1
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
2
|
Bahia MS, Khazanov N, Zhou Q, Yang Z, Wang C, Hong JS, Rab A, Sorscher EJ, Brouillette CG, Hunt JF, Senderowitz H. Stability Prediction for Mutations in the Cytosolic Domains of Cystic Fibrosis Transmembrane Conductance Regulator. J Chem Inf Model 2021; 61:1762-1777. [PMID: 33720715 PMCID: PMC10230551 DOI: 10.1021/acs.jcim.0c01207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cystic Fibrosis (CF) is caused by mutations to the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel. CFTR is composed of two membrane spanning domains, two cytosolic nucleotide-binding domains (NBD1 and NBD2) and a largely unstructured R-domain. Multiple CF-causing mutations reside in the NBDs and some are known to compromise the stability of these domains. The ability to predict the effect of mutations on the stability of the cytosolic domains of CFTR and to shed light on the mechanisms by which they exert their effect is therefore important in CF research. With this in mind, we have predicted the effect on domain stability of 59 mutations in NBD1 and NBD2 using 15 different algorithms and evaluated their performances via comparison to experimental data using several metrics including the correct classification rate (CCR), and the squared Pearson correlation (R2) and Spearman's correlation (ρ) calculated between the experimental ΔTm values and the computationally predicted ΔΔG values. Overall, the best results were obtained with FoldX and Rosetta. For NBD1 (35 mutations), FoldX provided R2 and ρ values of 0.64 and -0.71, respectively, with an 86% correct classification rate (CCR). For NBD2 (24 mutations), FoldX R2, ρ, and CCR were 0.51, -0.73, and 75%, respectively. Application of the Rosetta high-resolution protocol (Rosetta_hrp) to NBD1 yielded R2, ρ, and CCR of 0.64, -0.75, and 69%, respectively, and for NBD2 yielded R2, ρ, and CCR of 0.29, -0.27, and 50%, respectively. The corresponding numbers for the Rosetta's low-resolution protocol (Rosetta_lrp) were R2 = 0.47, ρ = -0.69, and CCR = 69% for NBD1 and R2 = 0.27, ρ = -0.24, and CCR = 63% for NBD2. For NBD1, both algorithms suggest that destabilizing mutations suffer from destabilizing vdW clashes, whereas stabilizing mutations benefit from favorable H-bond interactions. Two triple consensus approaches based on FoldX, Rosetta_lpr, and Rosetta_hpr were attempted using either "majority-voting" or "all-voting". The all-voting consensus outperformed the individual predictors, albeit on a smaller data set. In summary, our results suggest that the effect of mutations on the stability of CFTR's NBDs could be largely predicted. Since NBDs are common to all ABC transporters, these results may find use in predicting the effect and mechanism of the action of multiple disease-causing mutations in other proteins.
Collapse
Affiliation(s)
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Qingxian Zhou
- School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhengrong Yang
- School of Medicine, Division of Hematology & Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chi Wang
- 702 Fairchild Center, MC3423, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Jeong S. Hong
- Department of Paediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andras Rab
- Department of Paediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric J Sorscher
- Department of Paediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christie G. Brouillette
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John F. Hunt
- 702 Fairchild Center, MC3423, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
3
|
Sabusap CM, Joshi D, Simhaev L, Oliver KE, Senderowitz H, van Willigen M, Braakman I, Rab A, Sorscher EJ, Hong JS. The CFTR P67L variant reveals a key role for N-terminal lasso helices in channel folding, maturation, and pharmacologic rescue. J Biol Chem 2021; 296:100598. [PMID: 33781744 PMCID: PMC8102917 DOI: 10.1016/j.jbc.2021.100598] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Patients with cystic fibrosis (CF) harboring the P67L variant in the cystic fibrosis transmembrane conductance regulator (CFTR) often exhibit a typical CF phenotype, including severe respiratory compromise. This rare mutation (reported in <300 patients worldwide) responds robustly to CFTR correctors, such as lumacaftor and tezacaftor, with rescue in model systems that far exceed what can be achieved for the archetypical CFTR mutant F508del. However, the specific molecular consequences of the P67L mutation are poorly characterized. In this study, we conducted biochemical measurements following low-temperature growth and/or intragenic suppression, which suggest a mechanism underlying P67L that (1) shares key pathogenic features with F508del, including off-pathway (non-native) folding intermediates, (2) is linked to folding stability of nucleotide-binding domains 1 and 2, and (3) demonstrates pharmacologic rescue that requires domains in the carboxyl half of the protein. We also investigated the "lasso" helices 1 and 2, which occur immediately upstream of P67. Based on limited proteolysis, pulse chase, and molecular dynamics analysis of full-length CFTR and a series of deletion constructs, we argue that P67L and other maturational processing (class 2) defects impair the integrity of the lasso motif and confer misfolding of downstream domains. Thus, amino-terminal missense variants elicit a conformational change throughout CFTR that abrogates maturation while providing a robust substrate for pharmacologic repair.
Collapse
Affiliation(s)
- Carleen Mae Sabusap
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Disha Joshi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Luba Simhaev
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Kathryn E Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Marcel van Willigen
- Department of Cellular Protein Chemistry, Utrecht University, Utrecht, Netherlands
| | - Ineke Braakman
- Department of Cellular Protein Chemistry, Utrecht University, Utrecht, Netherlands
| | - Andras Rab
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Jeong S Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Farkas B, Tordai H, Padányi R, Tordai A, Gera J, Paragi G, Hegedűs T. Discovering the chloride pathway in the CFTR channel. Cell Mol Life Sci 2020; 77:765-778. [PMID: 31327045 PMCID: PMC7039865 DOI: 10.1007/s00018-019-03211-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF), a lethal monogenic disease, is caused by pathogenic variants of the CFTR chloride channel. The majority of CF mutations affect protein folding and stability leading overall to diminished apical anion conductance of epithelial cells. The recently published cryo-EM structures of full-length human and zebrafish CFTR provide a good model to gain insight into structure-function relationships of CFTR variants. Although, some of the structures were determined in the phosphorylated and ATP-bound active state, none of the static structures showed an open pathway for chloride permeation. Therefore, we performed molecular dynamics simulations to generate a conformational ensemble of the protein and used channel detecting algorithms to identify conformations with an opened channel. Our simulations indicate a main intracellular entry at TM4/6, a secondary pore at TM10/12, and a bottleneck region involving numerous amino acids from TM1, TM6, and TM12 in accordance with experiments. Since chloride ions entered the pathway in our equilibrium simulations, but did not traverse the bottleneck region, we performed metadynamics simulations, which revealed two possible exits. One of the chloride ions exits includes hydrophobic lipid tails that may explain the lipid-dependency of CFTR function. In summary, our in silico study provides a detailed description of a potential chloride channel pathway based on a recent cryo-EM structure and may help to understand the gating of the CFTR chloride channel, thus contributing to novel strategies to rescue dysfunctional mutants.
Collapse
Affiliation(s)
- Bianka Farkas
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Rita Padányi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Tordai
- Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - János Gera
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic System Research Group, Hungarian Academy of Sciences, Szeged, Hungary
- Institute of Physics, University of Pécs, Pecs, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
5
|
Negoda A, Hogan MS, Cowley EA, Linsdell P. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore. Cell Mol Life Sci 2019; 76:2411-2423. [PMID: 30758641 PMCID: PMC11105405 DOI: 10.1007/s00018-019-03043-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/20/2022]
Abstract
Our molecular understanding of the cystic fibrosis transmembrane conductance regulator (CFTR)-the chloride channel that is mutated in cystic fibrosis-has been greatly enhanced by a number of recent atomic-level structures of the protein in different conformations. One surprising aspect of these structures was the finding that the eighth of CFTR's 12 membrane-spanning segments (TM8) appeared close to the channel pore. Although functional evidence supports a role for other TMs in forming the pore, such a role for TM8 has not previously been reported. Here, we use patch-clamp recording to investigate the functional role of TM8. Using substituted cysteine accessibility mutagenesis, we find that three amino acid side-chains in TM8 (Y913, Y914, and Y917) are exposed to the extracellular, but not the intracellular, solution. Cysteine cross-linking experiments suggest that Y914 and Y917 are in close proximity to L102 (TM1) and F337 (TM6), respectively, suggesting that TM8 contributes to the narrow selectivity filter region of the pore. Different amino acid substitutions suggest that Y914, and to a lesser extent Y917, play important roles in controlling anion flux through the open channel. Furthermore, substitutions that reduce side-chain volume at Y917 severely affect channel gating, resulting in a channel with an extremely unstable open state. Our results suggest that pore-lining TM8 is among the most important TMs controlling the permeation phenotype of the CFTR channel, and also that movement of TM8 may be critically involved in channel gating.
Collapse
Affiliation(s)
- Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Mairin S Hogan
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Elizabeth A Cowley
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
6
|
Functional characterization reveals that zebrafish CFTR prefers to occupy closed channel conformations. PLoS One 2018; 13:e0209862. [PMID: 30596737 PMCID: PMC6312236 DOI: 10.1371/journal.pone.0209862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), the culprit behind the genetic disease cystic fibrosis (CF), is a phosphorylation-activated, but ATP-gated anion channel. Studies of human CFTR over the past two decades have provided an in-depth understanding of how CFTR works as an ion channel despite its structural resemblance to ABC transporters. Recently-solved cryo-EM structures of unphosphorylated human and zebrafish CFTR (hCFTR and zCFTR), as well as phosphorylated ATP-bound zebrafish and human CFTR offer an unprecedented opportunity to understand CFTR's function at a molecular level. Interestingly, despite millions of years of phylogenetic distance between human and zebrafish, the structures of zCFTR and hCFTR exhibit remarkable similarities. In the current study, we characterized biophysical and pharmacological properties of zCFTR with the patch-clamp technique, and showed surprisingly very different functional properties between these two orthologs. First, while hCFTR has a single-channel conductance of 8.4 pS with a linear I-V curve, zCFTR shows an inwardly-rectified I-V relationship with a single-channel conductance of ~3.5 pS. Second, single-channel gating behaviors of phosphorylated zCFTR are very different from those of hCFTR, featuring a very low open probability Po (0.03 ± 0.02, vs. ~0.50 for hCFTR) with exceedingly long closed events and brief openings. In addition, unlike hCFTR where each open burst is clearly defined with rare short-lived flickery closures, the open bursts of zCFTR are not easily resolved. Third, although abolishing ATP hydrolysis by replacing the catalytic glutamate with glutamine (i.e., E1372Q) drastically prolongs the open bursts defined by the macroscopic relaxation analysis in zCFTR, the Po within a "locked-open" burst of E1372Q-zCFTR is only ~ 0.35 (vs. Po > 0.94 in E1371Q-hCFTR). Collectively, our data not only provide a reasonable explanation for the unexpected closed-state structure of phosphorylated E1372Q-zCFTR with a canonical ATP-bound dimer of the nucleotide binding domains (NBDs), but also implicate significant structural and functional differences between these two evolutionarily distant orthologs.
Collapse
|
7
|
Fay JF, Aleksandrov LA, Jensen TJ, Cui LL, Kousouros JN, He L, Aleksandrov AA, Gingerich DS, Riordan JR, Chen JZ. Cryo-EM Visualization of an Active High Open Probability CFTR Anion Channel. Biochemistry 2018; 57:6234-6246. [PMID: 30281975 DOI: 10.1021/acs.biochem.8b00763] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, crucial to epithelial salt and water homeostasis, and defective due to mutations in its gene in patients with cystic fibrosis, is a unique member of the large family of ATP-binding cassette transport proteins. Regulation of CFTR channel activity is stringently controlled by phosphorylation and nucleotide binding. Structural changes that underlie transitions between active and inactive functional states are not yet fully understood. Indeed the first 3D structures of dephosphorylated, ATP-free, and phosphorylated ATP-bound states were only recently reported. Here we have determined the structure of inactive and active states of a thermally stabilized CFTR, the latter with a very high channel open probability, confirmed after reconstitution into proteoliposomes. These structures, obtained at nominal resolution of 4.3 and 6.6 Å, reveal a unique repositioning of the transmembrane helices and regulatory domain density that provide insights into the structural transition between active and inactive functional states of CFTR. Moreover, we observe an extracellular vestibule that may provide anion access to the pore due to the conformation of transmembrane helices 7 and 8 that differs from the previous orthologue CFTR structures. In conclusion, our work contributes detailed structural information on an active, open state of the CFTR anion channel.
Collapse
Affiliation(s)
- Jonathan F Fay
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Luba A Aleksandrov
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Timothy J Jensen
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Liying L Cui
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Joseph N Kousouros
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Lihua He
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Andrei A Aleksandrov
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - Drew S Gingerich
- Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - John R Riordan
- University of North Carolina , Chapel Hill , North Carolina 27515 , United States
| | - James Z Chen
- Oregon Health & Science University , Portland , Oregon 97239 , United States
| |
Collapse
|
8
|
Mei-Zahav M, Stafler P, Senderowitz H, Bentur L, Livnat G, Shteinberg M, Orenstein N, Bazak L, Prais D, Levine H, Gur M, Khazanov N, Simhaev L, Eliyahu H, Cohen M, Wilschanski M, Blau H, Mussaffi H. The Q359K/T360K mutation causes cystic fibrosis in Georgian Jews. J Cyst Fibros 2018; 17:e41-e45. [PMID: 30033373 DOI: 10.1016/j.jcf.2018.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The Q359K/T360K mutation, described in Jewish CF patients of Georgian decent, is of questionable clinical significance. METHODS Clinical records of patients with the Q359K/T360K mutation from three CF centers were studied for phenotypic expression and putative mechanism of dysfunction. Computer models of mutant CFTR were constructed. RESULTS Nine patients (4 homozygous) of Georgian Jewish origin were included. Age at diagnosis was 9.4 (0.25-38.2) years, median (range). Sweat chloride was 106 ± 13 meq/L, mean ± SD. Nasal Potential Difference performed in three, was abnormal. All had pulmonary symptoms since early childhood and bronchiectasis. Median FEV1 was 88 (40-121)%. Five had chronic mucoid P. aeruginosa. Homozygous patients were pancreatic insufficient. Enzyme supplementation was initiated at 3.8 (1-14.7) years, median (range). Structural models hint at possible interference of this mutation with transmembrane chloride transport. CONCLUSION In our cohort, the Q359K/T360K mutation resulted in a severe CF phenotype, although with residual early CFTR function. The CFTR2 database should consider defining this mutation as CF-causing.
Collapse
Affiliation(s)
- M Mei-Zahav
- Kathy and Lee Graub Cystic Fibrosis Center and Pulmonary Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - P Stafler
- Kathy and Lee Graub Cystic Fibrosis Center and Pulmonary Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - L Bentur
- Pediatric Pulmonary Institute, Ruth Rappaport Children's Hospital, Rambam health Care Campus, Israel; Rappaport Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel
| | - G Livnat
- Rappaport Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel; Cystic Fibrosis Center, Carmel Hospital, Israel
| | - M Shteinberg
- Rappaport Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel; Cystic Fibrosis Center, Carmel Hospital, Israel
| | - N Orenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - L Bazak
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel
| | - D Prais
- Kathy and Lee Graub Cystic Fibrosis Center and Pulmonary Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H Levine
- Kathy and Lee Graub Cystic Fibrosis Center and Pulmonary Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Gur
- Pediatric Pulmonary Institute, Ruth Rappaport Children's Hospital, Rambam health Care Campus, Israel
| | - N Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - L Simhaev
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - H Eliyahu
- Electrophysiology Laboratory, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - M Cohen
- Electrophysiology Laboratory, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - M Wilschanski
- Electrophysiology Laboratory, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - H Blau
- Kathy and Lee Graub Cystic Fibrosis Center and Pulmonary Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H Mussaffi
- Kathy and Lee Graub Cystic Fibrosis Center and Pulmonary Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI, Destefano S. Structural mechanisms of CFTR function and dysfunction. J Gen Physiol 2018; 150:539-570. [PMID: 29581173 PMCID: PMC5881446 DOI: 10.1085/jgp.201711946] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Hwang et al. integrate new structural insights with prior functional studies to reveal the functional anatomy of CFTR chloride channels. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) chloride channel plays a critical role in regulating transepithelial movement of water and electrolyte in exocrine tissues. Malfunction of the channel because of mutations of the cftr gene results in CF, the most prevalent lethal genetic disease among Caucasians. Recently, the publication of atomic structures of CFTR in two distinct conformations provides, for the first time, a clear overview of the protein. However, given the highly dynamic nature of the interactions among CFTR’s various domains, better understanding of the functional significance of these structures requires an integration of these new structural insights with previously established biochemical/biophysical studies, which is the goal of this review.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Jiunn-Tyng Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
| | - Jingyao Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Biological Engineering, University of Missouri, Columbia, MO
| | - Ying-Chun Yu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Han-I Yeh
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Samantha Destefano
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
10
|
Gao X, Hwang TC. Spatial positioning of CFTR's pore-lining residues affirms an asymmetrical contribution of transmembrane segments to the anion permeation pathway. J Gen Physiol 2017; 147:407-22. [PMID: 27114613 PMCID: PMC4845689 DOI: 10.1085/jgp.201511557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022] Open
Abstract
CFTR is a chloride channel and a member of the ABC transporter superfamily; however, its structure is unknown. By making a series of cysteine mutants, Gao and Hwang show that CFTR lacks the twofold pseudo-symmetry seen in the permeation pathway of bone fide ABC transporters. The structural composition of CFTR’s anion permeation pathway has been proposed to consist of a short narrow region, flanked by two wide inner and outer vestibules, based on systematic cysteine scanning studies using thiol-reactive probes of various sizes. Although these studies identified several of the transmembrane segments (TMs) as pore lining, the exact spatial relationship between pore-lining elements remains under debate. Here, we introduce cysteine pairs in several key pore-lining positions in TM1, 6, and 12 and use Cd2+ as a probe to gauge the spatial relationship of these residues within the pore. We find that inhibition of single cysteine CFTR mutants, such as 102C in TM1 or 341C in TM6, by intracellular Cd2+ is readily reversible upon removal of the metal ion. However, the inhibitory effect of Cd2+ on the double mutant 102C/341C requires the chelating agent dithiothreitol (DTT) for rapid reversal, indicating that 102C and 341C are close enough to the internal edge of the narrow region to coordinate one Cd2+ ion between them. We observe similar effects of extracellular Cd2+ on TM1/TM6 cysteine pairs 106C/337C, 107C/337C, and 107C/338C, corroborating the idea that these paired residues are physically close to each other at the external edge of the narrow region. Although these data paint a picture of relatively symmetrical contributions to CFTR’s pore by TM1 and TM6, introducing cysteine pairs between TM6 and TM12 (348C/1141C, 348C/1144C, and 348C/1145C) or between TM1 and TM12 (95C/1141C) yields results that contest the long-held principle of twofold pseudo-symmetry in the assembly of ABC transporters’ TMs. Collectively, these findings not only advance our current understanding of the architecture of CFTR’s pore, but could serve as a guide for refining computational models of CFTR by imposing physical constraints among pore-lining residues.
Collapse
Affiliation(s)
- Xiaolong Gao
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211 Department of Biological Engineering, University of Missouri, Columbia, MO 65211
| | - Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211 Department of Biological Engineering, University of Missouri, Columbia, MO 65211 Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
11
|
Callebaut I, Chong PA, Forman-Kay JD. CFTR structure. J Cyst Fibros 2017; 17:S5-S8. [PMID: 28866450 DOI: 10.1016/j.jcf.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/06/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023]
Abstract
Structural studies of the cystic fibrosis transmembrane conductance regulator (CFTR) protein are critical to understand molecular mechanisms involved in gating of the apical anion channel as well as the way in which the gating is regulated, especially by the regulatory region (R region). They are also instrumental for understanding the root cause of cystic fibrosis (CF) and supporting the development of therapeutic strategies. In this short review, we summarize recent progress in the knowledge of the CFTR 3D structure and briefly discuss implications for CF drug development.
Collapse
Affiliation(s)
- Isabelle Callebaut
- IMPMC, Sorbonne Universités - UPMC Université Paris 06, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, Paris, France.
| | - P Andrew Chong
- Molecular Medicine, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Julie D Forman-Kay
- Molecular Medicine, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto M5G 1X8, Canada
| |
Collapse
|
12
|
Simhaev L, McCarty NA, Ford RC, Senderowitz H. Molecular Dynamics Flexible Fitting Simulations Identify New Models of the Closed State of the Cystic Fibrosis Transmembrane Conductance Regulator Protein. J Chem Inf Model 2017; 57:1932-1946. [DOI: 10.1021/acs.jcim.7b00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luba Simhaev
- Department
of Chemistry, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Nael A. McCarty
- Division
of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department
of Pediatrics, Emory + Children’s Center for Cystic Fibrosis
and Airways Disease Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, Georgia 30322, United States
| | - Robert C. Ford
- Faculty
of Biology Medicine and Health, University of Manchester, Oxford
Road, Manchester, M13 9PL, U.K
| | | |
Collapse
|
13
|
Das J, Aleksandrov AA, Cui L, He L, Riordan JR, Dokholyan NV. Transmembrane helical interactions in the CFTR channel pore. PLoS Comput Biol 2017. [PMID: 28640808 PMCID: PMC5501672 DOI: 10.1371/journal.pcbi.1005594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene affect CFTR protein biogenesis or its function as a chloride channel, resulting in dysregulation of epithelial fluid transport in the lung, pancreas and other organs in cystic fibrosis (CF). Development of pharmaceutical strategies to treat CF requires understanding of the mechanisms underlying channel function. However, incomplete 3D structural information on the unique ABC ion channel, CFTR, hinders elucidation of its functional mechanism and correction of cystic fibrosis causing mutants. Several CFTR homology models have been developed using bacterial ABC transporters as templates but these have low sequence similarity to CFTR and are not ion channels. Here, we refine an earlier model in an outward (OWF) and develop an inward (IWF) facing model employing an integrated experimental-molecular dynamics simulation (200 ns) approach. Our IWF structure agrees well with a recently solved cryo-EM structure of a CFTR IWF state. We utilize cysteine cross-linking to verify positions and orientations of residues within trans-membrane helices (TMHs) of the OWF conformation and to reconstruct a physiologically relevant pore structure. Comparison of pore profiles of the two conformations reveal a radius sufficient to permit passage of hydrated Cl- ions in the OWF but not the IWF model. To identify structural determinants that distinguish the two conformations and possible rearrangements of TMHs within them responsible for channel gating, we perform cross-linking by bifunctional reagents of multiple predicted pairs of cysteines in TMH 6 and 12 and 6 and 9. To determine whether the effects of cross-linking on gating observed are the result of switching of the channel from open to close state, we also treat the same residue pairs with monofunctional reagents in separate experiments. Both types of reagents prevent ion currents indicating that pore blockage is primarily responsible.
Collapse
Affiliation(s)
- Jhuma Das
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Andrei A. Aleksandrov
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Liying Cui
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lihua He
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John R. Riordan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JRR); (NVD)
| | - Nikolay V. Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Cystic Fibrosis Treatment and Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail: (JRR); (NVD)
| |
Collapse
|
14
|
Moran O. The biophysics, biochemistry and physiology of CFTR. Cell Mol Life Sci 2017; 74:1-2. [PMID: 27704173 PMCID: PMC11107758 DOI: 10.1007/s00018-016-2384-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Oscar Moran
- Istituto di Biofisica, CNR, Via De Marini, 6, 16149, Genoa, Italy.
| |
Collapse
|
15
|
Wang G, Linsley R, Norimatsu Y. External Zn2+binding to cysteine-substituted cystic fibrosis transmembrane conductance regulator constructs regulates channel gating and curcumin potentiation. FEBS J 2016; 283:2458-75. [DOI: 10.1111/febs.13752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 05/02/2016] [Accepted: 05/11/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Guangyu Wang
- Department of Physiology and Pharmacology; Oregon Health & Sciences University; Portland OR USA
- Department of Drug Research and Development; Institute of Biophysical Medico-chemistry; Reno NV USA
- Department of Physiology and Membrane Biology; University of California School of Medicine; Davis CA USA
| | | | - Yohei Norimatsu
- Department of Physiology; Kirksville College of Osteopathic Medicine; A.T. Still University; Kirksville MO USA
| |
Collapse
|
16
|
El Hiani Y, Negoda A, Linsdell P. Cytoplasmic pathway followed by chloride ions to enter the CFTR channel pore. Cell Mol Life Sci 2016; 73:1917-25. [PMID: 26659082 PMCID: PMC11108287 DOI: 10.1007/s00018-015-2113-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/18/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022]
Abstract
Most ATP-binding cassette (ABC) proteins function as ATP-dependent membrane pumps. One exception is the cystic fibrosis transmembrane conductance regulator (CFTR), an ABC protein that functions as a Cl(-) ion channel. As such, the CFTR protein must form a continuous pathway for the movement of Cl(-) ions from the cytoplasm to the extracellular solution when in its open channel state. Extensive functional investigations have characterized most parts of this Cl(-) permeation pathway. However, one region remains unexplored-the pathway connecting the cytoplasm to the membrane-spanning pore. We used patch clamp recording and extensive substituted cysteine accessibility mutagenesis to identify amino acid side-chains in cytoplasmic regions of CFTR that lie close to the pathway taken by Cl(-) ions as they pass from the cytoplasm through this pathway. Our results suggest that Cl(-) ions enter the permeation pathway via a single lateral tunnel formed by the cytoplasmic parts of the protein, and then follow a fairly direct central pathway towards the membrane-spanning parts of the protein. However, this pathway is not lined continuously by any particular part of the protein; instead, the contributions of different cytoplasmic regions of the protein appear to change as the permeation pathway approaches the membrane, which appears to reflect the ways in which different cytoplasmic regions of the protein are oriented towards its central axis. Our results allow us to define for the first time the complete Cl(-) permeation pathway in CFTR, from the cytoplasm to the extracellular solution.
Collapse
Affiliation(s)
- Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Paul Linsdell
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
17
|
Linsdell P. Metal bridges to probe membrane ion channel structure and function. Biomol Concepts 2016; 6:191-203. [PMID: 26103632 DOI: 10.1515/bmc-2015-0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/29/2015] [Indexed: 11/15/2022] Open
Abstract
Ion channels are integral membrane proteins that undergo important conformational changes as they open and close to control transmembrane flux of different ions. The molecular underpinnings of these dynamic conformational rearrangements are difficult to ascertain using current structural methods. Several functional approaches have been used to understand two- and three-dimensional dynamic structures of ion channels, based on the reactivity of the cysteine side-chain. Two-dimensional structural rearrangements, such as changes in the accessibility of different parts of the channel protein to the bulk solution on either side of the membrane, are used to define movements within the permeation pathway, such as those that open and close ion channel gates. Three-dimensional rearrangements – in which two different parts of the channel protein change their proximity during conformational changes – are probed by cross-linking or bridging together two cysteine side-chains. Particularly useful in this regard are so-called metal bridges formed when two or more cysteine side-chains form a high-affinity binding site for metal ions such as Cd2+ or Zn2+. This review describes the use of these different techniques for the study of ion channel dynamic structure and function, including a comprehensive review of the different kinds of conformational rearrangements that have been studied in different channel types via the identification of intra-molecular metal bridges. Factors that influence the affinities and conformational sensitivities of these metal bridges, as well as the kinds of structural inferences that can be drawn from these studies, are also discussed.
Collapse
|
18
|
Liu H, Li D, Li Y, Hou T. Atomistic molecular dynamics simulations of ATP-binding cassette transporters. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hui Liu
- College of Pharmaceutical Sciences; Zhejiang University; Hangzhou China
| | - Dan Li
- College of Pharmaceutical Sciences; Zhejiang University; Hangzhou China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou China
| | - Tingjun Hou
- College of Pharmaceutical Sciences; Zhejiang University; Hangzhou China
| |
Collapse
|
19
|
Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:13-32. [PMID: 27311317 DOI: 10.1007/5584_2016_33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial cell anion channel. Potentiator drugs used in the treatment of cystic fibrosis act on the channel to increase overall channel function, by increasing the stability of its open state and/or decreasing the stability of its closed state. The structure of the channel in either the open state or the closed state is not currently known. However, changes in the conformation of the protein as it transitions between these two states have been studied using functional investigation and molecular modeling techniques. This review summarizes our current understanding of the architecture of the transmembrane channel pore that controls the movement of chloride and other small anions, both in the open state and in the closed state. Evidence for different kinds of changes in the conformation of the pore as it transitions between open and closed states is described, as well as the mechanisms by which these conformational changes might be controlled to regulate normal channel gating. The ways that key conformational changes might be targeted by small compounds to influence overall CFTR activity are also discussed. Understanding the changes in pore structure that might be manipulated by such small compounds is key to the development of novel therapeutic strategies for the treatment of cystic fibrosis.
Collapse
|
20
|
Wei S, Roessler BC, Icyuz M, Chauvet S, Tao B, Hartman JL, Kirk KL. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. FASEB J 2015; 30:1247-62. [PMID: 26606940 DOI: 10.1096/fj.15-278382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
The ABCC transporter subfamily includes pumps, the long and short multidrug resistance proteins (MRPs), and an ATP-gated anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). We show that despite their thermodynamic differences, these ABCC transporter subtypes use broadly similar mechanisms to couple their extracellular gates to the ATP occupancies of their cytosolic nucleotide binding domains. A conserved extracellular phenylalanine at this gate was a prime location for producing gain of function (GOF) mutants of a long MRP in yeast (Ycf1p cadmium transporter), a short yeast MRP (Yor1p oligomycin exporter), and human CFTR channels. Extracellular gate mutations rescued ATP binding mutants of the yeast MRPs and CFTR by increasing ATP sensitivity. Control ATPase-defective MRP mutants could not be rescued by this mechanism. A CFTR double mutant with an extracellular gate mutation plus a cytosolic GOF mutation was highly active (single-channel open probability >0.3) in the absence of ATP and protein kinase A, each normally required for CFTR activity. We conclude that all 3 ABCC transporter subtypes use similar mechanisms to couple their extracellular gates to ATP occupancy, and highly active CFTR channels that bypass defects in ATP binding or phosphorylation can be produced.
Collapse
Affiliation(s)
- Shipeng Wei
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bryan C Roessler
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mert Icyuz
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sylvain Chauvet
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Binli Tao
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John L Hartman
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin L Kirk
- *Department of Cell, Developmental, and Integrative Biology, Department of Genetics, and Department of Neurobiology, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
21
|
Corradi V, Vergani P, Tieleman DP. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS. J Biol Chem 2015; 290:22891-906. [PMID: 26229102 PMCID: PMC4645605 DOI: 10.1074/jbc.m115.665125] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/06/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily. CFTR controls the flow of anions through the apical membrane of epithelia. Dysfunctional CFTR causes the common lethal genetic disease cystic fibrosis. Transitions between open and closed states of CFTR are regulated by ATP binding and hydrolysis on the cytosolic nucleotide binding domains, which are coupled with the transmembrane (TM) domains forming the pathway for anion permeation. Lack of structural data hampers a global understanding of CFTR and thus the development of "rational" approaches directly targeting defective CFTR. In this work, we explored possible conformational states of the CFTR gating cycle by means of homology modeling. As templates, we used structures of homologous ABC transporters, namely TM(287-288), ABC-B10, McjD, and Sav1866. In the light of published experimental results, structural analysis of the transmembrane cavity suggests that the TM(287-288)-based CFTR model could correspond to a commonly occupied closed state, whereas the McjD-based model could represent an open state. The models capture the important role played by Phe-337 as a filter/gating residue and provide structural information on the conformational transition from closed to open channel.
Collapse
Affiliation(s)
- Valentina Corradi
- From the Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | - Paola Vergani
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - D Peter Tieleman
- From the Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| |
Collapse
|
22
|
Zhang J, Hwang TC. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway. Biochemistry 2015; 54:3839-50. [PMID: 26024338 DOI: 10.1021/acs.biochem.5b00427] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous studies have identified several transmembrane segments (TMs), including TM1, TM3, TM6, TM9, TM11, and TM12, as pore-lining segments in cystic fibrosis transmembrane conductance regulator (CFTR), but the role of TM5 in pore construction remains controversial. In this study, we employed substituted cysteine accessibility methodology (SCAM) to screen the entire TM5 defined by the original topology model and its cytoplasmic extension in a Cysless background. We found six positions (A299, R303, N306, S307, F310, and F311) where engineered cysteines react to intracellular 2-sulfonatoethyl methanethiosulfonate (MTSES⁻). Quantification of the modification rate of engineered cysteines in the presence or absence of ATP suggests that these six residues are accessible in both the open and closed states. Whole-cell experiments with external MTSES⁻ identified only two positive positions (L323 and A326), resulting in a segment containing 11 consecutive amino acids, where substituted cysteines respond to neither internal nor external MTSES⁻, a unique feature not seen previously in CFTR's pore-lining segments. The observation that these positions are inaccessible to channel-permeant thiol-specific reagent [Au(CN)₂]⁻ suggests that this segment of TM5 between F311 and L323 is concealed from the pore by other TMs and/or lipid bilayers. In addition, our data support the idea that the positively charged arginine at position 303 poses a pure electrostatic action in determining the single-channel current amplitude of CFTR and the effect of an open-channel blocker glibencalmide. Collectively, we conclude that the cytoplasmic portion of CFTR's TM5 lines the pore. Our functional data are remarkably consistent with predicted structural arrangements of TM5 in some homology models of CFTR.
Collapse
Affiliation(s)
- Jingyao Zhang
- †Department of Biological Engineering, University of Missouri-Columbia, 254 Agricultural Engineering, Columbia, Missouri 65211, United States.,‡Dalton Cardiovascular Research Center, University of Missouri-Columbia, 134 Research Park, Columbia, Missouri 65211, United States
| | - Tzyh-Chang Hwang
- †Department of Biological Engineering, University of Missouri-Columbia, 254 Agricultural Engineering, Columbia, Missouri 65211, United States.,‡Dalton Cardiovascular Research Center, University of Missouri-Columbia, 134 Research Park, Columbia, Missouri 65211, United States.,§Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Medical Sciences Building, Columbia, Missouri 65212, United States
| |
Collapse
|
23
|
Cai Z, Palmai-Pallag T, Khuituan P, Mutolo MJ, Boinot C, Liu B, Scott-Ward TS, Callebaut I, Harris A, Sheppard DN. Impact of the F508del mutation on ovine CFTR, a Cl- channel with enhanced conductance and ATP-dependent gating. J Physiol 2015; 593:2427-46. [PMID: 25763566 DOI: 10.1113/jp270227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Malfunction of the cystic fibrosis transmembrane conductance regulator (CFTR), a gated pathway for chloride movement, causes the common life-shortening genetic disease cystic fibrosis (CF). Towards the development of a sheep model of CF, we have investigated the function of sheep CFTR. We found that sheep CFTR was noticeably more active than human CFTR, while the most common CF mutation, F508del, had reduced impact on sheep CFTR function. Our results demonstrate that subtle changes in protein structure have marked effects on CFTR function and the consequences of the CF mutation F508del. ABSTRACT Cross-species comparative studies are a powerful approach to understanding the epithelial Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR), which is defective in the genetic disease cystic fibrosis (CF). Here, we investigate the single-channel behaviour of ovine CFTR and the impact of the most common CF mutation, F508del-CFTR, using excised inside-out membrane patches from transiently transfected CHO cells. Like human CFTR, ovine CFTR formed a weakly inwardly rectifying Cl(-) channel regulated by PKA-dependent phosphorylation, inhibited by the open-channel blocker glibenclamide. However, for three reasons, ovine CFTR was noticeably more active than human CFTR. First, single-channel conductance was increased. Second, open probability was augmented because the frequency and duration of channel openings were increased. Third, with enhanced affinity and efficacy, ATP more strongly stimulated ovine CFTR channel gating. Consistent with these data, the CFTR modulator phloxine B failed to potentiate ovine CFTR Cl(-) currents. Similar to its impact on human CFTR, the F508del mutation caused a temperature-sensitive folding defect, which disrupted ovine CFTR protein processing and reduced membrane stability. However, the F508del mutation had reduced impact on ovine CFTR channel gating in contrast to its marked effects on human CFTR. We conclude that ovine CFTR forms a regulated Cl(-) channel with enhanced conductance and ATP-dependent channel gating. This phylogenetic analysis of CFTR structure and function demonstrates that subtle changes in structure have pronounced effects on channel function and the consequences of the CF mutation F508del.
Collapse
Affiliation(s)
- Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Timea Palmai-Pallag
- Human Molecular Genetics Program, Lurie Children's Research Center and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA.,Harris Laboratory, formerly at the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Pissared Khuituan
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,Center of Calcium and Bone Research, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Michael J Mutolo
- Human Molecular Genetics Program, Lurie Children's Research Center and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA
| | - Clément Boinot
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS FRE 3511, 86022, Poitiers, France
| | - Beihui Liu
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Toby S Scott-Ward
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Isabelle Callebaut
- IMPMC, Sorbonne Universités - UPMC Univ Paris 06, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, 75005, Paris, France
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60614, USA
| | - David N Sheppard
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
24
|
Mornon JP, Hoffmann B, Jonic S, Lehn P, Callebaut I. Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci 2015; 72:1377-403. [PMID: 25287046 PMCID: PMC11113974 DOI: 10.1007/s00018-014-1749-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
In absence of experimental 3D structures, several homology models, based on ABC exporter 3D structures, have provided significant insights into the molecular mechanisms underlying the function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride channel whose defects are associated with cystic fibrosis (CF). Until now, these models, however, did not furnished much insights into the continuous way that ions could follow from the cytosol to the extracellular milieu in the open form of the channel. Here, we have built a refined model of CFTR, based on the outward-facing Sav1866 experimental 3D structure and integrating the evolutionary and structural information available today. Molecular dynamics simulations revealed significant conformational changes, resulting in a full-open channel, accessible from the cytosol through lateral tunnels displayed in the long intracellular loops (ICLs). At the same time, the region of nucleotide-binding domain 1 in contact with one of the ICLs and carrying amino acid F508, the deletion of which is the most common CF-causing mutation, was found to adopt an alternative but stable position. Then, in a second step, this first stable full-open conformation evolved toward another stable state, in which only a limited displacement of the upper part of the transmembrane helices leads to a closure of the channel, in a conformation very close to that adopted by the Atm1 ABC exporter, in an inward-facing conformation. These models, supported by experimental data, provide significant new insights into the CFTR structure-function relationships and into the possible impact of CF-causing mutations.
Collapse
Affiliation(s)
- Jean-Paul Mornon
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005 Paris Cedex 05, France
| | - Brice Hoffmann
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005 Paris Cedex 05, France
| | - Slavica Jonic
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005 Paris Cedex 05, France
| | - Pierre Lehn
- INSERM U1078, SFR ScInBioS, Université de Bretagne Occidentale, Brest, France
| | - Isabelle Callebaut
- IMPMC, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, IUC, Case 115, 4 Place Jussieu, 75005 Paris Cedex 05, France
| |
Collapse
|
25
|
Belmonte L, Moran O. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study. Biochimie 2015; 111:19-29. [DOI: 10.1016/j.biochi.2015.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/21/2015] [Indexed: 12/20/2022]
|
26
|
Abstract
Experimental and computational studies have painted a picture of the chloride permeation pathway in cystic fibrosis transmembrane conductance regulator (CFTR) as a short narrow tunnel flanked by wider inner and outer vestibules. Although these studies also identified a number of transmembrane segments (TMs) as pore-lining, the exact location of CFTR's gate(s) remains unknown. Here, using a channel-permeant probe, [Au(CN)2](-), we provide evidence that CFTR bears a gate that coincides with the predicted narrow section of the pore defined as residues 338-341 in TM6. Specifically, cysteines introduced cytoplasmic to the narrow region (i.e., positions 344 in TM6 and 1148 in TM12) can be modified by intracellular [Au(CN)2](-) in both open and closed states, corroborating the conclusion that the internal vestibule does not harbor a gate. However, cysteines engineered to positions external to the presumed narrow region (e.g., 334, 335, and 337 in TM6) are all nonreactive toward cytoplasmic [Au(CN)2](-) in the absence of ATP, whereas they can be better accessed by extracellular [Au(CN)2](-) when the open probability is markedly reduced by introducing a second mutation, G1349D. As [Au(CN)2](-) and chloride ions share the same permeation pathway, these results imply a gate is situated between amino acid residues 337 and 344 along TM6, encompassing the very segment that may also serve as the selectivity filter for CFTR. The unique position of a gate in the middle of the ion translocation pathway diverges from those seen in ATP-binding cassette (ABC) transporters and thus distinguishes CFTR from other members of the ABC transporter family.
Collapse
|
27
|
Wang W, Roessler BC, Kirk KL. An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening. J Biol Chem 2014; 289:30364-30378. [PMID: 25190805 DOI: 10.1074/jbc.m114.595710] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The CFTR channel is an essential mediator of electrolyte transport across epithelial tissues. CFTR opening is promoted by ATP binding and dimerization of its two nucleotide binding domains (NBDs). Phosphorylation of its R domain (e.g. by PKA) is also required for channel activity. The CFTR structure is unsolved but homology models of the CFTR closed and open states have been produced based on the crystal structures of evolutionarily related ABC transporters. These models predict the formation of a tetrahelix bundle of intracellular loops (ICLs) during channel opening. Here we provide evidence that residues E267 in ICL2 and K1060 in ICL4 electrostatically interact at the interface of this predicted bundle to promote CFTR opening. Mutations or a thiol modifier that introduced like charges at these two positions substantially inhibited ATP-dependent channel opening. ATP-dependent activity was rescued by introducing a second site gain of function (GOF) mutation that was previously shown to promote ATP-dependent and ATP-independent opening (K978C). Conversely, the ATP-independent activity of the K978C GOF mutant was inhibited by charge- reversal mutations at positions 267 or 1060 either in the presence or absence of NBD2. The latter result indicates that this electrostatic interaction also promotes unliganded channel opening in the absence of ATP binding and NBD dimerization. Charge-reversal mutations at either position markedly reduced the PKA sensitivity of channel activation implying strong allosteric coupling between bundle formation and R domain phosphorylation. These findings support important roles of the tetrahelix bundle and the E267-K1060 electrostatic interaction in phosphorylation-dependent CFTR gating.
Collapse
Affiliation(s)
- Wei Wang
- Gregory Fleming James Cystic Fibrosis Research Center and Departments of Cell, Developmental, and Integrative Biology, and University of Alabama at Birmingham, Birmingham, Alabama 35294-0005.
| | - Bryan C Roessler
- Gregory Fleming James Cystic Fibrosis Research Center and Departments of Cell, Developmental, and Integrative Biology, and University of Alabama at Birmingham, Birmingham, Alabama 35294-0005
| | - Kevin L Kirk
- Gregory Fleming James Cystic Fibrosis Research Center and Departments of Cell, Developmental, and Integrative Biology, and University of Alabama at Birmingham, Birmingham, Alabama 35294-0005; Departments of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005.
| |
Collapse
|
28
|
Ju M, Scott-Ward TS, Liu J, Khuituan P, Li H, Cai Z, Husbands SM, Sheppard DN. Loop diuretics are open-channel blockers of the cystic fibrosis transmembrane conductance regulator with distinct kinetics. Br J Pharmacol 2014; 171:265-78. [PMID: 24117047 DOI: 10.1111/bph.12458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Loop diuretics are widely used to inhibit the Na(+), K(+), 2Cl(-) co-transporter, but they also inhibit the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. Here, we investigated the mechanism of CFTR inhibition by loop diuretics and explored the effects of chemical structure on channel blockade. EXPERIMENTAL APPROACH Using the patch-clamp technique, we tested the effects of bumetanide, furosemide, piretanide and xipamide on recombinant wild-type human CFTR. KEY RESULTS When added to the intracellular solution, loop diuretics inhibited CFTR Cl(-) currents with potency approaching that of glibenclamide, a widely used CFTR blocker with some structural similarity to loop diuretics. To begin to study the kinetics of channel blockade, we examined the time dependence of macroscopic current inhibition following a hyperpolarizing voltage step. Like glibenclamide, piretanide blockade of CFTR was time and voltage dependent. By contrast, furosemide blockade was voltage dependent, but time independent. Consistent with these data, furosemide blocked individual CFTR Cl(-) channels with 'very fast' speed and drug-induced blocking events overlapped brief channel closures, whereas piretanide inhibited individual channels with 'intermediate' speed and drug-induced blocking events were distinct from channel closures. CONCLUSIONS AND IMPLICATIONS Structure-activity analysis of the loop diuretics suggests that the phenoxy group present in bumetanide and piretanide, but absent in furosemide and xipamide, might account for the different kinetics of channel block by locking loop diuretics within the intracellular vestibule of the CFTR pore. We conclude that loop diuretics are open-channel blockers of CFTR with distinct kinetics, affected by molecular dimensions and lipophilicity.
Collapse
Affiliation(s)
- Min Ju
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
LaRusch J, Jung J, General IJ, Lewis MD, Park HW, Brand RE, Gelrud A, Anderson MA, Banks PA, Conwell D, Lawrence C, Romagnuolo J, Baillie J, Alkaade S, Cote G, Gardner TB, Amann ST, Slivka A, Sandhu B, Aloe A, Kienholz ML, Yadav D, Barmada MM, Bahar I, Lee MG, Whitcomb DC. Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis. PLoS Genet 2014; 10:e1004376. [PMID: 25033378 PMCID: PMC4102440 DOI: 10.1371/journal.pgen.1004376] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 03/10/2014] [Indexed: 02/07/2023] Open
Abstract
CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<<0.0001). WNK1-SPAK pathway-activated increases in CFTR bicarbonate permeability are altered by CFTRBD variants through multiple mechanisms. CFTRBD variants are associated with clinically significant disorders of the pancreas, sinuses, and male reproductive system.
Collapse
Affiliation(s)
- Jessica LaRusch
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jinsei Jung
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ignacio J. General
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michele D. Lewis
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Hyun Woo Park
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Randall E. Brand
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andres Gelrud
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michelle A. Anderson
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Peter A. Banks
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Darwin Conwell
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Christopher Lawrence
- Digestive Disease Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Joseph Romagnuolo
- Digestive Disease Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - John Baillie
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Samer Alkaade
- Department of Internal Medicine, St. Louis University School of Medicine, St Louis, Missouri, United States of America
| | - Gregory Cote
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Timothy B. Gardner
- Dartmouth-Hitchcock Medical Center, Hanover, New Hampshire, United States of America
| | - Stephen T. Amann
- North Mississippi Medical Center, Tupelo, Mississippi, United States of America
| | - Adam Slivka
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bimaljit Sandhu
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University Medical Center, Richmond, Virginia, United States of America
| | - Amy Aloe
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michelle L. Kienholz
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dhiraj Yadav
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Michael Barmada
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ivet Bahar
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - David C. Whitcomb
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | | |
Collapse
|
30
|
Molecular modelling approaches for cystic fibrosis transmembrane conductance regulator studies. Int J Biochem Cell Biol 2014; 52:39-46. [DOI: 10.1016/j.biocel.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 12/30/2022]
|
31
|
Wei S, Roessler BC, Chauvet S, Guo J, Hartman JL, Kirk KL. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. J Biol Chem 2014; 289:19942-57. [PMID: 24876383 DOI: 10.1074/jbc.m114.562116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs.
Collapse
Affiliation(s)
- Shipeng Wei
- From the Departments of Cell, Developmental, and Integrative Biology
| | - Bryan C Roessler
- From the Departments of Cell, Developmental, and Integrative Biology
| | - Sylvain Chauvet
- From the Departments of Cell, Developmental, and Integrative Biology
| | | | | | - Kevin L Kirk
- From the Departments of Cell, Developmental, and Integrative Biology, Neurobiology and the Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham Alabama 35294-0005
| |
Collapse
|
32
|
Wang Y, Wrennall JA, Cai Z, Li H, Sheppard DN. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol 2014; 52:47-57. [PMID: 24727426 DOI: 10.1016/j.biocel.2014.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
Defective epithelial ion transport is the hallmark of the life-limiting genetic disease cystic fibrosis (CF). This abnormality is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the ATP-binding cassette transporter that functions as a ligand-gated anion channel. Since the identification of the CFTR gene, almost 2000 disease-causing mutations associated with a spectrum of clinical phenotypes have been reported, but the majority remain poorly characterised. Studies of a small number of mutations including the most common, F508del-CFTR, have identified six general mechanisms of CFTR dysfunction. Here, we review selectively progress to understand how CF mutations disrupt CFTR processing, stability and function. We explore CFTR structure and function to explain the molecular mechanisms of CFTR dysfunction and highlight new knowledge of disease pathophysiology emerging from large animal models of CF. Understanding CFTR dysfunction is crucial to the development of transformational therapies for CF patients.
Collapse
Affiliation(s)
- Yiting Wang
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Joe A Wrennall
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Hongyu Li
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David N Sheppard
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
33
|
Linsdell P. Cystic fibrosis transmembrane conductance regulator chloride channel blockers: Pharmacological, biophysical and physiological relevance. World J Biol Chem 2014; 5:26-39. [PMID: 24600512 PMCID: PMC3942540 DOI: 10.4331/wjbc.v5.i1.26] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/15/2013] [Accepted: 12/11/2013] [Indexed: 02/05/2023] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel causes cystic fibrosis, while inappropriate activity of this channel occurs in secretory diarrhea and polycystic kidney disease. Drugs that interact directly with CFTR are therefore of interest in the treatment of a number of disease states. This review focuses on one class of small molecules that interacts directly with CFTR, namely inhibitors that act by directly blocking chloride movement through the open channel pore. In theory such compounds could be of use in the treatment of diarrhea and polycystic kidney disease, however in practice all known substances acting by this mechanism to inhibit CFTR function lack either the potency or specificity for in vivo use. Nevertheless, this theoretical pharmacological usefulness set the scene for the development of more potent, specific CFTR inhibitors. Biophysically, open channel blockers have proven most useful as experimental probes of the structure and function of the CFTR chloride channel pore. Most importantly, the use of these blockers has been fundamental in developing a functional model of the pore that includes a wide inner vestibule that uses positively charged amino acid side chains to attract both permeant and blocking anions from the cell cytoplasm. CFTR channels are also subject to this kind of blocking action by endogenous anions present in the cell cytoplasm, and recently this blocking effect has been suggested to play a role in the physiological control of CFTR channel function, in particular as a novel mechanism linking CFTR function dynamically to the composition of epithelial cell secretions. It has also been suggested that future drugs could target this same pathway as a way of pharmacologically increasing CFTR activity in cystic fibrosis. Studying open channel blockers and their mechanisms of action has resulted in significant advances in our understanding of CFTR as a pharmacological target in disease states, of CFTR channel structure and function, and of how CFTR activity is controlled by its local environment.
Collapse
|
34
|
On the structural organization of the intracellular domains of CFTR. Int J Biochem Cell Biol 2014; 52:7-14. [PMID: 24513531 DOI: 10.1016/j.biocel.2014.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 12/17/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a multidomain membrane protein forming an anion selective channel. Mutations in the gene encoding CFTR cause cystic fibrosis (CF). The intracellular side of CFTR constitutes about 80% of the total mass of the protein. This region includes domains involved in ATP-dependent gating and regulatory protein kinase-A phosphorylation sites. The high-resolution molecular structure of CFTR has not yet been solved. However, a range of lower resolution structural data, as well as functional biochemical and electrophysiological data, are now available. This information has enabled the proposition of a working model for the structural architecture of the intracellular domains of the CFTR protein.
Collapse
|
35
|
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl(-) channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl(-) movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl(-) channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.
Collapse
Affiliation(s)
- Paul Linsdell
- Department of Physiology & Biophysics, Dalhousie University , Halifax, Nova Scotia , Canada
| |
Collapse
|
36
|
Abstract
Malfunction of cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC protein superfamily that functions as an ATP-gated chloride channel, causes the lethal genetic disease, cystic fibrosis. This review focuses on the most recent findings on the gating mechanism of CFTR. Potential clinical relevance and implications to ABC transporter function are also discussed.
Collapse
Affiliation(s)
- Kang-Yang Jih
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri, USA
| | | |
Collapse
|
37
|
Rahman KS, Cui G, Harvey SC, McCarty NA. Modeling the conformational changes underlying channel opening in CFTR. PLoS One 2013; 8:e74574. [PMID: 24086355 PMCID: PMC3785483 DOI: 10.1371/journal.pone.0074574] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 08/05/2013] [Indexed: 12/22/2022] Open
Abstract
Mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator protein (CFTR) cause cystic fibrosis (CF), the most common life-shortening genetic disease among Caucasians. Although general features of the structure of CFTR have been predicted from homology models, the conformational changes that result in channel opening and closing have yet to be resolved. We created new closed- and open-state homology models of CFTR, and performed targeted molecular dynamics simulations of the conformational transitions in a channel opening event. The simulations predict a conformational wave that starts at the nucleotide binding domains and ends with the formation of an open conduction pathway. Changes in side-chain interactions are observed in all major domains of the protein, and experimental confirmation was obtained for a novel intra-protein salt bridge that breaks near the end of the transition. The models and simulation add to our understanding of the mechanism of ATP-dependent gating in this disease-relevant ion channel.
Collapse
Affiliation(s)
- Kazi S. Rahman
- Petit Institute of Bioengineering and Bioscience and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Guiying Cui
- Department of Pediatrics and Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Inc., Atlanta, Georgia, United States of America
| | - Stephen C. Harvey
- Petit Institute of Bioengineering and Bioscience and School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nael A. McCarty
- Department of Pediatrics and Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Inc., Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
38
|
Wang W, El Hiani Y, Rubaiy HN, Linsdell P. Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Pflugers Arch 2013; 466:477-90. [PMID: 23955087 DOI: 10.1007/s00424-013-1317-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022]
Abstract
The membrane-spanning part of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel comprises 12 transmembrane (TM) α-helices, arranged in 2 symmetrical groups of 6. However, those TMs that line the channel pore are not completely defined. We used patch clamp recording to compare the accessibility of cysteine-reactive reagents to cysteines introduced into different TMs. Several residues in TM11 were accessible to extracellular and/or intracellular cysteine reactive reagents; however, no reactive cysteines were identified in TMs 5 or 11. Two accessible residues in TM11 (T1115C and S1118C) were found to be more readily modified from the extracellular solution in closed channels, but more readily modified from the intracellular solution in open channels, as previously reported for T338C in TM6. However, the effects of mutagenesis at S1118 (TM11) on a range of pore functional properties were relatively minor compared to the large effects of mutagenesis at T338 (TM6). Our results suggest that the CFTR pore is lined by TM11 but not by TM5 or TM7. Comparison with previous works therefore suggests that the pore is lined by TMs 1, 6, 11, and 12, suggesting that the structure of the open channel pore is asymmetric in terms of the contributions of different TMs. Although TMs 6 and 11 appear to undergo similar conformational changes during channel opening and closing, the influence of these two TMs on the functional properties of the narrowest region of the pore is clearly unequal.
Collapse
Affiliation(s)
- Wuyang Wang
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000 Halifax, Nova Scotia, B3H 4R2, Canada
| | | | | | | |
Collapse
|
39
|
Gao X, Bai Y, Hwang TC. Cysteine scanning of CFTR's first transmembrane segment reveals its plausible roles in gating and permeation. Biophys J 2013; 104:786-97. [PMID: 23442957 DOI: 10.1016/j.bpj.2012.12.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/27/2012] [Accepted: 12/31/2012] [Indexed: 02/06/2023] Open
Abstract
Previous cysteine scanning studies of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have identified several transmembrane segments (TMs), including TM1, 3, 6, 9, and 12, as structural components of the pore. Some of these TMs such as TM6 and 12 may also be involved in gating conformational changes. However, recent results on TM1 seem puzzling in that the observed reactive pattern was quite different from those seen with TM6 and 12. In addition, whether TM1 also plays a role in gating motions remains largely unknown. Here, we investigated CFTR's TM1 by applying methanethiosulfonate (MTS) reagents from both cytoplasmic and extracellular sides of the membrane. Our experiments identified four positive positions, E92, K95, Q98, and L102, when the negatively charged MTSES was applied from the cytoplasmic side. Intriguingly, these four residues reside in the extracellular half of TM1 in previously defined CFTR topology; we thus extended our scanning to residues located extracellularly to L102. We found that cysteines introduced into positions 106, 107, and 109 indeed react with extracellularly applied MTS probes, but not to intracellularly applied reagents. Interestingly, whole-cell A107C-CFTR currents were very sensitive to changes of bath pH as if the introduced cysteine assumes an altered pKa-like T338C in TM6. These findings lead us to propose a revised topology for CFTR's TM1 that spans at least from E92 to Y109. Additionally, side-dependent modifications of these positions indicate a narrow region (L102-I106) that prevents MTS reagents from penetrating the pore, a picture similar to what has been reported for TM6. Moreover, modifications of K95C, Q98C, and L102C exhibit strong state dependency with negligible modification when the channel is closed, suggesting a significant rearrangement of TM1 during CFTR's gating cycle. The structural implications of these findings are discussed in light of the crystal structures of ABC transporters and homology models of CFTR.
Collapse
Affiliation(s)
- Xiaolong Gao
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, USA
| | | | | |
Collapse
|
40
|
Nadeau VG, Deber CM. Loop Sequence Dictates the Secondary Structure of a Human Membrane Protein Hairpin. Biochemistry 2013; 52:2419-26. [DOI: 10.1021/bi400187w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Vincent G. Nadeau
- Program in Molecular Structure and Function,
Research Institute, Hospital for Sick Children, Toronto M5G 1X8, Ontario,
Canada, and Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Charles M. Deber
- Program in Molecular Structure and Function,
Research Institute, Hospital for Sick Children, Toronto M5G 1X8, Ontario,
Canada, and Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| |
Collapse
|
41
|
Billet A, Mornon JP, Jollivet M, Lehn P, Callebaut I, Becq F. CFTR: effect of ICL2 and ICL4 amino acids in close spatial proximity on the current properties of the channel. J Cyst Fibros 2013; 12:737-45. [PMID: 23478129 DOI: 10.1016/j.jcf.2013.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND CFTR is the only ABC transporter functioning as a chloride (Cl(-)) channel. We studied molecular determinants, which might distinguish CFTR from standard ABC transporters, and focused on the interface formed by the intracellular loops from the membrane spanning domains. METHODS Residues from ICL2 and ICL4 in close proximity were targeted, and their involvement in the functioning of CFTR was studied by whole cell patch clamp recording. RESULTS We identified 2 pairs of amino acids, at the extremity of the bundle formed by the four intracellular loops, whose mutation i) decreases the Cl(-) current of CFTR (couple E267-K1060) or ii) increases it with a change of the electrophysiological signature (couple S263-V1056). CONCLUSIONS These results highlight the critical role of these ICL residues in the assembly of the different domains and/or in the Cl(-) permeation pathway of CFTR.
Collapse
Affiliation(s)
- Arnaud Billet
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France
| | | | | | | | | | | |
Collapse
|
42
|
Marasini C, Galeno L, Moran O. A SAXS-based ensemble model of the native and phosphorylated regulatory domain of the CFTR. Cell Mol Life Sci 2013; 70:923-33. [PMID: 23052212 PMCID: PMC11113146 DOI: 10.1007/s00018-012-1172-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/24/2012] [Accepted: 09/17/2012] [Indexed: 11/26/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is an anion channel activated by protein kinase A phosphorylation. The regulatory domain (RD) of CFTR has multiple phosphorylation sites, and is responsible for channel activation. This domain is intrinsically disordered, rendering the structural analysis a difficult task, as high-resolution techniques are barely applicable. In this work, we obtained a biophysical characterization of the native and phosphorylated RD in solution by employing complementary structural methods. The native RD has a gyration radius of 3.25 nm, and a maximum molecular dimension of 11.4 nm, larger than expected for a globular protein of the same molecular mass. Phosphorylation causes compaction of the structure, yielding a significant reduction of the gyration radius, to 2.92 nm, and on the maximum molecular dimension to 10.2 nm. Using an ensemble optimization method, we were able to generate a low-resolution, three-dimensional model of the native and the phosphorylated RD based on small-angle X-ray scattering data. We have obtained the first experiment-based model of the CFTR regulatory domain, which will be useful to understand the molecular mechanisms of normal and pathological CFTR functioning.
Collapse
Affiliation(s)
- Carlotta Marasini
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genoa, Italy
| | - Lauretta Galeno
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genoa, Italy
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genoa, Italy
| |
Collapse
|
43
|
Qin SS, Yu YX, Li QK, Yu ZW. Interaction of Human Synovial Phospholipase A2 with Mixed Lipid Bilayers: A Coarse-Grain and All-Atom Molecular Dynamics Simulation Study. Biochemistry 2013; 52:1477-89. [DOI: 10.1021/bi3012687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shan-Shan Qin
- Key Laboratory of Bioorganic
Phosphorous Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yang-Xin Yu
- Laboratory of Chemical Engineering
Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Qi-Kai Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic
Phosphorous Chemistry and Chemical Biology (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
44
|
Hwang TC, Kirk KL. The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb Perspect Med 2013; 3:a009498. [PMID: 23284076 DOI: 10.1101/cshperspect.a009498] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-gated anion channel with two remarkable distinctions. First, it is the only ATP-binding cassette (ABC) transporter that is known to be an ion channel--almost all others function as transport ATPases. Second, CFTR is the only ligand-gated channel that consumes its ligand (ATP) during the gating cycle--a consequence of its enzymatic activity as an ABC transporter. We discuss these special properties of CFTR in the context of its evolutionary history as an ABC transporter. Other topics include the mechanisms by which CFTR gating is regulated by phosphorylation of its unique regulatory domain and our current view of the CFTR permeation pathway (or pore). Understanding these basic operating principles of the CFTR channel is central to defining the mechanisms of action of prospective cystic fibrosis drugs and to the development of new, rational treatment strategies.
Collapse
Affiliation(s)
- Tzyh-Chang Hwang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | |
Collapse
|
45
|
Furukawa-Hagiya T, Furuta T, Chiba S, Sohma Y, Sakurai M. The power stroke driven by ATP binding in CFTR as studied by molecular dynamics simulations. J Phys Chem B 2012; 117:83-93. [PMID: 23214920 DOI: 10.1021/jp308315w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP binding cassette (ABC) protein superfamily. Currently, it remains unclear how ATP binding causes the opening of the channel gate at the molecular level. To clarify this mechanism, we first constructed an atomic model of the inward-facing CFTR using the X-ray structures of other ABC proteins. Molecular dynamics (MD) simulations were then performed to explore the structure and dynamics of the inward-facing CFTR in a membrane environment. In the MgATP-bound state, two nucleotide-binding domains (NBDs) formed a head-to-tail type of dimer, in which the ATP molecules were sandwiched between the Walker A and signature motifs. Alternatively, one of the final MD structures in the apo state was similar to that of a "closed-apo" conformation found in the X-ray analysis of ATP-free MsbA. Principal component analysis for the MD trajectory indicated that NBD dimerization causes significant structural and dynamical changes in the transmembrane domains (TMDs), which is likely indicative of the formation of a chloride ion access path. This study suggests that the free energy gain from ATP binding acts as a driving force not only for NBD dimerization but also for NBD-TMD concerted motions.
Collapse
Affiliation(s)
- Tomoka Furukawa-Hagiya
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | | | | | | | | |
Collapse
|
46
|
Norimatsu Y, Ivetac A, Alexander C, O'Donnell N, Frye L, Sansom MSP, Dawson DC. Locating a plausible binding site for an open-channel blocker, GlyH-101, in the pore of the cystic fibrosis transmembrane conductance regulator. Mol Pharmacol 2012; 82:1042-55. [PMID: 22923500 PMCID: PMC3502623 DOI: 10.1124/mol.112.080267] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/24/2012] [Indexed: 12/23/2022] Open
Abstract
High-throughput screening has led to the identification of small-molecule blockers of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, but the structural basis of blocker binding remains to be defined. We developed molecular models of the CFTR channel on the basis of homology to the bacterial transporter Sav1866, which could permit blocker binding to be analyzed in silico. The models accurately predicted the existence of a narrow region in the pore that is a likely candidate for the binding site of an open-channel pore blocker such as N-(2-naphthalenyl)-[(3,5-dibromo-2,4-dihydroxyphenyl)methylene]glycine hydrazide (GlyH-101), which is thought to act by entering the channel from the extracellular side. As a more-stringent test of predictions of the CFTR pore model, we applied induced-fit, virtual, ligand-docking techniques to identify potential binding sites for GlyH-101 within the CFTR pore. The highest-scoring docked position was near two pore-lining residues, Phe337 and Thr338, and the rates of reactions of anionic, thiol-directed reagents with cysteines substituted at these positions were slowed in the presence of the blocker, consistent with the predicted repulsive effect of the net negative charge on GlyH-101. When a bulky phenylalanine that forms part of the predicted binding pocket (Phe342) was replaced with alanine, the apparent affinity of the blocker was increased ∼200-fold. A molecular mechanics-generalized Born/surface area analysis of GlyH-101 binding predicted that substitution of Phe342 with alanine would substantially increase blocker affinity, primarily because of decreased intramolecular strain within the blocker-protein complex. This study suggests that GlyH-101 blocks the CFTR channel by binding within the pore bottleneck.
Collapse
Affiliation(s)
- Yohei Norimatsu
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Wang W, Linsdell P. Relative movements of transmembrane regions at the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore during channel gating. J Biol Chem 2012; 287:32136-46. [PMID: 22843683 DOI: 10.1074/jbc.m112.385096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multiple transmembrane (TM) segments line the pore of the cystic fibrosis transmembrane conductance regulator Cl(-) channel; however, the relative alignment of these TMs and their relative movements during channel gating are unknown. To gain three-dimensional structural information on the outer pore, we have used patch clamp recording to study the proximity of pairs of cysteine side chains introduced into TMs 6 and 11, using both disulfide cross-linking and Cd(2+) coordination. Following channel activation, disulfide bonds could apparently be formed between three cysteine pairs (of 15 studied): R334C/T1122C, R334C/G1127C, and T338C/S1118C. To examine the state dependence of cross-linking, we combined these cysteine mutations with a nucleotide-binding domain mutation (E1371Q) that stabilizes the channel open state. Investigation of the effects of the E1371Q mutation on disulfide bond formation and Cd(2+) coordination suggests that although R334C/T1122C and T338C/S1118C are closer together in the channel open state, R334C/G1127C are close together and can form disulfide bonds only when the channel is closed. These results provide important new information on the three-dimensional structure of the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore: TMs 6 and 11 are close enough together to form disulfide bonds in both open and closed channels. Moreover, the altered relative locations of residues in open and in closed channels that we infer allow us to propose that channel opening and closing may be associated with a relative translational movement of TMs 6 and 11, with TM6 moving "down" (toward the cytoplasm) during channel opening.
Collapse
Affiliation(s)
- Wuyang Wang
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | |
Collapse
|
48
|
Nadeau VG, Rath A, Deber CM. Sequence Hydropathy Dominates Membrane Protein Response to Detergent Solubilization. Biochemistry 2012; 51:6228-37. [DOI: 10.1021/bi201853n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Vincent G. Nadeau
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S
1A8
| | - Arianna Rath
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Charles M. Deber
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S
1A8
| |
Collapse
|
49
|
Dalton J, Kalid O, Schushan M, Ben-Tal N, Villà-Freixa J. New model of cystic fibrosis transmembrane conductance regulator proposes active channel-like conformation. J Chem Inf Model 2012; 52:1842-53. [PMID: 22747419 DOI: 10.1021/ci2005884] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an unusual ABC transporter, functioning as a chloride channel critical for fluid homeostasis in multiple organs. Disruption of CFTR function is associated with cystic fibrosis making it an attractive therapeutic target. In addition, CFTR blockers are being developed as potential antidiarrheals. CFTR drug discovery is hampered by the lack of high resolution structural data, and considerable efforts have been invested in modeling the channel structure. Although previously published CFTR models that have been made publicly available mostly agree with experimental data relating to the overall structure, they present the channel in an outward-facing conformation that does not agree with expected properties of a "channel-like" structure. Here, we make available a model of CFTR in such a "channel-like" conformation, derived by a unique modeling approach combining restrained homology modeling and ROSETTA refinement. In contrast to others, the present model is in agreement with expected channel properties such as pore shape, dimensions, solvent accessibility, and experimentally derived distances. We have used the model to explore the interaction of open channel blockers within the pore, revealing a common binding mode and ionic interaction with K95, in agreement with experimental data. The binding-site was further validated using a virtual screening enrichment experiment, suggesting the model might be suitable for drug discovery. In addition, we subjected the model to a molecular dynamics simulation, revealing previously unaddressed salt-bridge interactions that may be important for structure stability and pore-lining residues that may take part in Cl(-) conductance.
Collapse
Affiliation(s)
- James Dalton
- Computational Biochemistry and Biophysics Laboratory, Research Unit on Biomedical Informatics, IMIM Hospital del Mar and Universitat Pompeu Fabra, C/Doctor Aiguader, 88, 08003 Barcelona, Catalunya, Spain
| | | | | | | | | |
Collapse
|