab, a humanized anti-VEGF monoclonal antibody (mAb), or with receptor tyrosine kinase inhibitors, has improved progression-free survival and, in some indications, overall survival across several types of cancers by interrupting tumor angiogenesis. However, the clinical benefit conferred by these therapies is variable, and tumors from treated patients eventually reinitiate growth. Previously we demonstrated, in mouse tumor models, that galectin-1 (Gal1), an endogenous glycan-binding protein, preserves angiogenesis in anti-VEGF-resistant tumors by co-opting the VEGF receptor (VEGFR)2 signaling pathway in the absence of VEGF. However, the relevance of these findings in clinical settings is uncertain. Here, we explored, in a cohort of melanoma patients from AVAST-M, a multicenter, open-label, randomized controlled phase 3 trial of adjuvant bevacizumab versus standard surveillance, the role of circulating plasma Gal1 as part of a compensatory mechanism that orchestrates endothelial cell programs in bevacizumab-treated melanoma patients. We found that increasing Gal1 levels over time in patients in the bevacizumab arm, but not in the observation arm, significantly increased their risks of recurrence and death. Remarkably, plasma Gal1 was functionally active as it was able to reprogram endothelial cell biology, promoting migration, tubulogenesis, and VEGFR2 phosphorylation. These effects were prevented by blockade of Gal1 using a newly developed fully human anti-Gal1 neutralizing mAb. Thus, using samples from a large-scale clinical trial from stage II and III melanoma patients, we validated the clinical relevance of Gal1 as a potential mechanism of resistance to bevacizumab treatment.
Collapse
|
26
|
Cinkir U, Bir LS, Tekin S, Karagulmez AM, Avci Cicek E, Senol H. Investigation of anti-galectin-8 levels in patients with multiple sclerosis: A consort-clinical study. Medicine (Baltimore) 2023; 102:e32621. [PMID: 36607856 PMCID: PMC9829274 DOI: 10.1097/md.0000000000032621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Galectins are a family of endogenous mammalian lectins involved in pathogen recognition, killing, and facilitating the entry of microbial pathogens and parasites into the host. They are the intermediators that decipher glycan-containing information about the host immune cells and microbial structures to modulate signaling events that cause cellular proliferation, chemotaxis, cytokine secretion, and cell-to-cell communication. They have subgroups that take place in different roles in the immune system. The effect of galectin-8 on multiple sclerosis disease (MS) has been studied in the literature, but the results seemed unclear. In this study, we aimed to determine anti-galectin-8 (anti-Gal-8) levels in MS and their potential use as biomarkers. METHODS In this experimental study, 45 MS patients diagnosed according to McDonald criteria were included in the patient group. The healthy control group contained 45 people without MS diagnosis and any risk factors. Demographic data, height, weight, body mass index, blood glucose, thyroid-stimulating hormone, alanine transaminase, aspartate transaminase, creatinine, low-density lipoprotein, anti-Gal-8 levels, the prevalence of hypertension, diabetes mellitus and coronary artery disease were recorded. In addition, the expanded disability status scale and disease duration were evaluated in the patient group. Data were presented as mean ± standard deviations. RESULTS The mean blood anti-galectin-8 value of the patient group was 4.84 ± 4.53 ng/mL, while it was 4.67 ± 3.40 ng/mL in the control group, and the difference in these values was found statistically insignificant (P > .05). Moreover, body mass index, glucose, alanine transaminase, aspartate transaminase, thyroid-stimulating hormone, and low-density lipoprotein levels were also statistically insignificant (P > .05). CONCLUSION This study examined anti-Gal-8 levels in MS patients. The relationship between MS and galectin-8 and anti-Gal-8 levels in patients needs further clarification. As a result, the study's results could help elucidate the pathogenesis of MS and give more evidence for diagnosis.
Collapse
Affiliation(s)
- Ufuk Cinkir
- T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Communication, T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Istanbul, Turkey
- * Correspondence: Ufuk Cinkir, T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Communication, T.C. Saglik Bakanligi Başakşehir Cam Ve Sakura Sehir Hastanesi, Istanbul 34480, Turkey (e-mail: )
| | - Levent Sinan Bir
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Selma Tekin
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Ahmet Magrur Karagulmez
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Esin Avci Cicek
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Hande Senol
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| |
Collapse
|
27
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
28
|
Tamura M, Fujii N, Takeuchi T, Tsuyuguchi M, Tanikawa T, Oka S, Hatanaka T, Kishimoto S, Kato R, Arata Y. Method for Preparing Recombinant Galectin-2 Protein without Escherichia coli-Specific Post-translational Modifications. Biol Pharm Bull 2023; 46:1676-1682. [PMID: 38044091 DOI: 10.1248/bpb.b23-00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Galectin-2 (Gal-2) is an animal lectin with specificity for β-galactosides. It is predominantly expressed and suggested to play a protective function in the gastrointestinal tract; therefore, it can be used as a protein drug. Recombinant proteins have been expressed using Escherichia coli and used to study the function of Gal-2. The recombinant human Gal-2 (hGal-2) protein purified via affinity chromatography after being expressed in E. coli was not completely homogeneous. Mass spectrometry confirmed that some recombinant Gal-2 were phosphogluconoylated. In contrast, the recombinant mouse Gal-2 (mGal-2) protein purified using affinity chromatography after being expressed in E. coli contained a different form of Gal-2 with a larger molecular weight. This was due to mistranslating the original mGal-2 stop codon TGA to tryptophan (TGG). In this report, to obtain a homogeneous Gal-2 protein for further studies, we attempted the following methods: for hGal-2, 1) replacement of the lysine (Lys) residues, which was easily phosphogluconoylated with arginine (Arg) residues, and 2) addition of histidine (His)-tag on the N-terminus of the recombinant protein and cleavage with protease after expression; for mGal-2, 3) changing the stop codon from TGA to TAA, which is commonly used in E. coli. We obtained an almost homogeneous recombinant Gal-2 protein (human and mouse). These results have important implications for using Gal-2 as a protein drug.
Collapse
Affiliation(s)
| | | | | | - Masato Tsuyuguchi
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization KEK
| | - Takashi Tanikawa
- Faculty of Pharma-Science, Teikyo University
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Saori Oka
- Faculty of Pharma-Science, Teikyo University
| | - Tomomi Hatanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
- Tokai University School of Medicine
| | - Seishi Kishimoto
- Radioisotope Research Center, Teikyo University
- Center for Promotion of Pharmaceutical Education, Showa Pharmaceutical University
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization KEK
| | | |
Collapse
|
29
|
Glycobiology of cellular expiry: Decrypting the role of glycan-lectin regulatory complex and therapeutic strategies focusing on cancer. Biochem Pharmacol 2023; 207:115367. [PMID: 36481348 DOI: 10.1016/j.bcp.2022.115367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Often the outer leaflets of living cells bear a coat of glycosylated proteins, which primarily regulates cellular processes. Glycosylation of such proteins occurs as part of their post-translational modification. Within the endoplasmic reticulum, glycosylation enables the attachment of specific oligosaccharide moieties such as, 'glycan' to the transmembrane receptor proteins which confers precise biological information for governing the cell fate. The nature and degree of glycosylation of cell surface receptors are regulated by a bunch of glycosyl transferases and glycosidases which fine-tune attachment or detachment of glycan moieties. In classical death receptors, upregulation of glycosylation by glycosyl transferases is capable of inducing cell death in T cells, tumor cells, etc. Thus, any deregulated alternation at surface glycosylation of these death receptors can result in life-threatening disorder like cancer. In addition, transmembrane glycoproteins and lectin receptors can transduce intracellular signals for cell death execution. Exogenous interaction of lectins with glycan containing death receptors signals for cell death initiation by modulating downstream signalings. Subsequently, endogenous glycan-lectin interplay aids in the customization and implementation of the cell death program. Lastly, the glycan-lectin recognition system dictates the removal of apoptotic cells by sending accurate signals to the extracellular milieu. Since glycosylation has proven to be a biomarker of cellular death and disease progression; glycans serve as specific therapeutic targets of cancers. In this context, we are reviewing the molecular mechanisms of the glycan-lectin regulatory network as an integral part of cell death machinery in cancer to target them for successful therapeutic and clinical approaches.
Collapse
|
30
|
Highlights on the Role of Galectin-3 in Colorectal Cancer and the Preventive/Therapeutic Potential of Food-Derived Inhibitors. Cancers (Basel) 2022; 15:cancers15010052. [PMID: 36612048 PMCID: PMC9817985 DOI: 10.3390/cancers15010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide. Despite advances in surgical and therapeutic management, tumor metastases and resistance to therapy still represent major hurdles. CRC risk is highly modifiable by lifestyle factors, including diet, which strongly influences both cancer incidence and related mortality. Galectin-3 (Gal-3) is a multifaceted protein involved in multiple pathophysiological pathways underlying chronic inflammation and cancer. Its versatility is given by the ability to participate in a wide range of tumor-promoting processes, including cell-cell/cell-matrix interactions, cell growth regulation and apoptosis, and the immunosuppressive tumor microenvironment. This review provides an updated summary of preclinical and observational human studies investigating the pathogenetic role of Gal-3 in intestinal inflammation and CRC, as well as the potential of Gal-3 activity inhibition by plant-source food-derived bioactive compounds to control CRC onset/growth. These studies highlight both direct and immuno-mediated effects of Gal-3 on tumor growth and invasiveness and its potential role as a CRC prognostic biomarker. Substantial evidence indicates natural food-derived Gal-3 inhibitors as promising candidates for CRC prevention and therapy. However, critical issues, such as their bioavailability and efficacy, in controlled human studies need to be addressed to translate research progress into clinical applications.
Collapse
|
31
|
Jino Blessy J, Siva Shanmugam NR, Veluraja K, Michael Gromiha M. Investigations on the binding specificity of β-galactoside analogues with human galectin-1 using molecular dynamics simulations. J Biomol Struct Dyn 2022; 40:10094-10105. [PMID: 34219624 DOI: 10.1080/07391102.2021.1939788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Galectin-1 (Gal-1) is the first member of galectin family, which has a carbohydrate recognition domain, specifically binds towards β-galactoside containing oligosaccharides. Owing its association with carbohydrates, Gal-1 is involved in many biological processes such as cell signaling, adhesion and pathological pathways such as metastasis, apoptosis and increased tumour cell survival. The development of β-galactoside based inhibitors would help to control the Gal-1 expression. In the current study, we carried out molecular dynamics (MD) simulations to examine the structural and dynamic behaviour Gal-1-thiodigalactoside (TDG), Gal-1-lactobionic acid (LBA) and Gal-1-beta-(1→6)-galactobiose (G16G) complexes. The analysis of glycosidic torsional angles revealed that β-galactoside analogues TDG and LBA have a single binding mode (BM1) whereas G16G has two binding modes (BM1 and BM2) for interacting with Gal-1 protein. We have computed the binding free energies for the complexes Gal-1-TDG, Gal-1-LBA and Gal-1-G16G using MM/PBSA and are -6.45, -6.22 and -3.08 kcal/mol, respectively. This trend agrees well with experiments that the binding of Gal-1 with TDG is stronger than LBA. Further analysis revealed that the interactions due to direct and water-mediated hydrogen bonds play a significant role to the structural stability of the complexes. The result obtained from this study is useful to formulate a set of rules and derive pharmacophore-based features for designing inhibitors against galectin-1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- J Jino Blessy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - N R Siva Shanmugam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - K Veluraja
- PSN college of Engineering and Technology, Tirunelveli, Tamilnadu, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
32
|
Ou C, Li C, Feng C, Tong X, Vasta GR, Wang LX. Synthesis, binding affinity, and inhibitory capacity of cyclodextrin-based multivalent glycan ligands for human galectin-3. Bioorg Med Chem 2022; 72:116974. [PMID: 36108470 PMCID: PMC10349921 DOI: 10.1016/j.bmc.2022.116974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
Human galectin 3 (Gal-3) has been implicated to play important roles in different biological recognition processes such as tumor growth and cancer metastasis. High-affinity Gal-3 ligands are desirable for functional studies and as inhibitors for potential therapeutic development. We report here a facile synthesis of β-cyclodextrin (CD)-based Tn and TF antigen-containing multivalent ligands via a click reaction. Binding studies indicated that the synthetic multivalent glycan ligands demonstrated a clear clustering effect in binding to human Gal-3, with up to 153-fold enhanced relative affinity in comparison with the monomeric glycan ligand. The GalNAc (Tn antigen) containing heptavalent ligand showed the highest affinity for human Gal-3 among the synthetic ligands tested, with an EC50 of 1.4 μM in binding to human Gal-3. A cell-based assay revealed that the synthetic CD-based multivalent ligands could efficiently inhibit Gal-3 binding to human airway epithelial cells, with an inhibitory capacity consistent with their binding affinity measured by SPR. The synthetic cyclodextrin-based ligands described in this study should be valuable for functional studies of human Gal-3 and potentially for therapeutic applications.
Collapse
Affiliation(s)
- Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
33
|
N-glycosylation of cervicovaginal fluid reflects microbial community, immune activity, and pregnancy status. Sci Rep 2022; 12:16948. [PMID: 36216861 PMCID: PMC9551102 DOI: 10.1038/s41598-022-20608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022] Open
Abstract
Human cervicovaginal fluid (CVF) is a complex, functionally important and glycan rich biological fluid, fundamental in mediating physiological events associated with reproductive health. Using a comprehensive glycomic strategy we reveal an extremely rich and complex N-glycome in CVF of pregnant and non-pregnant women, abundant in paucimannose and high mannose glycans, complex glycans with 2-4 N-Acetyllactosamine (LacNAc) antennae, and Poly-LacNAc glycans decorated with fucosylation and sialylation. N-glycosylation profiles were observed to differ in relation to pregnancy status, microbial composition, immune activation, and pregnancy outcome. Compared to CVF from women experiencing term birth, CVF from women who subsequently experienced preterm birth showed lower sialylation, which correlated to the presence of a diverse microbiome, and higher fucosylation, which correlated positively to pro-inflammatory cytokine concentration. This study is the first step towards better understanding the role of cervicovaginal glycans in reproductive health, their contribution to the mechanism of microbial driven preterm birth, and their potential for preventative therapy.
Collapse
|
34
|
A Dynamic Interplay of Circulating Extracellular Vesicles and Galectin-1 Reprograms Viral Latency during HIV-1 Infection. mBio 2022; 13:e0061122. [PMID: 35943163 PMCID: PMC9426495 DOI: 10.1128/mbio.00611-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Combined Antiretroviral therapy (cART) suppresses HIV replication but fails to eradicate the virus, which persists in a small pool of long-lived latently infected cells. Immune activation and residual inflammation during cART are considered to contribute to viral persistence. Galectins, a family of β-galactoside-binding proteins, play central roles in host-pathogen interactions and inflammatory responses. Depending on their structure, glycan binding specificities and/or formation of distinct multivalent signaling complexes, different members of this family can complement, synergize, or oppose the function of others. Here, we identify a regulatory circuit, mediated by galectin-1 (Gal-1)–glycan interactions, that promotes reversal of HIV-1 latency in infected T cells. We found elevated levels of circulating Gal-1 in plasma from HIV-1-infected individuals, which correlated both with inflammatory markers and the transcriptional activity of the reservoir, as determined by unspliced-RNA (US-RNA) copy number. Proinflammatory extracellular vesicles (EVs) isolated from the plasma of HIV-infected individuals induced Gal-1 secretion by macrophages. Extracellularly, Gal-1 interacted with latently infected resting primary CD4+ T cells and J-LAT cells in a glycan-dependent manner and reversed HIV latency via activation of the nuclear factor κB (NF-κB). Furthermore, CD4+ T cells isolated from HIV-infected individuals showed increased HIV-1 transcriptional activity when exposed to Gal-1. Thus, by modulating reservoir dynamics, EV-driven Gal-1 secretion by macrophages links inflammation with HIV-1 persistence in cART-treated individuals.
Collapse
|
35
|
Lactose hydrate can increase the transcellular permeability of β-naphthol in rat jejunum and ileum. Mol Biol Rep 2022; 49:8685-8692. [PMID: 35767107 DOI: 10.1007/s11033-022-07709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND The unstirred water layer (UWL) is an integral part of the apical surface of mucosal epithelia and comprises mucins (MUC), for which there are many molecular species. Galectins, a family of β-galactoside-binding lectins, form a lattice barrier on surface epithelial cells by interacting with MUC. Lactose inhibits the galectin-MUC interaction. Therefore, the present study investigated the galectin-MUC interaction in the mucosa of the gastrointestinal tract and its role in intestinal barrier functions. MATERIALS AND RESULTS The effects of lactose hydrate (LH) on the membrane permeability of the rat small intestine and Caco-2 cells were examined. LH enhanced the membrane permeability of the rat small intestine, which contains the UWL, via a transcellular route, for which the UWL is the rate limiting factor. The membrane permeability of Caco-2 cells, in which the UWL is insufficient, was not affected by LH. The apparent permeability coefficient (Papp) of a paracellular marker was not significantly altered in the rat small intestine or Caco-2 cells treated with LH at any concentration. Furthermore, the Papp of β-naphthol which is a transcellular marker was not significantly altered in Caco-2 cells treated with LH, but was significantly increased in the rat small intestine in a LH concentration-dependent manner. CONCLUSIONS The present results demonstrate that the physical barrier has an important function in gastrointestinal membrane permeability, and LH-induced changes increase the transcellular permeability of β-naphthol in rat small intestine.
Collapse
|
36
|
Funkhouser AT, Strigenz AM, Blair BB, Miller AP, Shealy JC, Ewing JA, Martin JC, Funk CR, Edenfield WJ, Blenda AV. KIT Mutations Correlate with Higher Galectin Levels and Brain Metastasis in Breast and Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14112781. [PMID: 35681762 PMCID: PMC9179545 DOI: 10.3390/cancers14112781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
To investigate a potential role for galectins as biomarkers that enable diagnosis or prognostication of breast or non-small cell lung cancer, the serum levels of galectins -1, -3, -7, -8, and -9 of cancer patients determined by ELISA assays were compared to the mutation status of 50 known cancer-critical genes, which were determined using multiplex PCR in tumors of the same patients. Mutations in the KIT proto-oncogene, which codes for the c-Kit protein, a receptor tyrosine kinase, correlated with higher levels of galectins -1, -3, -8, and -9 in breast cancer patients and galectin-1 in non-small cell lung cancer patients. Mutations in the KIT gene were more likely found in brain metastases from both of these primary cancers. The most common KIT mutation in our panel was p.M541L, a missense mutation in the transmembrane domain of the c-Kit protein. These results demonstrate an association between KIT oncogenic signaling and elevated serum galectins in patients with metastatic disease. Changes in protein trafficking and the glycocalyx composition of cancer cells may explain the observed alterations in galectin expression. This study can be useful for the targeted selection of receptor tyrosine kinase and galectin inhibitor anti-cancer treatments.
Collapse
Affiliation(s)
- Avery T Funkhouser
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Alexander M Strigenz
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Bailey B Blair
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Andrew P Miller
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Jonah C Shealy
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Joseph A Ewing
- Data Support Core, Prisma Health, Greenville, SC 29605, USA
| | - Julie C Martin
- Prisma Health Cancer Institute, Prisma Health, Greenville, SC 29605, USA
| | - Christopher R Funk
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Anna V Blenda
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
- Prisma Health Cancer Institute, Prisma Health, Greenville, SC 29605, USA
| |
Collapse
|
37
|
Ilic N, Bojic-Trbojevic Z, Lundström-Stadelmann B, Cujic D, Mitic I, Gruden-Movsesijan A. Immunomodulatory components of Trichinella spiralis excretory-secretory products with lactose-binding specificity. EXCLI JOURNAL 2022; 21:793-813. [PMID: 35949491 PMCID: PMC9360477 DOI: 10.17179/excli2022-4954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Abstract
The immunomodulatory potential of Trichinella spiralis muscle larvae excretory-secretory products (ES L1) has been well documented in vitro on dendritic cells (DCs) and in animal models of autoimmune diseases. ES L1 products possess the potential to induce tolerogenic DCs and consequently trigger regulatory mechanisms that maintain immune homeostasis. The use of ES L1 as a potential treatment for various inflammatory disorders proved to be beneficial in animal models, although the precise immunomodulatory factors have not yet been identified. This study aimed at the isolation and characterization of ES L1 components that possess galectin family member properties. Galectin-1-like proteins (TsGal-1-like) were isolated from ES L1 based on the assumption of the existence of a lactose-specific carbohydrate-recognition domain and were recognized by anti-galectin-1 antibodies in Western blot. This TsGal-1-like isolate, similar to galectin-1, induced DCs with tolerogenic properties and hence, the capacity to polarize T cell response towards a regulatory type. This was reflected by a significantly increased percentage of CD4+CD25+Foxp3+ regulatory T cells and significantly increased expression of IL-10 and TGF-β within this cell population. Proteomic analysis of TsGal-1-like isolate by mass spectrometry identified nineteen proteins, seven with annotated function after blast analysis against a database for T. spiralis and the UniProt database. To our surprise, none of the identified proteins possesses homology with known galectin family members. Nevertheless, the isolated components of ES L1 possess certain galectin-1 properties, such as specific lactose binding and the potential to elicit a regulatory immune response, so it would be worth further investigating the structure of sugar binding within isolated proteins and its biological significance.
Collapse
Affiliation(s)
- Natasa Ilic
- University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia
| | - Zanka Bojic-Trbojevic
- University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Danica Cujic
- University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia
| | - Ivana Mitic
- University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia,*To whom correspondence should be addressed: Alisa Gruden-Movsesijan, University of Belgrade, Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Belgrade, Serbia; Tel.: +381 641510389, E-mail:
| |
Collapse
|
38
|
Ramírez Hernández E, Alanis Olvera B, Carmona González D, Guerrero Marín O, Pantoja Mercado D, Valencia Gil L, Hernández-Zimbrón LF, Sánchez Salgado JL, Limón ID, Zenteno E. Neuroinflammation and galectins: a key relationship in neurodegenerative diseases. Glycoconj J 2022; 39:685-699. [PMID: 35653015 DOI: 10.1007/s10719-022-10064-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Neurodegeneration is a pathological condition that is associated with the loss of neuronal function and structure. In neurodegenerative diseases, mounting evidence indicates that neuroinflammation is a common factor that contributes to neuronal damage and neurodegeneration. Neuroinflammation is characterized by the activation of microglia, the neuroimmune cells of the central nervous system (CNS), which have been implicated as active contributors to neuronal damage. Glycan structure modification is defining the outcome of neuroinflammation and neuronal regeneration; moreover, the expression of galectins, a group of lectins that specifically recognize β-galactosides, has been proposed as a key factor in neuronal regeneration and modulation of the inflammatory response. Of the different galectins identified, galectin-1 stimulates the secretion of neurotrophic factors in astrocytes and promotes neuronal regeneration, whereas galectin-3 induces the proliferation of microglial cells and modulates cell apoptosis. Galectin-8 emerged as a neuroprotective factor, which, in addition to its immunosuppressive function, could generate a neuroprotective environment in the brain. This review describes the role of galectins in the activation and modulation of astrocytes and microglia and their anti- and proinflammatory functions within the context of neuroinflammation. Furthermore, it discusses the potential use of galectins as a therapeutic target for the inflammatory response and remodeling in damaged tissues in the central nervous system.
Collapse
Affiliation(s)
- Eleazar Ramírez Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Beatriz Alanis Olvera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniela Carmona González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oscar Guerrero Marín
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Denisse Pantoja Mercado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lucero Valencia Gil
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis F Hernández-Zimbrón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Sánchez Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - I Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de México, Mexico City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
39
|
Pally D, Banerjee M, Hussain S, Kumar RV, Petersson A, Rosendal E, Gunnarsson L, Peterson K, Leffler H, Nilsson UJ, Bhat R. Galectin-9 Signaling Drives Breast Cancer Invasion through Extracellular Matrix. ACS Chem Biol 2022; 17:1376-1386. [PMID: 35605245 DOI: 10.1021/acschembio.1c00902] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aberrations in glycan and lectin expression and function represent one of the earliest hallmarks of cancer. Among galectins, a conserved family of β-galactoside-binding lectins, the role of Galectin-9 in immune-tumor interactions is well-established, although its effect on cancer cell behavior remains unclear. In this study, we assayed for, and observed, an association between Galectin-9 expression and invasiveness of breast cancer cells in vitro and in vivo. Genetic perturbation and pharmacological inhibition using novel cognate inhibitors confirmed a positive correlation between Galectin-9 levels and the adhesion of invasive cancer cells to─and their invasion through─constituted organomimetic extracellular matrix microenvironments. Signaling experiments and unbiased quantitative proteomics revealed Galectin-9 induction of Focal Adhesion Kinase activity and S100A4 expression, respectively. FAK inhibition decreased S100A4 mRNA levels. Our results provide crucial insights into how elevated Galectin-9 expression potentiates the invasiveness of breast cancer cells during early steps of invasion.
Collapse
Affiliation(s)
- Dharma Pally
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Mallar Banerjee
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Shahid Hussain
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Rekha V. Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore 560029, Karnataka, India
| | | | - Ebba Rosendal
- Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | | | | | - Hakon Leffler
- Microbiology, Immunology, and Glycobiology, Department of Experimental Medicine, Lund University, SE-221 00 Lund, Sweden
| | - Ulf J. Nilsson
- Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Centre of BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
40
|
Martin-Saldaña S, Chevalier MT, Pandit A. Therapeutic potential of targeting galectins – A biomaterials-focused perspective. Biomaterials 2022; 286:121585. [DOI: 10.1016/j.biomaterials.2022.121585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/16/2022]
|
41
|
Beyer S, Wehrmann M, Meister S, Kolben TM, Trillsch F, Burges A, Czogalla B, Schmoeckel E, Mahner S, Jeschke U, Kolben T. Galectin-8 and -9 as prognostic factors for cervical cancer. Arch Gynecol Obstet 2022; 306:1211-1220. [PMID: 35377045 PMCID: PMC9470666 DOI: 10.1007/s00404-022-06449-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/09/2022] [Indexed: 11/21/2022]
Abstract
Purpose Galectins are carbohydrate-binding proteins with multiple effects on cell biology. Research shows that they play an important role in tumor development and progression. Therefore, in this study, the presence of Galectin-8 and -9 (Gal), both already known as prognostic factors in other tumor entities, were investigated in cervical cancer. Our aim was to examine the association of Gal-8 and -9 expression with histopathological markers and survival of the patients. Methods Gal-8 and -9 expression was investigated in 250 cervical cancer samples by immunohistochemistry. The staining was evaluated using the immunoreactive score (IRS). The results were correlated to clinical and pathological data. The correlation of Gal-8 and -9 expression with overall and relapse-free survival was analyzed. Results Expression of Gal-8 was associated with negative N-status and lower FIGO status. Detection of Gal-9 was connected to negative N-status and lower grading regarding all specimens. A correlation of Gal-9 with lower FIGO status was detected for squamous cell carcinoma (SCC) only. Expression of Gal-8 was associated with relapse-free survival of SCC patients in a positive manner. Gal-9 expression was associated with better overall survival. Conclusion Our results suggest that expression of both galectins is inversely associated with tumor stage and progression. Gal-8 expression is associated with relapse-free survival of patients with SCC, while presence of Gal-9 in cervical cancer is associated with a better prognosis in regard of overall survival. Supplementary Information The online version contains supplementary material available at 10.1007/s00404-022-06449-9.
Collapse
Affiliation(s)
- Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Maya Wehrmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Theresa M Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Elisa Schmoeckel
- Institute of Pathology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Department of Obstetrics and Gynecology, University Hospital, Universitätsklinikum Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
42
|
Zhi Z, Jooss NJ, Sun Y, Colicchia M, Slater A, Moran LA, Cheung HYF, Di Y, Rayes J, Poulter NS, Watson SP, Iqbal AJ. Galectin-9 activates platelet ITAM receptors glycoprotein VI and C-type lectin-like receptor-2. J Thromb Haemost 2022; 20:936-950. [PMID: 34936188 DOI: 10.1111/jth.15625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Platelets are multifunctional cellular mediators in many physiological and pathophysiological processes such as thrombosis, angiogenesis, and inflammation. Several members of galectins, a family of carbohydrate-binding proteins with a broad range of immunomodulatory actions, have been reported to activate platelets. OBJECTIVE In this study, we investigated the role of galectin-9 (Gal-9) as a novel ligand for platelet glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2). METHODS Platelet spreading, aggregation, and P-selectin expression in response to Gal-9 were measured in washed platelet suspensions via static adhesion assay, light transmission aggregometry, and flow cytometry, respectively. Solid-phase binding assay and protein phosphorylation studies were utilized to validate the interaction between Gal-9 and GPVI, and immunoprecipitation for detecting CLEC-2 phosphorylation. Wild-type (WT), GPVI-knockout (Gp6-/- ), and GPVI and CLEC-2-double knockout (Gp6-/- /Gp1ba-Cre-Clec1bfl/fl ) mice were used. RESULTS We have shown that recombinant Gal-9 stimulates aggregation in human and mouse washed platelets dose-dependently. Platelets from both species adhere and spread on immobilized Gal-9 and express P-selectin. Gal-9 competitively inhibited the binding of human recombinant D1 and D2 domains of GPVI to collagen. Gal-9 stimulated tyrosine phosphorylation of CLEC-2 and proteins known to lie downstream of GPVI and CLEC-2 including spleen tyrosine kinase and linker of activated T cells in human platelets. GPVI-deficient murine platelets exhibited significantly impaired aggregation in response to Gal-9, which was further abrogated in GPVI and CLEC-2-double-deficient platelets. CONCLUSIONS We have identified Gal-9 as a novel platelet agonist that induces activation through interaction with GPVI and CLEC-2.
Collapse
Affiliation(s)
- Zhaogong Zhi
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Natalie J Jooss
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Yi Sun
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Martina Colicchia
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Luis A Moran
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Hilaire Yam Fung Cheung
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ying Di
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
43
|
Verkerke H, Dias-Baruffi M, Cummings RD, Arthur CM, Stowell SR. Galectins: An Ancient Family of Carbohydrate Binding Proteins with Modern Functions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2442:1-40. [PMID: 35320517 DOI: 10.1007/978-1-0716-2055-7_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Galectins are a large family of carbohydrate binding proteins with members in nearly every lineage of multicellular life. Through tandem and en-mass genome duplications, over 15 known vertebrate galectins likely evolved from a single common ancestor extant in pre-chordate lineages. While galectins have divergently evolved numerous functions, some of which do not involve carbohydrate recognition, the vast majority of the galectins have retained the conserved ability to bind variably modified polylactosamine (polyLacNAc) residues on glycans that modify proteins and lipids on the surface of host cells and pathogens. In addition to their direct role in microbial killing, many proposed galectin functions in the immune system and cancer involve crosslinking glycosylated receptors and modifying signaling pathways or sensitivity to antigen from the outside in. However, a large body of work has uncovered intracellular galectin functions mediated by carbohydrate- and non-carbohydrate-dependent interactions. In the cytoplasm, galectins can tune intracellular kinase and G-protein-coupled signaling cascades important for nutrient sensing, cell cycle progression, and transformation. Particularly, but interconnected pathways, cytoplasmic galectins serve the innate immune system as sensors of endolysosomal damage, recruiting and assembling the components of autophagosomes during intracellular infection through carbohydrate-dependent and -independent activities. In the nucleus, galectins participate in pre-mRNA splicing perhaps through interactions with non-coding RNAs required for assembly of spliceosomes. Together, studies of galectin function paint a picture of a functionally dynamic protein family recruited during eons of evolution to regulate numerous essential cellular processes in the context of multicellular life.
Collapse
Affiliation(s)
- Hans Verkerke
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Boutin L, Dépret F, Gayat E, Legrand M, Chadjichristos CE. Galectin-3 in Kidney Diseases: From an Old Protein to a New Therapeutic Target. Int J Mol Sci 2022; 23:ijms23063124. [PMID: 35328545 PMCID: PMC8952808 DOI: 10.3390/ijms23063124] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Galectin-3 (Gal-3) is a 30KDa lectin implicated in multiple pathophysiology pathways including renal damage and fibrosis. Gal-3 binds β-galactoside through its carbohydrate-recognition domain. From intra-cellular to extra-cellular localization, Gal-3 has multiple roles including transduction signal pathway, cell-to-cell adhesion, cell to extracellular matrix adhesion, and immunological chemoattractant protein. Moreover, Gal-3 has also been linked to kidney disease in both preclinical models and clinical studies. Gal-3 inhibition appears to improve renal disease in several pathological conditions, thus justifying the development of multiple drug inhibitors. This review aims to summarize the latest literature regarding Gal-3 in renal pathophysiology, from its role as a biomarker to its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Louis Boutin
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, Université Paris Cité, 75010 Paris, France; (L.B.); (F.D.); (E.G.)
- INSERM, UMR 942, MASCOT, Cardiovascular Marker in Stress Condition, Université Paris Cité, 75010 Paris, France;
| | - François Dépret
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, Université Paris Cité, 75010 Paris, France; (L.B.); (F.D.); (E.G.)
- INSERM, UMR 942, MASCOT, Cardiovascular Marker in Stress Condition, Université Paris Cité, 75010 Paris, France;
| | - Etienne Gayat
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, Université Paris Cité, 75010 Paris, France; (L.B.); (F.D.); (E.G.)
- INSERM, UMR 942, MASCOT, Cardiovascular Marker in Stress Condition, Université Paris Cité, 75010 Paris, France;
| | - Matthieu Legrand
- INSERM, UMR 942, MASCOT, Cardiovascular Marker in Stress Condition, Université Paris Cité, 75010 Paris, France;
- Department of Anesthesiology and Peri-Operative Medicine, Division of Critical Care Medicine, University of California—UCSF Medical Center, 500 Parnassus Ave, San Francisco, CA 94143, USA
- INI-CRCT Network, 54500 Nancy, France
| | | |
Collapse
|
45
|
Li M, Guo K, Huang X, Feng L, Yuan Y, Li J, Lao Y, Guo Z. Association Between Serum Galectin-3 Levels and Coronary Stenosis Severity in Patients With Coronary Artery Disease. Front Cardiovasc Med 2022; 9:818162. [PMID: 35198615 PMCID: PMC8858949 DOI: 10.3389/fcvm.2022.818162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Background The relationship between galectin-3 (Gal-3) and coronary artery disease (CAD) has not been fully elucidated. Aim This study aimed to determine the relationship between the presence and severity of CAD and serum Gal-3 levels. Patients and Methods Three-hundred thirty-one consecutive CAD patients were enrolled as the study group. An additional 62 patients without CAD were enrolled as the control group. Serum Gal-3 levels were separately compared between the non-CAD and CAD groups, among the stable CAD and Acute coronary syndrome (ACS) groups, and between CAD patients with low and high SYNTAX scores (SSs). The 1-year cumulative rate of major adverse cardiac events (MACEs) was also compared among ACS patients by Gal-3 levels. Results Serum Gal-3 was significantly higher in the CAD group than in the non-CAD group 3.89 (0.16–63.67) vs. 2.07 (0.23–9.38) ng/ml, P < 0.001. Furthermore, serum Gal-3 was significantly higher in the non-ST-segment elevation ACS (NSTE-ACS) group than that in the stable CAD group, 4.72 (1.0–16.14) vs. 2.23 (0.65–23.8) ng/ml, P = 0.04 and higher in the ST-segment elevation myocardial infarction (STEMI) group than that in the stable CAD group 7.87 (0.59–63.67) vs. 2.23 (0.65–23.8) ng/ml, P < 0.001. Serum Gal-3 level was an independent predictor of ACS compared with stable CAD group (OR = 1.131, 95% CI: 1.051–1.217, P = 0.001) as well as high SS (OR = 1.030, 95% CI: 1.021–1.047, P = 0.038) after adjust other confounding risk factors. Acute coronary syndrome patients with Gal-3 levels above the median (gal-3 = 4.78 ng/ml) showed a higher cumulative MACE rate than those with Gal-3 levels below the median. After adjusting other confounding risk factors, Gal-3 remained an independent risk factor for the cumulative rate of MACEs in ACS patients (6% higher rate of MACEs incidence per 1 ng/ml increment of Gal-3). Conclusion Galectin-3 correlated with the presence of CAD as well as coronary stability and complexity. Galectin-3 may be valuable in predicting mid-term prognosis in ACS patients.
Collapse
Affiliation(s)
- Mingxing Li
- Division of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Kai Guo
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Xuansheng Huang
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Li Feng
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Yong Yuan
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Jiewen Li
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Yi Lao
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Zhigang Guo
- Division of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Zhigang Guo
| |
Collapse
|
46
|
Ivashenka A, Wunder C, Chambon V, Dransart E, Johannes L, Shafaq-Zadah M. Transcytosis of Galectin-3 in Mouse Intestine. Methods Mol Biol 2022; 2442:367-390. [PMID: 35320536 DOI: 10.1007/978-1-0716-2055-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The GlycoLipid-Lectin (GL-Lect) hypothesis provides a conceptual framework to explain how endocytic pits are built in processes of clathrin-independent endocytosis. According to this hypothesis, oligomeric cellular or pathogenic lectins interact with glycosylated plasma membrane lipids in a way such as to drive the formation of tubular endocytic pits that then detach to generate clathrin-independent endocytic carriers for the cellular uptake of cellular or pathogenic products. This process operates in a complementary manner to the conventional clathrin pathway for biological function linked to cell polarity. Up to date, the premises of the GL-Lect hypothesis have been based on model membrane and cell culture experiments. It has therefore become urgent to extend its exploration to complex organisms. In the current protocol, we describe methods to study the endocytosis and transcytosis of a key driver of the GL-Lect mechanism, the cellular galectin-3, and of one of its cargoes, lactotransferrin, in enterocytes of the intact jejunum of mice. In a step-by-step manner, we present the generation of fluorescent endocytic ligands, tissue preparation for cellular uptake measurements, binding and internalization assays, tissue fixation and preparation for sectioning, light and electron microscopical observations, and quantification of data by image processing. Pitfalls are discussed to optimize the chances of success with the described methods.
Collapse
Affiliation(s)
- Alena Ivashenka
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Valerie Chambon
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France.
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France.
| |
Collapse
|
47
|
Cerri DG, Rodrigues LC, Fermino ML, Papoti M, Cummings RD, Stowell SR, Dias-Baruffi M. Investigation of Galectins in Frozen Tissue and Mammalian Cell Culture Using Confocal Miccroscopy. Methods Mol Biol 2022; 2442:289-306. [PMID: 35320532 DOI: 10.1007/978-1-0716-2055-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Galectins are multifunctional glycan-binding proteins present in various tissues that participate in multiple physiological and pathological processes and are considered as not only biomarkers of human diseases but also molecular targets for treating cancer and inflammatory illnesses in many organs. In the glycobiology field, it is crucial to determine the pattern of galectin expression and location in cells and tissues. Confocal microscopy is a powerful imaging technology that represents a unique approach to investigate the expression and location of biomolecules in various tissues and cells. The confocal microscope acquires images of the specimen through the reflected or fluorescent light from the objective's focal plane, using laser light focused on a small spot inside the tissue or cell. This technique provides high-resolution and high-contrast images without artifacts generated by conventional microscopy and enables reconstruction of virtual tridimensional images by acquiring multiple sections from several focal planes, which makes it possible to obtain the precise spatial location of any cellular structure or molecule. Furthermore, confocal microscopy is a non-invasive tissue imaging strategy used in clinical practices. We describe herein the immunofluorescence confocal method for examining galectins in frozen tissue sections and mammalian cell culture.
Collapse
Affiliation(s)
- Daniel Giuliano Cerri
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacênuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Lilian Cataldi Rodrigues
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacênuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Marise Lopes Fermino
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacênuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Marcelo Papoti
- Escola de Educação Física e Esporte de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Richard D Cummings
- Department of Surgery, National Center for Functional Glycomics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sean R Stowell
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacênuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.
| |
Collapse
|
48
|
Bänfer S, Kutscher S, Jacob R. Examination of Galectin-3 Recruitment into Multivesicular Bodies for Exosomal Secretion. Methods Mol Biol 2022; 2442:413-424. [PMID: 35320538 DOI: 10.1007/978-1-0716-2055-7_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells use unconventional secretion to deliver the β-galactoside binding lectin galectin-3 from the cell interior into the extracellular milieu. This process starts with galectin-3 recruitment into intraluminal vesicles (ILVs), which are later released at the plasma membrane as exosomes. Electron microscopy is utilized to determine the location of GFP-tagged galectin-3 in pelleted exosomes. We also describe how these vesicles are harvested from cell culture media to determine their composition. The fluorescent protein GFP was fused with the exosomal sorting motif of galectin-3 to direct GFP into exosomes. Recruitment of this fusion construct into the lumen of exosomes can be assessed by proteinase K accessibility analysis.
Collapse
Affiliation(s)
- Sebastian Bänfer
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany.
| | - Sophie Kutscher
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
49
|
Method for Identifying Galectin Ligands on Lymphocyte Membrane Glycoproteins. Methods Mol Biol 2022; 2442:215-232. [PMID: 35320529 PMCID: PMC10174696 DOI: 10.1007/978-1-0716-2055-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glycosylation is one of the most common protein posttranslational modifications. Most human lymphocyte membrane receptors are modified by diverse glycan structures, and functional studies have indicated that a family of glycan-binding proteins, galectins, can significantly modulate lymphocyte development and function by interacting with these glycans. Several galectins have a varying degree of affinity for the N-acetyllactosamine (LacNAc) disaccharide, and some critical lymphocyte receptors can be modified by glycan structures carrying this motif. However, the site-specific glycan composition on primary lymphocyte membrane receptors in healthy individuals is largely limited. The main reason for the limitation is low abundance of available material from a single donor and compositional heterogeneity in glycan structures that can potentially modify a protein. Donor-dependent variability in N-glycan structures on CD16a isolated from primary NK cells of healthy human donors was recently reported. NK cell CD16a is glycosylated at five N-glycosylation sites, and two of the five sites are modified, almost exclusively, by N-glycans with multiple LacNAc repeats which can serve as ligands for endogenous galectins. Thus, the protocol described in this section can be utilized to identify galectin ligands at specific glycosylation sites of endogenous membrane receptor from circulating primary human lymphocytes.
Collapse
|
50
|
Ozaki H, Asano T, Tanaka HN, Komura N, Ando H, Ishida H, Imamura A. Blockwise synthesis of polylactosamine fragments and keratan sulfate oligosaccharides comprised of dimeric Galβ(1 → 4)GlcNAc6Sβ. Carbohydr Res 2022; 512:108502. [DOI: 10.1016/j.carres.2022.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/02/2022]
|