1
|
Bodrenko I, Ceccarelli M, Acosta-Gutierrez S. The mechanism of an electrostatic nanofilter: overcoming entropy with electrostatics. Phys Chem Chem Phys 2023; 25:26497-26506. [PMID: 37772905 DOI: 10.1039/d3cp02895j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
General porins are nature's sieving machinery in the outer membrane of Gram-negative bacteria. Their unique hourglass-shaped architecture is highly conserved among different bacterial membrane proteins and other biological channels. These biological nanopores have been designed to protect the interior of the bacterial cell from leakage of toxic compounds while selectively allowing the entry of the molecules needed for cell growth and function. The mechanism of transport through porins is of utmost and direct interest for drug discovery, extending toward nanotechnology applications for blue energy, separations, and sequencing. Here we present a theoretical framework for analysing the filter of general porins in relation to translocating molecules with the aid of enhanced molecular simulations quantitatively. Using different electrostatic probes in the form of a series of related molecules, we describe the nature of this filter and how to finely tune permeability by exploiting electrostatic interactions between the pore and the translocating molecule. Eventually, we show how enhanced simulations constitute today a valid tool for characterising the mechanism and quantifying energetically the transport of molecules through nanopores.
Collapse
Affiliation(s)
- Igor Bodrenko
- École Normale Supérieure, Département de Chimie - Laboratoire PASTEUR, Paris, France
- CNR-IOM, Sezione di Cagliari, Cittadella Universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy
| | - Matteo Ceccarelli
- CNR-IOM, Sezione di Cagliari, Cittadella Universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy
- Department of Physics, University of Cagliari, Cittadella Universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy.
| | - Silvia Acosta-Gutierrez
- Institute for Bioengineering of Catalonia, Carrer Baldiri Reixac 10-12, 080028 Barcelona, Spain.
| |
Collapse
|
2
|
Mayse LA, Movileanu L. Gating of β-Barrel Protein Pores, Porins, and Channels: An Old Problem with New Facets. Int J Mol Sci 2023; 24:12095. [PMID: 37569469 PMCID: PMC10418385 DOI: 10.3390/ijms241512095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
β barrels are ubiquitous proteins in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. These transmembrane proteins (TMPs) execute a wide variety of tasks. For example, they can serve as transporters, receptors, membrane-bound enzymes, as well as adhesion, structural, and signaling elements. In addition, multimeric β barrels are common structural scaffolds among many pore-forming toxins. Significant progress has been made in understanding the functional, structural, biochemical, and biophysical features of these robust and versatile proteins. One frequently encountered fundamental trait of all β barrels is their voltage-dependent gating. This process consists of reversible or permanent conformational transitions between a large-conductance, highly permeable open state and a low-conductance, solute-restrictive closed state. Several intrinsic molecular mechanisms and environmental factors modulate this universal property of β barrels. This review article outlines the typical signatures of voltage-dependent gating. Moreover, we discuss recent developments leading to a better qualitative understanding of the closure dynamics of these TMPs.
Collapse
Affiliation(s)
- Lauren A. Mayse
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244, USA;
- Department of Biomedical and Chemical Engineering, Syracuse University, 223 Link Hall, Syracuse, NY 13244, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244, USA;
- Department of Biomedical and Chemical Engineering, Syracuse University, 223 Link Hall, Syracuse, NY 13244, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
3
|
Sun J, Thakur AK, Movileanu L. Current noise of a protein-selective biological nanopore. Proteomics 2022; 22:e2100077. [PMID: 34275190 PMCID: PMC8763983 DOI: 10.1002/pmic.202100077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/27/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022]
Abstract
1/f current noise is ubiquitous in protein pores, porins, and channels. We have previously shown that a protein-selective biological nanopore with an external protein receptor can function as a 1/f noise generator when a high-affinity protein ligand is reversibly captured by the receptor. Here, we demonstrate that the binding affinity and concentration of the ligand are key determinants for the nature of current noise. For example, 1/f was absent when a protein ligand was reversibly captured at a much lower concentration than its equilibrium dissociation constant against the receptor. Furthermore, we also analyzed the composite current noise that resulted from mixtures of low-affinity and high-affinity ligands against the same receptor. This study highlights the significance of protein recognition events in the current noise fluctuations across biological membranes.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Avinash Kumar Thakur
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA,The BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA,Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA,The corresponding author’s contact information: Liviu Movileanu, PhD, Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA. Phone: 315-443-8078;
| |
Collapse
|
4
|
Role of internal loop dynamics in antibiotic permeability of outer membrane porins. Proc Natl Acad Sci U S A 2022; 119:2117009119. [PMID: 35193963 PMCID: PMC8872756 DOI: 10.1073/pnas.2117009119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance in Gram-negative pathogens has been identified as an urgent threat to human health by the World Health Organization. The major challenge with treating infections by these pathogens is developing antibiotics that can traverse the dense bacterial outer membrane (OM) formed by a mesh of lipopolysaccharides. Effective antibiotics permeate through OM porins, which have evolved for nutrient diffusion; however, the conformational states of these porins regulating permeation are still unclear. Here, we used molecular dynamics simulations, free energy calculations, Markov-state modeling, and whole-cell accumulation assays to provide mechanistic insight on how a porin shifts between open and closed states. We provide a mechanism of how Gram-negative bacteria confer resistance to antibiotics. Gram-negative bacteria pose a serious public health concern due to resistance to many antibiotics, caused by the low permeability of their outer membrane (OM). Effective antibiotics use porins in the OM to reach the interior of the cell; thus, understanding permeation properties of OM porins is instrumental to rationally develop broad-spectrum antibiotics. A functionally important feature of OM porins is undergoing open–closed transitions that modulate their transport properties. To characterize the molecular basis of these transitions, we performed an extensive set of molecular dynamics (MD) simulations of Escherichia coli OM porin OmpF. Markov-state analysis revealed that large-scale motion of an internal loop, L3, underlies the transition between energetically stable open and closed states. The conformation of L3 is controlled by H bonds between highly conserved acidic residues on the loop and basic residues on the OmpF β-barrel. Mutation of key residues important for the loop’s conformation shifts the equilibrium between open and closed states and regulates translocation of permeants (ions and antibiotics), as observed in the simulations and validated by our whole-cell accumulation assay. Notably, one mutant system G119D, which we find to favor the closed state, has been reported in clinically resistant bacterial strains. Overall, our accumulated ∼200 µs of simulation data (the wild type and mutants) along with experimental assays suggest the involvement of internal loop dynamics in permeability of OM porins and antibiotic resistance in Gram-negative bacteria.
Collapse
|
5
|
Roumia AF, Tsirigos KD, Theodoropoulou MC, Tamposis IA, Hamodrakas SJ, Bagos PG. OMPdb: A Global Hub of Beta-Barrel Outer Membrane Proteins. FRONTIERS IN BIOINFORMATICS 2021; 1:646581. [PMID: 36303794 PMCID: PMC9581022 DOI: 10.3389/fbinf.2021.646581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/18/2021] [Indexed: 11/14/2022] Open
Abstract
OMPdb (www.ompdb.org) was introduced as a database for β-barrel outer membrane proteins from Gram-negative bacteria in 2011 and then included 69,354 entries classified into 85 families. The database has been updated continuously using a collection of characteristic profile Hidden Markov Models able to discriminate between the different families of prokaryotic transmembrane β-barrels. The number of families has increased ultimately to a total of 129 families in the current, second major version of OMPdb. New additions have been made in parallel with efforts to update existing families and add novel families. Here, we present the upgrade of OMPdb, which from now on aims to become a global repository for all transmembrane β-barrel proteins, both eukaryotic and bacterial.
Collapse
Affiliation(s)
- Ahmed F. Roumia
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | | | | | - Ioannis A. Tamposis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Stavros J. Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- *Correspondence: Pantelis G. Bagos
| |
Collapse
|
6
|
Dogan Guzel F, Pletzer D, Norouz Dizaji A, Al-Nahas K, Bajrai M, Winterhalter M. Towards understanding single-channel characteristics of OccK8 purified from Pseudomonas aeruginosa. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:87-98. [PMID: 33481046 DOI: 10.1007/s00249-021-01498-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Antibiotic resistance in Gram-negative bacteria causes serious health issues worldwide. Bacteria employ several resistance mechanisms to cope with antimicrobials. One of their strategies is to reduce the permeability of antibiotics either through general diffusion porins or substrate-specific channels. In this study, one of the substrate-specific channels from Pseudomonas aeruginosa, OccK8 (also known as OprE), was investigated using single-channel electrophysiology. The study also includes the investigation of permeability properties of several amino acids with different charged groups (i.e. arginine, glycine and glutamic acid) through OccK8. We observed four different conformations of the same OccK8 channel when inserted in lipid bilayers. This is in contrast to previous studies where heterologous expressed OccK8 in E. coli showed only one conformation. We hypothesized that the difference in our study was due to the expression and purification of the native channel from P. aeruginosa. The single-channel uptake characteristics of the porin showed that negatively charged glutamic acid preferentially interacted with the channel while the positively charged arginine molecule showed infrequent interaction with OccK8. The neutral amino acid glycine did not show any interaction at the physiological conditions.
Collapse
Affiliation(s)
- Fatma Dogan Guzel
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yildirim Beyazit University, 06010, Ankara, Turkey.
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| | - Daniel Pletzer
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Araz Norouz Dizaji
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yildirim Beyazit University, 06010, Ankara, Turkey
| | - Kareem Al-Nahas
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Mawadah Bajrai
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Mathias Winterhalter
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|
7
|
Lei Z, Karim A. The challenges and applications of nanotechnology against bacterial resistance. J Vet Pharmacol Ther 2020; 44:281-297. [PMID: 33277732 DOI: 10.1111/jvp.12936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Bacterial resistance to the antibiotics develops rapidly and is increasingly serious health concern in the world. It is an insoluble topic due to the multiple resistant mechanisms. The overexpression of relative activities of the efflux pump has proven to be a frequent and important source of bacterial resistance. Efflux transporters in the membrane from the resistant bacteria could play a key role to inhibit the intracellular drug intake and impede the drug activities. However, nanoparticles (NPs), one of the most frequently used encapsulation materials, could increase the intracellular accumulation of the drug and inhibit the transporter activity effectively. The rational and successful application of nanotechnology is a key factor in overcoming bacterial resistance. Furthermore, nanoparticles such as metallic, carbon nanotubes and so on, may prevent the development of drug resistance and be associated with antibiotic agents, inhibiting biofilm formation or increasing the access into the target cell and exterminating the bacteria eventually. In the current study, the mechanisms of bacterial resistance are discussed and summarized. Additionally, the opportunities and challenges in the use of nanoparticles against bacterial resistance are also illuminated. At the same time, the use of nanoparticles to combat multidrug-resistant bacteria is also investigated by coupling natural antimicrobials or other alternatives. In short, we have provided a new perspective for the application of nanoparticles against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Zhiqun Lei
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Aman Karim
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
8
|
Samanta S, Bodrenko I, Acosta-Gutiérrez S, D’Agostino T, Pathania M, Ghai I, Schleberger C, Bumann D, Wagner R, Winterhalter M, van den Berg B, Ceccarelli M. Getting Drugs through Small Pores: Exploiting the Porins Pathway in Pseudomonas aeruginosa. ACS Infect Dis 2018; 4:1519-1528. [PMID: 30039960 DOI: 10.1021/acsinfecdis.8b00149] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding molecular properties of outer membrane channels of Gram-negative bacteria is of fundamental significance as they are the entry point of polar antibiotics into bacteria. Outer membrane proteomics revealed OccK8 (OprE) to be among the five most expressed substrate specific channels of the clinically important Pseudomonas aeruginosa. The high-resolution X-ray structure and electrophysiology highlighted a very narrow pore. However, experimental in vitro methods showed the transport of natural amino acids and antibiotics, among them ceftazidime. We used molecular dynamics simulations to reveal the importance of the physicochemical properties of ceftazidime in modulating the translocation through OccK8, proposing a structure-function relationship. As in general porins, the internal electric field favors the translocation of polar molecules by gainful energy compensation in the central constriction region. Importantly, the comparatively narrow OccK8 pore can undergo a substrate-induced expansion to accommodate relatively large-sized substrates.
Collapse
Affiliation(s)
- Susruta Samanta
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
- Department of Chemistry, Manipal University Jaipur, VPO Dehmi Kalan, Jaipur, Rajasthan 303007, India
| | - Igor Bodrenko
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| | - Silvia Acosta-Gutiérrez
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| | - Tommaso D’Agostino
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| | - Monisha Pathania
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Ishan Ghai
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Christian Schleberger
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Richard Wagner
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28719 Bremen, Germany
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, SP Monserrato-Sestu Km 0.8, Monserrato, 09042, Italy
| |
Collapse
|
9
|
Lee J, Pothula KR, Kleinekathöfer U, Im W. Simulation Study of Occk5 Functional Properties in Pseudomonas aeruginosa Outer Membranes. J Phys Chem B 2018; 122:8185-8192. [DOI: 10.1021/acs.jpcb.8b07109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joonseong Lee
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Karunakar R. Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
10
|
Abstract
Our limited understanding of the molecular basis for compound entry into and efflux out of Gram-negative bacteria is now recognized as a key bottleneck for the rational discovery of novel antibacterial compounds. Traditional, large-scale biochemical or target-agnostic phenotypic antibacterial screening efforts have, as a result, not been very fruitful. A main driver of this knowledge gap has been the historical lack of predictive cellular assays, tools, and models that provide structure-activity relationships to inform optimization of compound accumulation. A variety of recent approaches has recently been described to address this conundrum. This Perspective explores these approaches and considers ways in which their integration could successfully redirect antibacterial drug discovery efforts.
Collapse
Affiliation(s)
- Rubén Tommasi
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ramkumar Iyer
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alita A. Miller
- Entasis Therapeutics, Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
11
|
Abstract
Collective antibiotic drug resistance is a global threat, especially with respect to Gram-negative bacteria. The low permeability of the bacterial outer cell wall has been identified as a challenging barrier that prevents a sufficient antibiotic effect to be attained at low doses of the antibiotic. The Gram-negative bacterial cell envelope comprises an outer membrane that delimits the periplasm from the exterior milieu. The crucial mechanisms of antibiotic entry via outer membrane includes general diffusion porins (Omps) responsible for hydrophilic antibiotics and lipid-mediated pathway for hydrophobic antibiotics. The protein and lipid arrangements of the outer membrane have had a strong impact on the understanding of bacteria and their resistance to many types of antibiotics. Thus, one of the current challenges is effective interpretation at the molecular basis of the outer membrane permeability. This review attempts to develop a state of knowledge pertinent to Omps and their effective role in solute influx. Moreover, it aims toward further understanding and exploration of prospects to improve our knowledge of physicochemical limitations that direct the translocation of antibiotics via bacterial outer membrane.
Collapse
Affiliation(s)
- Ishan Ghai
- School of Engineering and Life Sciences, Jacobs University, Bremen, Germany.,Consultation Division, RSGBIOGEN, New Delhi, India
| | | |
Collapse
|
12
|
Dogan Guzel F, Citak F. Development of an On-Chip Antibiotic Permeability Assay With Single Molecule Detection Capability. IEEE Trans Nanobioscience 2018; 17:155-160. [DOI: 10.1109/tnb.2018.2809592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, Orange N, Dufour A, Cornelis P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev 2017; 41:698-722. [PMID: 28981745 DOI: 10.1093/femsre/fux020] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium belonging to the γ-proteobacteria. Like other members of the Pseudomonas genus, it is known for its metabolic versatility and its ability to colonize a wide range of ecological niches, such as rhizosphere, water environments and animal hosts, including humans where it can cause severe infections. Another particularity of P. aeruginosa is its high intrinsic resistance to antiseptics and antibiotics, which is partly due to its low outer membrane permeability. In contrast to Enterobacteria, pseudomonads do not possess general diffusion porins in their outer membrane, but rather express specific channel proteins for the uptake of different nutrients. The major outer membrane 'porin', OprF, has been extensively investigated, and displays structural, adhesion and signaling functions while its role in the diffusion of nutrients is still under discussion. Other porins include OprB and OprB2 for the diffusion of glucose, the two small outer membrane proteins OprG and OprH, and the two porins involved in phosphate/pyrophosphate uptake, OprP and OprO. The remaining nineteen porins belong to the so-called OprD (Occ) family, which is further split into two subfamilies termed OccD (8 members) and OccK (11 members). In the past years, a large amount of information concerning the structure, function and regulation of these porins has been published, justifying why an updated review is timely.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Josselin Bodilis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Laboratoire de Biotechnologie et Chimie Marines EA 3884, Université de Bretagne-Sud (UEB), 56321 Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, University of Rouen, Normandy University, 27000 Evreux, France
| |
Collapse
|
14
|
Abstract
One of the main fundamental mechanisms of antibiotic resistance in Gram-negative bacteria comprises an effective change in the membrane permeability to antibiotics. The Gram-negative bacterial complex cell envelope comprises an outer membrane that delimits the periplasm from the exterior environment. The outer membrane contains numerous protein channels, termed as porins or nanopores, which are mainly involved in the influx of hydrophilic compounds, including antibiotics. Bacterial adaptation to reduce influx through these outer membrane proteins (Omps) is one of the crucial mechanisms behind antibiotic resistance. Thus to interpret the molecular basis of the outer membrane permeability is the current challenge. This review attempts to develop a state of knowledge pertinent to Omps and their effective role in antibiotic influx. Further, it aims to study the bacterial response to antibiotic membrane permeability and hopefully provoke a discussion toward understanding and further exploration of prospects to improve our knowledge on physicochemical parameters that direct the translocation of antibiotics through the bacterial membrane protein channels.
Collapse
Affiliation(s)
- Ishan Ghai
- School of Engineering and Life Sciences, Jacobs University, Bremen
| | | |
Collapse
|
15
|
Bodrenko IV, Wang J, Salis S, Winterhalter M, Ceccarelli M. Sensing Single Molecule Penetration into Nanopores: Pushing the Time Resolution to the Diffusion Limit. ACS Sens 2017; 2:1184-1190. [PMID: 28730802 DOI: 10.1021/acssensors.7b00311] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To quantify small molecule penetration into and eventually permeation through nanopores, we applied an improved excess-noise analysis of the ion current fluctuation caused by entering molecules. The kinetic parameters of substrate entry and exit are derived from a two-state Markov model, analyzing the substrate concentration dependence of the average ion current and its variance. Including filter corrections allows one to detect the transition rates beyond the cutoff frequency, fc, of the instrumental ion-current filter. As an application of the method, we performed an analysis of the single-channel ion current of Meropenem, an antibiotic of the carbapenem family, interacting with OmpF, the major general outer membrane channel of Escherichia coli bacteria. At 40 °C we detected the residence time of Meropenem inside OmpF of about 500 ns-more than 2 orders of magnitude smaller than fc-1 and close to the diffusion limit of few hundred nanoseconds. We also have established theoretical limit conditions under which the substrate-induced channel blockages can be detected and suggest that submicrosecond-scale gating kinetic parameters are accessible with existing experimental equipment.
Collapse
Affiliation(s)
- Igor V. Bodrenko
- Department
of Physics, University of Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042, Monserrato, Cagliari, Italy
| | - Jiajun Wang
- Jacobs University, Campus Ring 1, 28759 Bremen, Germany
| | - Samuele Salis
- Department
of Physics, University of Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042, Monserrato, Cagliari, Italy
| | | | - Matteo Ceccarelli
- Department
of Physics, University of Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042, Monserrato, Cagliari, Italy
| |
Collapse
|
16
|
Scorciapino MA, Acosta-Gutierrez S, Benkerrou D, D'Agostino T, Malloci G, Samanta S, Bodrenko I, Ceccarelli M. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:113001. [PMID: 28155846 DOI: 10.1088/1361-648x/aa543b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI-Translocation consortium. The synergistic combination of structural data, in vitro assays and computer simulations has proven to give new insights towards the identification and description of physico-chemical properties modulating permeation. Once similar general rules are identified, we believe that the use of virtual screening techniques will be very helpful in searching for new molecular scaffolds with enhanced permeation, and that molecular modeling will be of fundamental assistance to the optimization stage.
Collapse
Affiliation(s)
- Mariano Andrea Scorciapino
- Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700-09042 Monserrato (CA), Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pothula KR, Dhanasekar NN, Lamichhane U, Younas F, Pletzer D, Benz R, Winterhalter M, Kleinekathöfer U. Single Residue Acts as Gate in OccK Channels. J Phys Chem B 2017; 121:2614-2621. [DOI: 10.1021/acs.jpcb.7b01787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Karunakar R. Pothula
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Naresh N. Dhanasekar
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Usha Lamichhane
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Farhan Younas
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Daniel Pletzer
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Roland Benz
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Mathias Winterhalter
- Department
of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department
of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
18
|
Chalhoub H, Pletzer D, Weingart H, Braun Y, Tunney MM, Elborn JS, Rodriguez-Villalobos H, Plésiat P, Kahl BC, Denis O, Winterhalter M, Tulkens PM, Van Bambeke F. Mechanisms of intrinsic resistance and acquired susceptibility of Pseudomonas aeruginosa isolated from cystic fibrosis patients to temocillin, a revived antibiotic. Sci Rep 2017; 7:40208. [PMID: 28091521 PMCID: PMC5238406 DOI: 10.1038/srep40208] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/01/2016] [Indexed: 12/29/2022] Open
Abstract
The β-lactam antibiotic temocillin (6-α-methoxy-ticarcillin) shows stability to most extended spectrum β-lactamases, but is considered inactive against Pseudomonas aeruginosa. Mutations in the MexAB-OprM efflux system, naturally occurring in cystic fibrosis (CF) isolates, have been previously shown to reverse this intrinsic resistance. In the present study, we measured temocillin activity in a large collection (n = 333) of P. aeruginosa CF isolates. 29% of the isolates had MICs ≤ 16 mg/L (proposed clinical breakpoint for temocillin). Mutations were observed in mexA or mexB in isolates for which temocillin MIC was ≤512 mg/L (nucleotide insertions or deletions, premature termination, tandem repeat, nonstop, and missense mutations). A correlation was observed between temocillin MICs and efflux rate of N-phenyl-1-naphthylamine (MexAB-OprM fluorescent substrate) and extracellular exopolysaccharide abundance (contributing to a mucoid phenotype). OpdK or OpdF anion-specific porins expression decreased temocillin MIC by ~1 two-fold dilution only. Contrarily to the common assumption that temocillin is inactive on P. aeruginosa, we show here clinically-exploitable MICs on a non-negligible proportion of CF isolates, explained by a wide diversity of mutations in mexA and/or mexB. In a broader context, this work contributes to increase our understanding of MexAB-OprM functionality and help delineating how antibiotics interact with MexA and MexB.
Collapse
Affiliation(s)
- Hussein Chalhoub
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Daniel Pletzer
- Life Sciences, School of Engineering and Science, Jacobs University, Bremen, Germany
| | - Helge Weingart
- Life Sciences, School of Engineering and Science, Jacobs University, Bremen, Germany
| | - Yvonne Braun
- Life Sciences, School of Engineering and Science, Jacobs University, Bremen, Germany
| | - Michael M Tunney
- CF &Airways Microbiology Research Group, Queen's University Belfast, Belfast, UK
| | - J Stuart Elborn
- CF &Airways Microbiology Research Group, Queen's University Belfast, Belfast, UK
| | - Hector Rodriguez-Villalobos
- Laboratoire de microbiologie, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Patrick Plésiat
- Laboratoire de bactériologie, Hôpital Jean Minjoz, Besançon, France
| | | | - Olivier Denis
- Laboratoire de microbiologie, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Mathias Winterhalter
- Life Sciences, School of Engineering and Science, Jacobs University, Bremen, Germany
| | - Paul M Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
Mohammad MM, Tomita N, Ohta M, Movileanu L. The Transmembrane Domain of a Bicomponent ABC Transporter Exhibits Channel-Forming Activity. ACS Chem Biol 2016; 11:2506-18. [PMID: 27379442 PMCID: PMC5026576 DOI: 10.1021/acschembio.6b00383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that expresses two unique forms of lipopolysaccharides (LPSs) on its bacterial surface, the A- and B-bands. The A-band polysaccharides (A-band PSs) are thought to be exported into the periplasm via a bicomponent ATP-binding cassette (ABC) transporter located within the inner membrane. This ABC protein complex consists of the transmembrane (TMD) Wzm and nucleotide-binding (NBD) Wzt domain proteins. Here, we were able to probe ∼1.36 nS-average conductance openings of the Wzm-based protein complex when reconstituted into a lipid membrane buffered by a 200 mM KCl solution, demonstrating the large-conductance, channel-forming ability of the TMDs. In agreement with this finding, transmission electron microscopy (TEM) imaging revealed the ring-shaped structure of the transmembrane Wzm protein complex. As hypothesized, using liposomes, we demonstrated that Wzm interacts with Wzt. Further, the Wzt polypeptide indeed hydrolyzed ATP but exhibited a ∼75% reduction in the ATPase activity when its Walker A domain was deleted. The distribution and average unitary conductance of the TMD Wzm protein complex were altered by the presence of the NBD Wzt protein, confirming the regulatory role of the latter polypeptide. To our knowledge, the large-conductance, channel-like activity of the Wzm protein complex, although often hypothesized, has not previously been demonstrated. These results constitute a platform for future structural, biophysical, and functional explorations of this bicomponent ABC transporter.
Collapse
Affiliation(s)
- Mohammad M. Mohammad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Noriko Tomita
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Makoto Ohta
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- The Syracuse Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
20
|
In Silico Structure and Sequence Analysis of Bacterial Porins and Specific Diffusion Channels for Hydrophilic Molecules: Conservation, Multimericity and Multifunctionality. Int J Mol Sci 2016; 17:ijms17040599. [PMID: 27110766 PMCID: PMC4849052 DOI: 10.3390/ijms17040599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022] Open
Abstract
Diffusion channels are involved in the selective uptake of nutrients and form the largest outer membrane protein (OMP) family in Gram-negative bacteria. Differences in pore size and amino acid composition contribute to the specificity. Structure-based multiple sequence alignments shed light on the structure-function relations for all eight subclasses. Entropy-variability analysis results are correlated to known structural and functional aspects, such as structural integrity, multimericity, specificity and biological niche adaptation. The high mutation rate in their surface-exposed loops is likely an important mechanism for host immune system evasion. Multiple sequence alignments for each subclass revealed conserved residue positions that are involved in substrate recognition and specificity. An analysis of monomeric protein channels revealed particular sequence patterns of amino acids that were observed in other classes at multimeric interfaces. This adds to the emerging evidence that all members of the family exist in a multimeric state. Our findings are important for understanding the role of members of this family in a wide range of bacterial processes, including bacterial food uptake, survival and adaptation mechanisms.
Collapse
|
21
|
Pothula KR, Solano CJF, Kleinekathöfer U. Simulations of outer membrane channels and their permeability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1760-71. [PMID: 26721326 DOI: 10.1016/j.bbamem.2015.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
Channels in the outer membrane of Gram-negative bacteria provide essential pathways for the controlled and unidirectional transport of ions, nutrients and metabolites into the cell. At the same time the outer membrane serves as a physical barrier for the penetration of noxious substances such as antibiotics into the bacteria. Most antibiotics have to pass through these membrane channels to either reach cytoplasmic bound targets or to further cross the hydrophobic inner membrane. Considering the pharmaceutical significance of antibiotics, understanding the functional role and mechanism of these channels is of fundamental importance in developing strategies to design new drugs with enhanced permeation abilities. Due to the biological complexity of membrane channels and experimental limitations, computer simulations have proven to be a powerful tool to investigate the structure, dynamics and interactions of membrane channels. Considerable progress has been made in computer simulations of membrane channels during the last decade. The goal of this review is to provide an overview of the computational techniques and their roles in modeling the transport across outer membrane channels. A special emphasis is put on all-atom molecular dynamics simulations employed to better understand the transport of molecules. Moreover, recent molecular simulations of ion, substrate and antibiotics translocation through membrane pores are briefly summarized. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Karunakar R Pothula
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Carlos J F Solano
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
22
|
Wang Y, Gu LQ. Biomedical diagnosis perspective of epigenetic detections using alpha-hemolysin nanopore. AIMS MATERIALS SCIENCE 2015; 2:448-472. [PMID: 30931380 PMCID: PMC6436813 DOI: 10.3934/matersci.2015.4.448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The α-hemolysin nanopore has been studied for applications in DNA sequencing, various single-molecule detections, biomolecular interactions, and biochips. The detection of single molecules in a clinical setting could dramatically improve cancer detection and diagnosis as well as develop personalized medicine practices for patients. This brief review shortly presents the current solid state and protein nanopore platforms and their applications like biosensing and sequencing. We then elaborate on various epigenetic detections (like microRNA, G-quadruplex, DNA damages, DNA modifications) with the most widely used alpha-hemolysin pore from a biomedical diagnosis perspective. In these detections, a nanopore electrical current signature was generated by the interaction of a target with the pore. The signature often was evidenced by the difference in the event duration, current level, or both of them. An ideal signature would provide obvious differences in the nanopore signals between the target and the background molecules. The development of cancer biomarker detection techniques and nanopore devices have the potential to advance clinical research and resolve health problems. However, several challenges arise in applying nanopore devices to clinical studies, including super low physiological concentrations of biomarkers resulting in low sensitivity, complex biological sample contents resulting in false signals, and fast translocating speed through the pore resulting in poor detections. These issues and possible solutions are discussed.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biological Engineering, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Li-qun Gu
- Department of Biological Engineering, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
23
|
Fowler RC, Hanson ND. The OpdQ porin of Pseudomonas aeruginosa is regulated by environmental signals associated with cystic fibrosis including nitrate-induced regulation involving the NarXL two-component system. Microbiologyopen 2015; 4:967-82. [PMID: 26459101 PMCID: PMC4694141 DOI: 10.1002/mbo3.305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen that causes chronic infections in immunocompromised hosts. Multiple porins modulate outer membrane permeability under various environmental conditions. The lung environment of cystic fibrosis (CF) patients is unique with changes occurring in nutrient availability, osmolarity, and oxygen content. Although P. aeruginosa gene expression is modified under these conditions, little is known about how they influence porin regulation. In this study, we evaluated the regulation of the outer membrane porin OpdQ, a member of the OprD family of porins, with regard to oxygen, nitrate, and/or NaCl levels. We demonstrated using promoter::fusion clones of P. aeruginosa PAO1 and clinical strains collected from CF patients that OpdQ was transcriptionally repressed under low oxygen but increased in the presence of nitrate. The nitrate‐induced regulation of OpdQ was found to be dependent on the transcription factor NarL via the NarXL two‐component system. In addition, NaCl‐induced osmotic stress increased OpdQ production among most of the clinical strains evaluated. In conclusion, these data identify for the first time that specific environmental cues associated with the CF microenvironment influence porin regulation, and that the nitrate‐induced regulation of OpdQ is associated with nitrate metabolism via the NarXL two‐component system of P. aeruginosa.
Collapse
Affiliation(s)
- Randal C Fowler
- Department of Medical Microbiology and Immunology, Center for Research in Anti-Infectives and Biotechnology, Creighton University School of Medicine, 2500 California Plaza, Omaha, Nebraska, 68178
| | - Nancy D Hanson
- Department of Medical Microbiology and Immunology, Center for Research in Anti-Infectives and Biotechnology, Creighton University School of Medicine, 2500 California Plaza, Omaha, Nebraska, 68178
| |
Collapse
|
24
|
Wolfe AJ, Mohammad MM, Thakur AK, Movileanu L. Global redesign of a native β-barrel scaffold. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:19-29. [PMID: 26456555 DOI: 10.1016/j.bbamem.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/03/2015] [Accepted: 10/07/2015] [Indexed: 11/30/2022]
Abstract
One persistent challenge in membrane protein design is accomplishing extensive modifications of proteins without impairing their functionality. A truncation derivative of the ferric hydroxamate uptake component A (FhuA), which featured the deletion of the 160-residue cork domain and five large extracellular loops, produced the conversion of a non-conductive, monomeric, 22-stranded β-barrel protein into a large-conductance protein pore. Here, we show that this redesigned β-barrel protein tolerates an extensive alteration in the internal surface charge, encompassing 25 negative charge neutralizations. By using single-molecule electrophysiology, we noted that a commonality of various truncation FhuA protein pores was the occurrence of 33% blockades of the unitary current at very high transmembrane potentials. We determined that these current transitions were stimulated by their interaction with an external cationic polypeptide, which occurred in a fashion dependent on the surface charge of the pore interior as well as the polypeptide characteristics. This study shows promise for extensive engineering of a large monomeric β-barrel protein pore in molecular biomedical diagnosis, therapeutics, and biosensor technology.
Collapse
Affiliation(s)
- Aaron J Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, NY 13244-4100, USA
| | - Mohammad M Mohammad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Avinash K Thakur
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, NY 13244-4100, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, NY 13244-4100, USA; The Syracuse Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, NY 13244, USA.
| |
Collapse
|
25
|
Isabella V, Campbell A, Manchester J, Sylvester M, Nayar A, Ferguson K, Tommasi R, Miller A. Toward the Rational Design of Carbapenem Uptake in Pseudomonas aeruginosa. ACTA ACUST UNITED AC 2015; 22:535-547. [DOI: 10.1016/j.chembiol.2015.03.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/14/2015] [Accepted: 03/27/2015] [Indexed: 12/22/2022]
|
26
|
Cheneke B, van den Berg B, Movileanu L. Quasithermodynamic contributions to the fluctuations of a protein nanopore. ACS Chem Biol 2015; 10:784-94. [PMID: 25479108 PMCID: PMC4372101 DOI: 10.1021/cb5008025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
Proteins undergo thermally activated conformational fluctuations among two or more substates, but a quantitative inquiry on their kinetics is persistently challenged by numerous factors, including the complexity and dynamics of various interactions, along with the inability to detect functional substates within a resolvable time scale. Here, we analyzed in detail the current fluctuations of a monomeric β-barrel protein nanopore of known high-resolution X-ray crystal structure. We demonstrated that targeted perturbations of the protein nanopore system, in the form of loop-deletion mutagenesis, accompanying alterations of electrostatic interactions between long extracellular loops, produced modest changes of the differential activation free energies calculated at 25 °C, ΔΔG(⧧), in the range near the thermal energy but substantial and correlated modifications of the differential activation enthalpies, ΔΔH(⧧), and entropies, ΔΔS(⧧). This finding indicates that the local conformational reorganizations of the packing and flexibility of the fluctuating loops lining the central constriction of this protein nanopore were supplemented by changes in the single-channel kinetics. These changes were reflected in the enthalpy-entropy reconversions of the interactions between the loop partners with a compensating temperature, TC, of ∼300 K, and an activation free energy constant of ∼41 kJ/mol. We also determined that temperature has a much greater effect on the energetics of the equilibrium gating fluctuations of a protein nanopore than other environmental parameters, such as the ionic strength of the aqueous phase as well as the applied transmembrane potential, likely due to ample changes in the solvation activation enthalpies. There is no fundamental limitation for applying this approach to other complex, multistate membrane protein systems. Therefore, this methodology has major implications in the area of membrane protein design and dynamics, primarily by revealing a better quantitative assessment on the equilibrium transitions among multiple well-defined and functionally distinct substates of protein channels and pores.
Collapse
Affiliation(s)
- Belete
R. Cheneke
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Bert van den Berg
- Institute
for Cellular and Molecular Biosciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Structural
Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, United States
- Syracuse
Biomaterials Institute, Syracuse University, 121 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
27
|
Pothula KR, Kleinekathöfer U. Theoretical analysis of ion conductance and gating transitions in the OpdK (OccK1) channel. Analyst 2015; 140:4855-64. [DOI: 10.1039/c5an00036j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular simulations have been performed on the pore OpdK elucidating molecular details of ion conductance and a possible gating mechanism.
Collapse
|
28
|
Abstract
Bacteria secrete and harbor in their membranes a number of pore-forming proteins. Some of these are bona fide ion channels that may respond to changes in membrane tension, voltage, or pH. Others may be large translocons used for the secretion of folded or unfolded polypeptide substrates. Additionally, many secreted toxins insert into target cell membranes and form pores that either collapse membrane electrochemical gradients or provide conduits for the delivery of virulence factors. In all cases, electrophysiological approaches have yielded much progress in past decades in understanding the functional mechanisms of these pores. By monitoring the changes in current due to ion flow through the pores, these techniques are used as high-resolution tools to gather detailed information on the kinetic and permeation properties of these proteins, including those whose physiological role is not ion flux. This review highlights some of the electrophysiological studies that have advanced the field of transport by pore-forming proteins of bacterial origin.
Collapse
Affiliation(s)
- Anne H Delcour
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5001;
| |
Collapse
|
29
|
Movileanu L. Watching single proteins using engineered nanopores. Protein Pept Lett 2014; 21:235-46. [PMID: 24370252 PMCID: PMC3924890 DOI: 10.2174/09298665113209990078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/03/2012] [Accepted: 11/10/2012] [Indexed: 12/22/2022]
Abstract
Recent studies in the area of single-molecule detection of proteins with nanopores show a great promise in fundamental science, bionanotechnology and proteomics. In this mini-review, I discuss a comprehensive array of examinations of protein detection and characterization using protein and solid-state nanopores. These investigations demonstrate the power of the single-molecule nanopore measurements to reveal a broad range of functional, structural, biochemical and biophysical features of proteins, such as their backbone flexibility, enzymatic activity, binding affinity as well as their concentration, size and folding state. Engineered nanopores in organic materials and in inorganic membranes coupled with surface modification and protein engineering might provide a new generation of sensing devices for molecular biomedical diagnostics.
Collapse
Affiliation(s)
- Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA.
| |
Collapse
|
30
|
Eren E, Parkin J, Adelanwa A, Cheneke B, Movileanu L, Khalid S, van den Berg B. Toward understanding the outer membrane uptake of small molecules by Pseudomonas aeruginosa. J Biol Chem 2013; 288:12042-53. [PMID: 23467408 DOI: 10.1074/jbc.m113.463570] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Because small molecules enter Gram-negative bacteria via outer membrane (OM) channels, understanding OM transport is essential for the rational design of improved and new antibiotics. In the human pathogen Pseudomonas aeruginosa, most small molecules are taken up by outer membrane carboxylate channel (Occ) proteins, which can be divided into two distinct subfamilies, OccD and OccK. Here we characterize substrate transport mediated by Occ proteins belonging to both subfamilies. Based on the determination of the OccK2-glucuronate co-crystal structure, we identify the channel residues that are essential for substrate transport. We further show that the pore regions of the channels are rigid in the OccK subfamily and highly dynamic in the OccD subfamily. We also demonstrate that the substrate carboxylate group interacts with central residues of the basic ladder, a row of arginine and lysine residues that leads to and away from the binding site at the channel constriction. Moreover, the importance of the basic ladder residues corresponds to their degree of conservation. Finally, we apply the generated insights by converting the archetype of the entire family, OccD1, from a basic amino acid-specific channel into a channel with a preference for negatively charged amino acids.
Collapse
Affiliation(s)
- Elif Eren
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Tomita N, Mohammad MM, Niedzwiecki DJ, Ohta M, Movileanu L. Does the lipid environment impact the open-state conductance of an engineered β-barrel protein nanopore? BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:1057-65. [PMID: 23246446 PMCID: PMC3560310 DOI: 10.1016/j.bbamem.2012.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/16/2012] [Accepted: 12/04/2012] [Indexed: 12/11/2022]
Abstract
Using rational membrane protein design, we were recently able to obtain a β-barrel protein nanopore that was robust under an unusually broad range of experimental circumstances. This protein nanopore was based upon the native scaffold of the bacterial ferric hydroxamate uptake component A (FhuA) of Escherichia coli. In this work, we expanded the examinations of the open-state current of this engineered protein nanopore, also called FhuA ΔC/Δ4L, employing an array of lipid bilayer systems that contained charged and uncharged as well as conical and cylindrical lipids. Remarkably, systematical single-channel analysis of FhuA ΔC/Δ4L indicated that most of its biophysical features, such as the unitary conductance and the stability of the open-state current, were not altered under the conditions tested in this work. However, electrical recordings at high transmembrane potentials revealed that the presence of conical phospholipids within the bilayer catalyzes the first, stepwise current transition of the FhuA ΔC/Δ4L protein nanopore to a lower-conductance open state. This study reinforces the stability of the open-state current of the engineered FhuA ΔC/Δ4L protein nanopore under various experimental conditions, paving the way for further critical developments in biosensing and molecular biomedical diagnosis.
Collapse
Affiliation(s)
- Noriko Tomita
- Department of Physics, Syracuse University, Syracuse, New York 13244-1130, USA
- Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | | | | | - Makoto Ohta
- Institute of Fluid Science, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Liviu Movileanu
- Department of Physics, Syracuse University, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, Syracuse, New York 13244-4100, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
32
|
Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of ion channels. Chem Rev 2012; 112:6250-84. [PMID: 23035940 PMCID: PMC3633640 DOI: 10.1021/cr3002609] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Swati Bhattacharya
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Jejoong Yoo
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - David Wells
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, 1110 W. Green St., Urbana, IL
| |
Collapse
|
33
|
Liu J, Wolfe AJ, Eren E, Vijayaraghavan J, Indic M, van den Berg B, Movileanu L. Cation selectivity is a conserved feature in the OccD subfamily of Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2908-16. [PMID: 22824298 DOI: 10.1016/j.bbamem.2012.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 01/03/2023]
Abstract
To achieve the uptake of small, water-soluble nutrients, Pseudomonas aeruginosa, a pathogenic Gram-negative bacterium, employs substrate-specific channels located within its outer membrane. In this paper, we present a detailed description of the single-channel characteristics of six members of the outer membrane carboxylate channel D (OccD) subfamily. Recent structural studies showed that the OccD proteins share common features, such as a closely related, monomeric, 18-stranded β-barrel conformation and large extracellular loops, which are folded back into the channel lumen. Here, we report that the OccD proteins displayed single-channel activity with a unitary conductance covering an unusually broad range, between 20 and 670pS, as well as a diverse gating dynamics. Interestingly, we found that cation selectivity is a conserved trait among all members of the OccD subfamily, bringing a new distinction between the members of the OccD subfamily and the anion-selective OccK channels. Conserved cation selectivity of the OccD channels is in accord with an increased specificity and selectivity of these proteins for positively charged, carboxylate-containing substrates.
Collapse
Affiliation(s)
- Jiaming Liu
- Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Cheneke BR, Indic M, van den Berg B, Movileanu L. An outer membrane protein undergoes enthalpy- and entropy-driven transitions. Biochemistry 2012; 51:5348-58. [PMID: 22680931 DOI: 10.1021/bi300332z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
β-Barrel membrane proteins often fluctuate among various open substates, yet the nature of these transitions is not fully understood. Using temperature-dependent, single-molecule electrophysiology analysis, along with rational protein design, we show that OccK1, a member of the outer membrane carboxylate channel from Pseudomonas aeruginosa, features a discrete gating dynamics comprising both enthalpy-driven and entropy-driven current transitions. OccK1 was chosen for the analysis of these transitions, because it is a monomeric transmembrane β-barrel of a known high-resolution crystal structure and displays three distinguishable, time-resolvable open substates. Native and loop-deletion OccK1 proteins showed substantial changes in the activation enthalpies and entropies of the channel transitions, but modest alterations in the equilibrium free energies, confirming that the system never departs from equilibrium. Moreover, some current fluctuations of OccK1 indicated a counterintuitive, negative activation enthalpy, which was compensated by a significant decrease in the activation entropy. Temperature scanning of the single-channel properties of OccK1 exhibited a thermally induced switch of the energetically most favorable open substate at the lowest examined temperature of 4 °C. Therefore, such a semiquantitative assessment of the current fluctuation dynamics not only demonstrates the complexity of channel gating but also reveals distinct functional traits of a β-barrel outer membrane protein under different temperature circumstances.
Collapse
Affiliation(s)
- Belete R Cheneke
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | | | | | | |
Collapse
|