1
|
Cleveland JD, Taslimi A, Liu Q, Van Keuren AM, Churchill MEA, Tucker CL. Reprogramming the Cleavage Specificity of Botulinum Neurotoxin Serotype B1. ACS Synth Biol 2022; 11:3318-3329. [PMID: 36153971 PMCID: PMC9907380 DOI: 10.1021/acssynbio.2c00235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Proteases with reprogrammed specificity for nonnative substrates are highly desired in synthetic biology and biomedicine. However, generating reprogrammed proteases that are orthogonal and highly specific for a new target has been a major challenge. In this work, we sought to expand the versatility of protease systems by engineering an orthogonal botulinum neurotoxin serotype B (BoNT/B) protease that recognizes an orthogonal substrate. We designed and validated an orthogonal BoNT/B protease system in mammalian cells, combining mutations in the protease with compensatory mutations in the protease substrate and incorporating a truncated target sequence and then demonstrated use of this orthogonal BoNT/B protease-substrate combination to regulate complex transcriptional circuitry in mammalian cells. Transposing this platform into yeast, we demonstrated utility of this approach for in vivo protease evolution. We tested this platform with the newly designed orthogonal protease and then used it in a high-throughput screen to identify novel orthogonal protease/protease substrate combinations. While carrying out this work, we also generated new cleavage reporters that could be used to report botulinum toxin protease activity in mammalian cells using simple fluorescent readouts. We envision that these approaches will expand the applications of botulinum protease in new directions and aid in the development of new reprogrammed proteases.
Collapse
Affiliation(s)
- Joseph D. Cleveland
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Amir Taslimi
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Qi Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Anna M. Van Keuren
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Mair E. A. Churchill
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Chandra L. Tucker
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| |
Collapse
|
2
|
Lam KH, Tremblay JM, Perry K, Ichtchenko K, Shoemaker CB, Jin R. Probing the structure and function of the protease domain of botulinum neurotoxins using single-domain antibodies. PLoS Pathog 2022; 18:e1010169. [PMID: 34990480 PMCID: PMC8769338 DOI: 10.1371/journal.ppat.1010169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/19/2022] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are among the deadliest of bacterial toxins. BoNT serotype A and B in particular pose the most serious threat to humans because of their high potency and persistence. To date, there is no effective treatment for late post-exposure therapy of botulism patients. Here, we aim to develop single-domain variable heavy-chain (VHH) antibodies targeting the protease domains (also known as the light chain, LC) of BoNT/A and BoNT/B as antidotes for post-intoxication treatments. Using a combination of X-ray crystallography and biochemical assays, we investigated the structures and inhibition mechanisms of a dozen unique VHHs that recognize four and three non-overlapping epitopes on the LC of BoNT/A and BoNT/B, respectively. We show that the VHHs that inhibit the LC activity occupy the extended substrate-recognition exosites or the cleavage pocket of LC/A or LC/B and thus block substrate binding. Notably, we identified several VHHs that recognize highly conserved epitopes across BoNT/A or BoNT/B subtypes, suggesting that these VHHs exhibit broad subtype efficacy. Further, we identify two novel conformations of the full-length LC/A, that could aid future development of inhibitors against BoNT/A. Our studies lay the foundation for structure-based engineering of protein- or peptide-based BoNT inhibitors with enhanced potencies and cross-subtypes properties.
Collapse
Affiliation(s)
- Kwok-ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Jacqueline M. Tremblay
- Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Kay Perry
- NE-CAT, Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Charles B. Shoemaker
- Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| |
Collapse
|
3
|
Abstract
Chemical inactivation is a clinically effective mechanism to detoxify protein toxins to produce vaccines against microbial infections and to serve as a platform for production of conjugate polysaccharide vaccines. This method is widely used for the production of protein toxin vaccines, including tetanus toxoid. However, chemical modification alters the protein structure with unknown effects on antigenicity. Here, a recombinant full-length tetanus toxin (TT) is engineered with 8 mutations (8MTT) that inactivate three toxin functions: catalysis, translocation, and receptor binding. 8MTT is nontoxic and elicits a potent immune response in outbred mice. 8MTT also represents a malleable platform for the production of conjugate vaccines, which can facilitate a rapid vaccine response against emerging microbial pathogens. Chemically inactivated tetanus toxoid (CITT) is clinically effective and widely used. However, CITT is a crude nonmalleable vaccine that contains hundreds of Clostridium tetani proteins, and the active component is present in variable and sometimes minor percentages of vaccine mass. Recombinant production of a genetically inactivated tetanus vaccine offers an opportunity to replace and improve the current tetanus vaccine. Previous studies showed the feasibility of engineering full-length tetanus toxin (TT) in Escherichia coli. In the present study, full-length TT was engineered with eight individual amino acid mutations (8MTT) to inactivate catalysis, translocation, and host receptor-binding functions, retaining 99.4% amino acid identity to native tetanus toxin. 8MTT purified as a 150-kDa single-chain protein, which trypsin nicked to a 100-kDa heavy chain and 50-kDa light chain. The 8MTT was not toxic for outbred mice and was >50 million-fold less toxic than native TT. Relative to CITT, 8MTT vaccination elicited a strong immune response and showed good vaccine potency against TT challenge. The strength of the immune response to both vaccines varied among individual outbred mice. These data support 8MTT as a candidate vaccine against tetanus and a malleable candidate conjugate vaccine platform to enhance the immune response to polysaccharides and other macromolecular molecules to facilitate a rapid response to emerging microbial pathogens.
Collapse
|
4
|
Elliott M, Maignel J, Liu SM, Favre-Guilmard C, Mir I, Farrow P, Hornby F, Marlin S, Palan S, Beard M, Krupp J. Augmentation of VAMP-catalytic activity of botulinum neurotoxin serotype B does not result in increased potency in physiological systems. PLoS One 2017; 12:e0185628. [PMID: 28982136 PMCID: PMC5628846 DOI: 10.1371/journal.pone.0185628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are used extensively as therapeutic agents. Serotypes A and B are available as marketed products. Higher doses of BoNT/B are required to reach an efficacy similar to that of products containing BoNT/A. Advances in our understanding of BoNT/B mechanism of action have afforded the opportunity to make rational modifications to the toxin aimed at increasing its activity. Recently, a mutation in the light chain of BoNT/B (S201P) was described that increases the catalytic activity of the isolated BoNT/B light chain in biochemical assays. In this study, we have produced two full-length recombinant BoNT/B toxins in E.coli-one wild type (rBoNT/B1) and one incorporating the S201P mutation (rBoNT/B1(S201P)). We have compared the activity of these two molecules along with a native BoNT/B1 in biochemical cell-free assays and in several biological systems. In the cell-free assay, which measured light-chain activity alone, rBoNT/B1(S201P) cleaved VAMP-2 and VAMP-1 substrate with an activity 3-4-fold higher than rBoNT/B1. However, despite the enhanced catalytic activity of rBoNT/B1(S201P), there was no significant difference in potency between the two molecules in any of the in vitro cell-based assays, using either rodent spinal cord neurons or cortical neurons. Similarly in ex vivo tissue preparations rBoNT/B1(S201P) was not significantly more potent than rBoNT/B1 at inhibiting either diaphragm or detrusor (bladder) muscle activity in C57BL/6N and CD1 mice. Finally, no differences between rBoNT/B1 and rBoNT/B1(S201P) were observed in an in vivo digit abduction score (DAS) assay in C57BL/6N mice, either in efficacy or safety parameters. The lack of translation from the enhanced BoNT/B1(S201P) catalytic activity to potency in complex biological systems suggests that the catalytic step is not the rate-limiting factor for BoNT/B to reach maximum efficacy. In order to augment the efficacy of BoNT/B in humans, strategies other than enhancing light chain activity may need to be considered.
Collapse
Affiliation(s)
- Mark Elliott
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
- * E-mail:
| | | | - Sai Man Liu
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | | | - Imran Mir
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Paul Farrow
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Fraser Hornby
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Sandra Marlin
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Shilpa Palan
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, United Kingdom
| | | |
Collapse
|
5
|
Oliván S, Calvo AC, Rando A, Herrando-Grabulosa M, Manzano R, Zaragoza P, Tizzano EF, Aquilera J, Osta R. Neuroprotective Effect of Non-viral Gene Therapy Treatment Based on Tetanus Toxin C-fragment in a Severe Mouse Model of Spinal Muscular Atrophy. Front Mol Neurosci 2016; 9:76. [PMID: 27605908 PMCID: PMC4995219 DOI: 10.3389/fnmol.2016.00076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC), which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons “in vitro” and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3, and p62) and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild-type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln), TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease.
Collapse
Affiliation(s)
- Sara Oliván
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto de Investigación Sanitaria Aragón, Universidad de ZaragozaZaragoza, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Grupo AMB, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de ZaragozaZaragoza, Spain
| | - Ana C Calvo
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza Zaragoza, Spain
| | - Amaya Rando
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza Zaragoza, Spain
| | - Mireia Herrando-Grabulosa
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain Institut de Neurociències and Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain
| | - Raquel Manzano
- Department of Physiology, Anatomy and Genetics, University of Oxford Oxford, UK
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza Zaragoza, Spain
| | - Eduardo F Tizzano
- Área de Genética Clínica y Molecular, Hospital Vall d'Hebron, Centros de Investigación Biomédica en Red Barcelona, Spain
| | - Jose Aquilera
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Spain Institut de Neurociències and Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona Cerdanyola del Vallès, Spain
| | - Rosario Osta
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza Zaragoza, Spain
| |
Collapse
|
6
|
Mayer T, Blachowicz A, Probst AJ, Vaishampayan P, Checinska A, Swarmer T, de Leon P, Venkateswaran K. Microbial succession in an inflated lunar/Mars analog habitat during a 30-day human occupation. MICROBIOME 2016; 4:22. [PMID: 27250991 PMCID: PMC4890489 DOI: 10.1186/s40168-016-0167-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/18/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND For potential future human missions to the Moon or Mars and sustained presence in the International Space Station, a safe enclosed habitat environment for astronauts is required. Potential microbial contamination of closed habitats presents a risk for crewmembers due to reduced human immune response during long-term confinement. To make future habitat designs safer for crewmembers, lessons learned from characterizing analogous habitats is very critical. One of the key issues is that how human presence influences the accumulation of microorganisms in the closed habitat. RESULTS Molecular technologies, along with traditional microbiological methods, were utilized to catalog microbial succession during a 30-day human occupation of a simulated inflatable lunar/Mars habitat. Surface samples were collected at different time points to capture the complete spectrum of viable and potential opportunistic pathogenic bacterial population. Traditional cultivation, propidium monoazide (PMA)-quantitative polymerase chain reaction (qPCR), and adenosine triphosphate (ATP) assays were employed to estimate the cultivable, viable, and metabolically active microbial population, respectively. Next-generation sequencing was used to elucidate the microbial dynamics and community profiles at different locations of the habitat during varying time points. Statistical analyses confirm that occupation time has a strong influence on bacterial community profiles. The Day 0 samples (before human occupation) have a very different microbial diversity compared to the later three time points. Members of Proteobacteria (esp. Oxalobacteraceae and Caulobacteraceae) and Firmicutes (esp. Bacillaceae) were most abundant before human occupation (Day 0), while other members of Firmicutes (Clostridiales) and Actinobacteria (esp. Corynebacteriaceae) were abundant during the 30-day occupation. Treatment of samples with PMA (a DNA-intercalating dye for selective detection of viable microbial population) had a significant effect on the microbial diversity compared to non-PMA-treated samples. CONCLUSIONS Statistical analyses revealed a significant difference in community structure of samples over time, particularly of the bacteriomes existing before human occupation of the habitat (Day 0 sampling) and after occupation (Day 13, Day 20, and Day 30 samplings). Actinobacteria (mainly Corynebacteriaceae) and Firmicutes (mainly Clostridiales Incertae Sedis XI and Staphylococcaceae) were shown to increase over the occupation time period. The results of this study revealed a strong relationship between human presence and succession of microbial diversity in a closed habitat. Consequently, it is necessary to develop methods and tools for effective maintenance of a closed system to enable safe human habitation in enclosed environments on Earth and beyond.
Collapse
Affiliation(s)
- Teresa Mayer
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Adriana Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Alexander J Probst
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Aleksandra Checinska
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Tiffany Swarmer
- Department of Space Studies, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Pablo de Leon
- Department of Space Studies, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
7
|
Mechanism of substrate recognition by the novel Botulinum Neurotoxin subtype F5. Sci Rep 2016; 6:19875. [PMID: 26794648 PMCID: PMC4726221 DOI: 10.1038/srep19875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022] Open
Abstract
Botulinum Neurotoxins (BoNTs) are the causative agents of botulism, which act by potently inhibiting the neurotransmitter release in motor neurons. Seven serotypes of BoNTs designated as BoNT/A-G have been identified. Recently, two novel types of Botulinum neurotoxins, which cleave a novel scissile bond, L54-E55, of VAMP-2 have been reported including BoNT/F subtype F5 and serotype H. However, little has been known on how these BoNTs recognize their substrates. The present study addressed for the first time the unique substrate recognition mechanism of LC/F5. Our data indicated that the optimal peptide required for efficient LC/F5 substrate cleavage is VAMP-2 (20–65). Interestingly, the overall mode of substrate recognition adopted by LC/F5 was similar to LC/F1, except that its recognition sites were shifted one helix toward the N-terminus of VAMP-2 when compared to that of LC/F1. The composition of LC/F5 pockets were found to have changed accordingly to facilitate specific recognition of these new sites of VAMP-2, including the P2′, P1′, P2, P3, B3, B2 and B1 sites. The study provides direct evidence of the evolutionary adaption of BoNT to recognize its substrate which is useful for effective antitoxin and inhibitor development.
Collapse
|
8
|
Fan Y, Dong J, Lou J, Wen W, Conrad F, Geren IN, Garcia-Rodriguez C, Smith TJ, Smith LA, Ho M, Pires-Alves M, Wilson BA, Marks JD. Monoclonal Antibodies that Inhibit the Proteolytic Activity of Botulinum Neurotoxin Serotype/B. Toxins (Basel) 2015; 7:3405-23. [PMID: 26343720 PMCID: PMC4591640 DOI: 10.3390/toxins7093405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/10/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022] Open
Abstract
Existing antibodies (Abs) used to treat botulism cannot enter the cytosol of neurons and bind to botulinum neurotoxin (BoNT) at its site of action, and thus cannot reverse paralysis. However, Abs targeting the proteolytic domain of the toxin could inhibit the proteolytic activity of the toxin intracellularly and potentially reverse intoxication, if they could be delivered intracellularly. As such, antibodies that neutralize toxin activity could serve as potent inhibitory cargos for therapeutic antitoxins against botulism. BoNT serotype B (BoNT/B) contains a zinc endopeptidase light chain (LC) domain that cleaves synaoptobrevin-2, a SNARE protein responsible for vesicle fusion and acetylcholine vesicle release. To generate monoclonal Abs (mAbs) that could reverse paralysis, we targeted the protease domain for Ab generation. Single-chain variable fragment (scFv) libraries from immunized mice or humans were displayed on yeast, and 19 unique BoNT/B LC-specific mAbs isolated by fluorescence-activated cell sorting (FACS). The equilibrium dissociation constants (KD) of these mAbs for BoNT/B LC ranged from 0.24 nM to 14.3 nM (mean KD 3.27 nM). Eleven mAbs inhibited BoNT/B LC proteolytic activity. The fine epitopes of selected mAbs were identified by alanine-scanning mutagenesis, revealing that inhibitory mAbs bound near the active site, substrate-binding site or the extended substrate-binding site. The results provide mAbs that could prove useful for intracellular reversal of paralysis and identify epitopes that could be targeted by small molecules inhibitors.
Collapse
Affiliation(s)
- Yongfeng Fan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco General Hospital, Room 3C-38, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | - Jianbo Dong
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco General Hospital, Room 3C-38, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | - Jianlong Lou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco General Hospital, Room 3C-38, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | - Weihua Wen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco General Hospital, Room 3C-38, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | - Fraser Conrad
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco General Hospital, Room 3C-38, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | - Isin N Geren
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco General Hospital, Room 3C-38, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | - Consuelo Garcia-Rodriguez
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco General Hospital, Room 3C-38, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| | - Theresa J Smith
- Molecular and Translational Sciences Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Leonard A Smith
- Medical Countermeasures Technology, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, USA.
| | - Mengfei Ho
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Melissa Pires-Alves
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Brenda A Wilson
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - James D Marks
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco General Hospital, Room 3C-38, 1001 Potrero Avenue, San Francisco, CA 94110, USA.
| |
Collapse
|
9
|
Pantano S, Montecucco C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell Mol Life Sci 2014; 71:793-811. [PMID: 23749048 PMCID: PMC11113401 DOI: 10.1007/s00018-013-1380-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/22/2022]
Abstract
The high toxicity of the seven serotypes of botulinum neurotoxins (BoNT/A to G), together with their specificity and reversibility, includes them in the list A of potential bioterrorism weapons and, at the same time, among the therapeutics of choice for a variety of human syndromes. They invade nerve terminals and cleave specifically the three proteins which form the heterotrimeric SNAP REceptors (SNARE) complex that mediates neurotransmitter release. The BoNT-induced cleavage of the SNARE proteins explains by itself the paralysing activity of the BoNTs because the truncated proteins cannot form the SNARE complex. However, in the case of BoNT/A, the most widely used toxin in therapy, additional factors come into play as it only removes a few residues from the synaptosomal associate protein of 25 kDa C-terminus and this results in a long duration of action. To explain these facts and other experimental data, we present here a model for the assembly of the neuroexocytosis apparatus in which Synaptotagmin and Complexin first assist the zippering of the SNARE complex, and then stabilize and clamp an octameric radial assembly of the SNARE complexes.
Collapse
Affiliation(s)
- Sergio Pantano
- Institut Pasteur de Montevideo, Calle Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Institute of Neuroscience, National Research Council, Viale G. Colombo 3, 35121 Padua, Italy
| |
Collapse
|
10
|
Ferecskó AS, Jiruska P, Foss L, Powell AD, Chang WC, Sik A, Jefferys JGR. Structural and functional substrates of tetanus toxin in an animal model of temporal lobe epilepsy. Brain Struct Funct 2014; 220:1013-29. [PMID: 24442865 PMCID: PMC4341026 DOI: 10.1007/s00429-013-0697-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 12/26/2013] [Indexed: 11/30/2022]
Abstract
The effects of tetanus toxin (TeNT) both in the spinal cord, in clinical tetanus, and in the brain, in experimental focal epilepsy, suggest disruption of inhibitory synapses. TeNT is a zinc protease with selectivity for Vesicle Associated Membrane Protein (VAMP; previously synaptobrevin), with a reported selectivity for VAMP2 in rats. We found spatially heterogeneous expression of VAMP1 and VAMP2 in the hippocampus. Inhibitory terminals in stratum pyramidale expressed significantly more VAMP1 than VAMP2, while glutamatergic terminals in stratum radiatum expressed significantly more VAMP2 than VAMP1. Intrahippocampal injection of TeNT at doses that induce epileptic foci cleaved both isoforms in tissue around the injection site. The cleavage was modest at 2 days after injection and more substantial and extensive at 8 and 16 days. Whole-cell recordings from CA1 pyramidal cells close to the injection site, made 8-16 days after injection, showed that TeNT decreases spontaneous EPSC frequency to 38 % of control and VAMP2 immunoreactive axon terminals to 37 %. In contrast, TeNT almost completely abolished both spontaneous and evoked IPSCs while decreasing VAMP1 axon terminals to 45 %. We conclude that due to the functional selectivity of the toxin to the relative sparing of excitatory synaptic transmission shifts the network to pathogenically excitable state causing epilepsy.
Collapse
Affiliation(s)
- Alex S Ferecskó
- Neuronal Networks Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Guo J, Pan X, Zhao Y, Chen S. Engineering Clostridia Neurotoxins with elevated catalytic activity. Toxicon 2013; 74:158-66. [PMID: 23994593 DOI: 10.1016/j.toxicon.2013.08.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/18/2013] [Accepted: 08/21/2013] [Indexed: 11/30/2022]
Abstract
BoNT/B and TeNT cleave substrate VAMP2 at the same scissile bond, yet these two toxins showed different efficiency on substrate hydrolysis and had different requirements for the recognition of P2' site of VAMP2, E(78). These differences may be due to their different composition of their substrate recognition pockets in the active site. Swapping of LC/T S1' pocket residue, L(230), with the corresponding isoleucine in LC/B increased LC/T activity by ∼25 fold, while swapping of LC/B S1' pocket residue, S(201), with the corresponding proline in LC/T increased LC/B activity by ∼10 fold. Optimization of both S1 and S1' pocket residues of LC/T, LC/T (K(168)E, L(230)I) elevated LC/T activity by more than 100-fold. The highly active LC/T derivative engineered in this study has the potential to be used as a more effective tool to study mechanisms of exocytosis in central neuron. The LC/B derivative with elevated activity has the potential to be developed into novel therapy to minimize the impact of immunoresistance during BoNT/B therapy.
Collapse
Affiliation(s)
- Jiubiao Guo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | | | | | | |
Collapse
|
12
|
Guo J, Chen S. Unique substrate recognition mechanism of the botulinum neurotoxin D light chain. J Biol Chem 2013; 288:27881-7. [PMID: 23963459 DOI: 10.1074/jbc.m113.491134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Botulinum neurotoxins are the most potent protein toxins in nature. Despite the potential to block neurotransmitter release at the neuromuscular junction and cause human botulism, they are widely used in protein therapies. Among the seven botulinum neurotoxin serotypes, mechanisms of substrate recognition and specificity are known to a certain extent in the A, B, E, and F light chains, but not in the D light chain (LC/D). In this study, we addressed the unique substrate recognition mechanism of LC/D and showed that this serotype underwent hydrophobic interactions with VAMP-2 at its V1 motif. The LC/D B3, B4, and B5 binding sites specifically recognize the hydrophobic residues in the V1 motif of VAMP-2. Interestingly, we identified a novel dual recognition mechanism employed by LC/D in recognition of VAMP-2 sites at both the active site and distal binding sites, in which one site of VAMP-2 was recognized by two independent, but functionally similar LC/D sites that were complementary to each other. The dual recognition strategy increases the tolerance of LC/D to mutations and renders it a good candidate for engineering to improve its therapeutic properties. In conclusion, in this study, we identified a unique multistep substrate recognition mechanism by LC/D and provide insights for LC/D engineering and antitoxin development.
Collapse
Affiliation(s)
- Jiubiao Guo
- From the Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | |
Collapse
|
13
|
Combes RD. The Potency Testing of Botulinum Neurotoxin Products. Altern Lab Anim 2012; 40:343-6; author reply 347-8. [DOI: 10.1177/026119291204000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Pirazzini M, Rossetto O, Bertasio C, Bordin F, Shone CC, Binz T, Montecucco C. Time course and temperature dependence of the membrane translocation of tetanus and botulinum neurotoxins C and D in neurons. Biochem Biophys Res Commun 2012. [PMID: 23200837 DOI: 10.1016/j.bbrc.2012.11.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tetanus and botulinum neurotoxins act inside nerve terminals and, therefore, they have to translocate across a membrane to reach their targets. This translocation is driven by a pH gradient, acidic on the cis side and neutral on the cytosol. Recently, a protocol to induce translocation from the plasma membrane was established. Here, we have used this approach to study the temperature dependence and time course of the entry of the L chain of tetanus neurotoxin and of botulinum neurotoxins type C and D across the plasma membrane of cerebellar granular neurons. The time course of translocation of the L chain varies for the three neurotoxins, but it remains in the range of minutes at 37 °C, whilst it takes much longer at 20 °C. BoNT/C does not enter neurons at 20 °C. Translocation also depends on the dimension of the pH gradient. These data are discussed with respect to the contribution of the membrane translocation step to the total time to paralysis and to the low toxicity of these neurotoxins in cold-blood vertebrates.
Collapse
Affiliation(s)
- Marco Pirazzini
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Background: Two decades ago, botulinum neurotoxin (BoNT) type A was introduced to the commercial market. Subsequently, the toxin was approved by the FDA to address several neurological syndromes, involving muscle, nerve, and gland hyperactivity. These syndromes have typically been associated with abnormalities in cholinergic transmission. Despite the multiplicity of botulinal serotypes (designated as types A through G), therapeutic preparations are currently only available for BoNT types A and B. However, other BoNT serotypes are under study for possible clinical use and new clinical indications; Objective: To review the current research on botulinum neurotoxin serotypes A-G, and to analyze potential applications within basic science and clinical settings; Conclusions: The increasing understanding of botulinal neurotoxin pathophysiology, including the neurotoxin’s effects on specific neuronal populations, will help us in tailoring treatments for specific diagnoses, symptoms and patients. Scientists and clinicians should be aware of the full range of available data involving neurotoxin subtypes A-G.
Collapse
|
16
|
Chen S. Clinical uses of botulinum neurotoxins: current indications, limitations and future developments. Toxins (Basel) 2012; 4:913-39. [PMID: 23162705 PMCID: PMC3496996 DOI: 10.3390/toxins4100913] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 01/16/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) cause flaccid paralysis by interfering with vesicle fusion and neurotransmitter release in the neuronal cells. BoNTs are the most widely used therapeutic proteins. BoNT/A was approved by the U.S. FDA to treat strabismus, blepharospam, and hemificial spasm as early as 1989 and then for treatment of cervical dystonia, glabellar facial lines, axillary hyperhidrosis, chronic migraine and for cosmetic use. Due to its high efficacy, longevity of action and satisfactory safety profile, it has been used empirically in a variety of ophthalmological, gastrointestinal, urological, orthopedic, dermatological, secretory, and painful disorders. Currently available BoNT therapies are limited to neuronal indications with the requirement of periodic injections resulting in immune-resistance for some indications. Recent understanding of the structure-function relationship of BoNTs prompted the engineering of novel BoNTs to extend therapeutic interventions in non-neuronal systems and to overcome the immune-resistance issue. Much research still needs to be done to improve and extend the medical uses of BoNTs.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
17
|
Calvo AC, Oliván S, Manzano R, Zaragoza P, Aguilera J, Osta R. Fragment C of tetanus toxin: new insights into its neuronal signaling pathway. Int J Mol Sci 2012; 13:6883-6901. [PMID: 22837670 PMCID: PMC3397502 DOI: 10.3390/ijms13066883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/08/2012] [Accepted: 05/23/2012] [Indexed: 11/16/2022] Open
Abstract
When Clostridium tetani was discovered and identified as a Gram-positive anaerobic bacterium of the genus Clostridium, the possibility of turning its toxin into a valuable biological carrier to ameliorate neurodegenerative processes was inconceivable. However, the non-toxic carboxy-terminal fragment of the tetanus toxin heavy chain (fragment C) can be retrogradely transported to the central nervous system; therefore, fragment C has been used as a valuable biological carrier of neurotrophic factors to ameliorate neurodegenerative processes. More recently, the neuroprotective properties of fragment C have also been described in vitro and in vivo, involving the activation of Akt kinase and extracellular signal-regulated kinase (ERK) signaling cascades through neurotrophin tyrosine kinase (Trk) receptors. Although the precise mechanism of the molecular internalization of fragment C in neuronal cells remains unknown, fragment C could be internalized and translocated into the neuronal cytosol through a clathrin-mediated pathway dependent on proteins, such as dynamin and AP-2. In this review, the origins, molecular properties and possible signaling pathways of fragment C are reviewed to understand the biochemical characteristics of its intracellular and synaptic transport.
Collapse
Affiliation(s)
- Ana C. Calvo
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
| | - Sara Oliván
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
| | - Raquel Manzano
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
| | - Pilar Zaragoza
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
| | - José Aguilera
- Institute of Neurosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Center of Biomedical Research Network in Neurodegenerative Diseases (CIBERNET), 08193, Cerdanyola del Vallès, Spain; E-Mail:
| | - Rosario Osta
- LAGENBIO (Laboratory of Genetics and Biochemistry), Faculty of Veterinary-I3A, Aragonese Institute of Health Sciences (IACS), University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain; E-Mails: (A.C.C.); (S.O.); (R.M.); , (P.Z.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-976-761621; Fax: +34-976-762949
| |
Collapse
|