1
|
Crisan CV, Goldberg JB. Antibacterial contact-dependent proteins secreted by Gram-negative cystic fibrosis respiratory pathogens. Trends Microbiol 2022; 30:986-996. [PMID: 35487848 PMCID: PMC9474641 DOI: 10.1016/j.tim.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 01/11/2023]
Abstract
Cystic fibrosis (CF) is a genetic disease that affects almost 100 000 people worldwide. CF patients suffer from chronic bacterial airway infections that are often polymicrobial and are the leading cause of mortality. Interactions between pathogens modulate expression of genes responsible for virulence and antibiotic resistance. One of the ways bacteria can interact is through contact-dependent systems, which secrete antibacterial proteins (effectors) that confer advantages to cells that harbor them. Here, we highlight recent work that describes effectors used by Gram-negative CF pathogens to eliminate competitor bacteria. Understanding the mechanisms of secreted effectors may lead to novel insights into the ecology of bacteria that colonize respiratory tracts and could also pave the way for the design of new therapeutics.
Collapse
Affiliation(s)
- Cristian V Crisan
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA; Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA; Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H. The VirB System Plays a Crucial Role in Brucella Intracellular Infection. Int J Mol Sci 2021; 22:ijms222413637. [PMID: 34948430 PMCID: PMC8707931 DOI: 10.3390/ijms222413637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a highly prevalent zoonotic disease caused by Brucella. Brucella spp. are gram-negative facultative intracellular parasitic bacteria. Its intracellular survival and replication depend on a functional virB system, an operon encoded by VirB1–VirB12. Type IV secretion system (T4SS) encoded by the virB operon is an important virulence factor of Brucella. It can subvert cellular pathway and induce host immune response by secreting effectors, which promotes Brucella replication in host cells and induce persistent infection. Therefore, this paper summarizes the function and significance of the VirB system, focusing on the structure of the VirB system where VirB T4SS mediates biogenesis of the endoplasmic reticulum (ER)-derived replicative Brucella-containing vacuole (rBCV), the effectors of T4SS and the cellular pathways it subverts, which will help better understand the pathogenic mechanism of Brucella and provide new ideas for clinical vaccine research and development.
Collapse
Affiliation(s)
- Xue Xiong
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130122, China
- Correspondence: (J.L.); (H.J.)
| | - Hanwei Jiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Veterinary Scientific Engineering Research Center, Chongqing 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence: (J.L.); (H.J.)
| |
Collapse
|
3
|
Afrin KS, Rahim MA, Rubel MH, Park JI, Jung HJ, Kim HT, Nou IS. Development of PCR-Based Molecular Marker for Detection of Xanthomonas campestris pv. campestris Race 6, the Causative Agent of Black Rot of Brassicas. THE PLANT PATHOLOGY JOURNAL 2020; 36:418-427. [PMID: 33082726 PMCID: PMC7542024 DOI: 10.5423/ppj.oa.06.2020.0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc), the pathogen of black rot which is the most destructive disease of Brassica vegetables throughout the world. Here, we reported two novel sequence-characterized amplified region (SCAR) markers (i.e., XccR6-60 and XccR6-67) for the detection of Xcc race 6 via re-alignment of the complete genome sequences of Xcc races/strains/pathovars. The specificity of SCAR primer sets was verified by mean of PCR amplification using the genomic DNA template of Xcc races/strains/pathovars and two other plant infecting bacterial strains. The PCR result revealed that the XccR6-60 and XccR6-67 primer sets amplified 692-bp and 917-bp DNA fragments, respectively, specifically from race 6, while no visible amplification was detected in other samples. In addition, the SCAR primers were highly sensitive and can detect from a very low concentration of genomic DNA of Xcc race 6. However, the complete genome sequence of Xcc race 6 is not yet publicly available. Therefore, the cloning and sequencing of XccR6-60 and XccR6-67 fragments from race 6 provide more evidence of the specificity of these markers. These results indicated that the newly developed SCAR markers can successfully, effectively and rapidly detect Xcc race 6 from other Xcc races/strains/pathovars as well as other plant pathogenic bacteria. This is the first report for race-specific molecular markers for Xcc race 6.
Collapse
Affiliation(s)
| | - Md Abdur Rahim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka-107, Bangladesh
| | - Mehede Hassan Rubel
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea
| | - Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon 57922, Korea
| |
Collapse
|
4
|
Deng H, Zhou J, Gong B, Xiao M, Zhang M, Pang Q, Zhang X, Zhao B, Zhou X. Screening and identification of a human domain antibody against Brucella abortus VirB5. Acta Trop 2019; 197:105026. [PMID: 31103700 DOI: 10.1016/j.actatropica.2019.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/02/2019] [Accepted: 05/15/2019] [Indexed: 01/18/2023]
Abstract
Brucellosis is caused by the genus Brucella. Brucella is widely distributed in cattle, swine, sheep, goat and other mammals including human. Animal brucellosis causes severe economic losses and affects related international transportation and trade. Human brucellosis causes both acute and chronic symptoms of multi-organ dysfunction. Brucella type IV secretion system (T4SS) VirB5 was required for macrophages infection and essential for virulence in mice. VirB5 is located on the cell surface and serves as a specific adhesin targeting host cell receptors. The aim of this study was to isolate and characterize a specific human domain antibody against Brucella abortus (B. abortus) VirB5 from human single domain antibody (sdAb or VHH) phage display library. Following five rounds of screening, an sdAb named as BaV5VH4 showed the highest affinity by enzyme-linked immunosorbent assay (ELISA). Its interaction with B. abortus VirB5 was verified by binding assay, dot blot and molecular docking. These findings in this paper could greatly help elucidate the molecular mechanisms of Brucella infection, and accelerate the development of sdAbs-based vaccines and neutralizing therapeutics of brucellosis.
Collapse
|
5
|
Wu X, Zhao Y, Sun L, Jiang M, Wang Q, Wang Q, Yang W, Wu Y. Crystal structure of CagV, the Helicobacter pylori homologue of the T4SS protein VirB8. FEBS J 2019; 286:4294-4309. [PMID: 31230405 DOI: 10.1111/febs.14971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/13/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
Abstract
The VirB/D type IV secretion system (T4SS) plays an essential role in materials transport between host cells and pathogenic Helicobacter pylori and is considered the major pathogenic mediator of H. pylori-associated gastric disease. VirB8, an inner membrane protein that interacts with many other proteins, is a crucial component for secretory function. Here, we present a crystal structure of the periplasmic domain of CagV, the VirB8 counterpart in the H. pylori Cag-T4SS. The structure reveals a fold similar to that of other VirB8 members except for the absence of the α5 helix, a discontinuous β1 strand, a larger angle between the α2 and α3 helices, a more hydrophobic surface groove, but exhibits a different dimer interface. Whether the dimerization occurs in solution was proved by mutagenesis, size-exclusion chromatography and cross-linking assays. Unlike the classical dimerization mode, the interface of the CagV dimer is principally formed by several hydrogen bonds, which indicates instability of dimerization. The structure here demonstrates the difference in dimerization among VirB8 homologues and indicates the considerable compositional and functional diversity of them in T4SS. DATABASE: Coordinates and structure factors have been deposited in the Protein Data Bank under accession codes 6IQT.
Collapse
Affiliation(s)
- Xiuling Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Yanhe Zhao
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lifang Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Meiqin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Qin Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - QianChao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Wendi Yang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
6
|
Kumari R, Shariq M, Sharma S, Kumar A, Mukhopadhyay G. CagW, a VirB6 homologue interacts with Cag-type IV secretion system substrate CagA in Helicobacter pylori. Biochem Biophys Res Commun 2019; 515:712-718. [PMID: 31182283 DOI: 10.1016/j.bbrc.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 01/19/2023]
Abstract
Protein translocating Cag type IV secretion system of Helicobacter pylori is a diverse multi-protein complex. Here, we have characterized one of its key subunit CagW to identify its interacting partners. Our results demonstrate for the first time that this VirB6 homologue interacts with the substrate of the secretion system CagA. CagW forms multimer and its absence affects cellular levels of pilus forming components, CagL, CagI and CagH. Our results support the notion that the protein is essential for the transport of CagA across the bacterial membrane barrier and would aid in improving our understanding of structural and functional aspects of the inner membrane part of Cag-T4SS channel complex for the passage of substrate CagA.
Collapse
Affiliation(s)
- Rajesh Kumari
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohd Shariq
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shivani Sharma
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajay Kumar
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Gauranga Mukhopadhyay
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
7
|
Sgro GG, Oka GU, Souza DP, Cenens W, Bayer-Santos E, Matsuyama BY, Bueno NF, dos Santos TR, Alvarez-Martinez CE, Salinas RK, Farah CS. Bacteria-Killing Type IV Secretion Systems. Front Microbiol 2019; 10:1078. [PMID: 31164878 PMCID: PMC6536674 DOI: 10.3389/fmicb.2019.01078] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteria have been constantly competing for nutrients and space for billions of years. During this time, they have evolved many different molecular mechanisms by which to secrete proteinaceous effectors in order to manipulate and often kill rival bacterial and eukaryotic cells. These processes often employ large multimeric transmembrane nanomachines that have been classified as types I-IX secretion systems. One of the most evolutionarily versatile are the Type IV secretion systems (T4SSs), which have been shown to be able to secrete macromolecules directly into both eukaryotic and prokaryotic cells. Until recently, examples of T4SS-mediated macromolecule transfer from one bacterium to another was restricted to protein-DNA complexes during bacterial conjugation. This view changed when it was shown by our group that many Xanthomonas species carry a T4SS that is specialized to transfer toxic bacterial effectors into rival bacterial cells, resulting in cell death. This review will focus on this special subtype of T4SS by describing its distinguishing features, similar systems in other proteobacterial genomes, and the nature of the effectors secreted by these systems and their cognate inhibitors.
Collapse
Affiliation(s)
- Germán G. Sgro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gabriel U. Oka
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Diorge P. Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - William Cenens
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ethel Bayer-Santos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Y. Matsuyama
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Natalia F. Bueno
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Cristina E. Alvarez-Martinez
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, University of Campinas (UNICAMP), Campinas, Brazil
| | - Roberto K. Salinas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Chuck S. Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Abstract
Type IV secretion systems (T4SSs) are nanomachines that Gram-negative, Gram-positive bacteria, and some archaea use to transport macromolecules across their membranes into bacterial or eukaryotic host targets or into the extracellular milieu. They are the most versatile secretion systems, being able to deliver both proteins and nucleoprotein complexes into targeted cells. By mediating conjugation and/or competence, T4SSs play important roles in determining bacterial genome plasticity and diversity; they also play a pivotal role in the spread of antibiotic resistance within bacterial populations. T4SSs are also used by human pathogens such as Legionella pneumophila, Bordetella pertussis, Brucella sp., or Helicobacter pylori to sustain infection. Since they are essential virulence factors for these important pathogens, T4SSs might represent attractive targets for vaccines and therapeutics. The best-characterized conjugative T4SSs of Gram-negative bacteria are composed of twelve components that are conserved across many T4SSs. In this chapter, we will review our current structural knowledge on the T4SSs by describing the structures of the individual components and how they assemble into large macromolecular assemblies. With the combined efforts of X-ray crystallography, nuclear magnetic resonance (NMR), and more recently electron microscopy, structural biology of the T4SS has made spectacular progress during the past fifteen years and has unraveled the properties of unique proteins and complexes that assemble dynamically in a highly sophisticated manner.
Collapse
|
9
|
González-Rivera C, Khara P, Awad D, Patel R, Li YG, Bogisch M, Christie PJ. Two pKM101-encoded proteins, the pilus-tip protein TraC and Pep, assemble on the Escherichia coli cell surface as adhesins required for efficient conjugative DNA transfer. Mol Microbiol 2018; 111:96-117. [PMID: 30264928 DOI: 10.1111/mmi.14141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/10/2023]
Abstract
Mobile genetic elements (MGEs) encode type IV secretion systems (T4SSs) known as conjugation machines for their transmission between bacterial cells. Conjugation machines are composed of an envelope-spanning translocation channel, and those functioning in Gram-negative species additionally elaborate an extracellular pilus to initiate donor-recipient cell contacts. We report that pKM101, a self-transmissible MGE functioning in the Enterobacteriaceae, has evolved a second target cell attachment mechanism. Two pKM101-encoded proteins, the pilus-tip adhesin TraC and a protein termed Pep, are exported to the cell surface where they interact and also form higher order complexes appearing as distinct foci or patches around the cell envelope. Surface-displayed TraC and Pep are required for an efficient conjugative transfer, 'extracellular complementation' potentially involving intercellular protein transfer, and activation of a Pseudomonas aeruginosa type VI secretion system. Both proteins are also required for bacteriophage PRD1 infection. TraC and Pep are exported across the outer membrane by a mechanism potentially involving the β-barrel assembly machinery. The pKM101 T4SS, thus, deploys alternative routing pathways for the delivery of TraC to the pilus tip or both TraC and Pep to the cell surface. We propose that T4SS-encoded, pilus-independent attachment mechanisms maximize the probability of MGE propagation and might be widespread among this translocation superfamily.
Collapse
Affiliation(s)
- Christian González-Rivera
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Dominik Awad
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Roosheel Patel
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | | | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
10
|
Mary C, Fouillen A, Bessette B, Nanci A, Baron C. Interaction via the N terminus of the type IV secretion system (T4SS) protein VirB6 with VirB10 is required for VirB2 and VirB5 incorporation into T-pili and for T4SS function. J Biol Chem 2018; 293:13415-13426. [PMID: 29976757 PMCID: PMC6120205 DOI: 10.1074/jbc.ra118.002751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/02/2018] [Indexed: 12/18/2022] Open
Abstract
Many bacterial pathogens employ multicomponent protein complexes such as type IV secretion systems (T4SSs) to transfer virulence factors into host cells. Here we studied the interaction between two essential T4SS components: the very hydrophobic inner membrane protein VirB6, which may be a component of the translocation channel, and VirB10, which links the inner and outer bacterial membranes. To map the interaction site between these two T4SS components, we conducted alanine scanning and deleted six-amino acid stretches from the N-terminal periplasmic domain of VirB6 from Brucella suis. Using the bacterial two-hybrid system to analyze the effects of these alterations on the VirB6–VirB10 interaction, we identified the amino acid regions 16–21 and 28–33 and Leu-18 in VirB6 as being required for this interaction. SDS-PAGE coupled with Western blotting of cell lysates and native PAGE of detergent-extracted membrane proteins revealed that the corresponding VirB6 residues in Agrobacterium tumefaciens (Phe-20 and amino acids 18–23 and 30–35) modulate the stability of both VirB6 and VirB5. However, the results from immuno-EM and super-resolution microscopy suggested that these regions and residues are not required for membrane association or for polar localization of VirB6. The six-amino acid deletions in the N terminus of VirB6 abolished pilus formation and virulence of A. tumefaciens, and the corresponding deletions in the VirB6 homolog TraD from the plasmid pKM101-T4SS abrogated plasmid transfer. Our results indicate that specific residues of the VirB6 N-terminal domain are required for VirB6 stabilization, its interaction with VirB10, and the incorporation of VirB2 and VirB5 into T-pili.
Collapse
Affiliation(s)
- Charline Mary
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada and
| | - Aurélien Fouillen
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada and.,the Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal H3C 3J7, Quebec, Canada
| | - Benoit Bessette
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada and
| | - Antonio Nanci
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada and.,the Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal H3C 3J7, Quebec, Canada
| | - Christian Baron
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada and
| |
Collapse
|
11
|
VirB8 homolog TraE from plasmid pKM101 forms a hexameric ring structure and interacts with the VirB6 homolog TraD. Proc Natl Acad Sci U S A 2018; 115:5950-5955. [PMID: 29784815 PMCID: PMC6003364 DOI: 10.1073/pnas.1802501115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The overproduction and purification of membrane proteins are intrinsically difficult, making their analysis challenging. We purified the TraE membrane protein from a bacterial conjugation system that is involved in plasmid transfer. Our results suggest that this protein forms hexamers with a central pore, and we also show that it binds to the TraD protein. The structure of TraE is completely different from that of the previously characterized periplasmic domain. This has intriguing implications for the role of TraE and of its interaction partner TraD in substrate translocation across the bacterial cell envelope. This work makes an important contribution to understanding of the mechanism of plasmid transfer, contributing to the design of approaches to inhibit the spread of antibiotic resistance genes. Type IV secretion systems (T4SSs) are multiprotein assemblies that translocate macromolecules across the cell envelope of bacteria. X-ray crystallographic and electron microscopy (EM) analyses have increasingly provided structural information on individual T4SS components and on the entire complex. As of now, relatively little information has been available on the exact localization of the inner membrane-bound T4SS components, notably the mostly periplasmic VirB8 protein and the very hydrophobic VirB6 protein. We show here that the membrane-bound, full-length version of the VirB8 homolog TraE from the plasmid pKM101 secretion system forms a high-molecular-mass complex that is distinct from the previously characterized periplasmic portion of the protein that forms dimers. Full-length TraE was extracted from the membranes with detergents, and analysis by size-exclusion chromatography, cross-linking, and size exclusion chromatography (SEC) multiangle light scattering (MALS) shows that it forms a high-molecular-mass complex. EM and small-angle X-ray scattering (SAXS) analysis demonstrate that full-length TraE forms a hexameric complex with a central pore. We also overproduced and purified the VirB6 homolog TraD and show by cross-linking, SEC, and EM that it binds to TraE. Our results suggest that TraE and TraD interact at the substrate translocation pore of the secretion system.
Collapse
|
12
|
Sharifahmadian M, Nlend IU, Lecoq L, Omichinski JG, Baron C. The type IV secretion system core component VirB8 interacts via the β1-strand with VirB10. FEBS Lett 2017; 591:2491-2500. [PMID: 28766702 DOI: 10.1002/1873-3468.12770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/09/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022]
Abstract
In this work, we provide evidence for the interactions between VirB8 and VirB10, two core components of the type IV secretion system (T4SS). Using nuclear magnetic resonance experiments, we identified residues on the β1-strand of Brucella VirB8 that undergo chemical shift changes in the presence of VirB10. Bacterial two-hybrid experiments confirm the importance of the β1-strand, whereas phage display experiments suggest that the α2-helix of VirB8 may also contribute to the interaction with VirB10. Conjugation assays using the VirB8 homolog TraE as a model show that several residues on the β1-strand of TraE are important for T4SS function. Together, our results suggest that the β1-strand of VirB8-like proteins is essential for their interaction with VirB10 in the T4SS complex.
Collapse
Affiliation(s)
- Mahzad Sharifahmadian
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Ingrid U Nlend
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Lauriane Lecoq
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, QC, Canada
| | - James G Omichinski
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, QC, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, QC, Canada
| |
Collapse
|
13
|
Gordon JE, Costa TRD, Patel RS, Gonzalez-Rivera C, Sarkar MK, Orlova EV, Waksman G, Christie PJ. Use of chimeric type IV secretion systems to define contributions of outer membrane subassemblies for contact-dependent translocation. Mol Microbiol 2017; 105:273-293. [PMID: 28452085 DOI: 10.1111/mmi.13700] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/26/2023]
Abstract
Recent studies have shown that conjugation systems of Gram-negative bacteria are composed of distinct inner and outer membrane core complexes (IMCs and OMCCs, respectively). Here, we characterized the OMCC by focusing first on a cap domain that forms a channel across the outer membrane. Strikingly, the OMCC caps of the Escherichia coli pKM101 Tra and Agrobacterium tumefaciens VirB/VirD4 systems are completely dispensable for substrate transfer, but required for formation of conjugative pili. The pKM101 OMCC cap and extended pilus also are dispensable for activation of a Pseudomonas aeruginosa type VI secretion system (T6SS). Chimeric conjugation systems composed of the IMCpKM101 joined to OMCCs from the A. tumefaciens VirB/VirD4, E. coli R388 Trw, and Bordetella pertussis Ptl systems support conjugative DNA transfer in E. coli and trigger P. aeruginosa T6SS killing, but not pilus production. The A. tumefaciens VirB/VirD4 OMCC, solved by transmission electron microscopy, adopts a cage structure similar to the pKM101 OMCC. The findings establish that OMCCs are highly structurally and functionally conserved - but also intrinsically conformationally flexible - scaffolds for translocation channels. Furthermore, the OMCC cap and a pilus tip protein coregulate pilus extension but are not required for channel assembly or function.
Collapse
Affiliation(s)
- Jay E Gordon
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Tiago R D Costa
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Roosheel S Patel
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Christian Gonzalez-Rivera
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Mayukh K Sarkar
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London, WC1E 7HX, UK
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
14
|
Oudouhou F, Casu B, Dopgwa Puemi AS, Sygusch J, Baron C. Analysis of Novel Interactions between Components of the Selenocysteine Biosynthesis Pathway, SEPHS1, SEPHS2, SEPSECS, and SECp43. Biochemistry 2017; 56:2261-2270. [DOI: 10.1021/acs.biochem.6b01116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Flore Oudouhou
- Department of Biochemistry
and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Bastien Casu
- Department of Biochemistry
and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Arnold Steve Dopgwa Puemi
- Department of Biochemistry
and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jurgen Sygusch
- Department of Biochemistry
and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Christian Baron
- Department of Biochemistry
and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
15
|
Sharifahmadian M, Arya T, Bessette B, Lecoq L, Ruediger E, Omichinski JG, Baron C. Monomer-to-dimer transition of Brucella suis type IV secretion system component VirB8 induces conformational changes. FEBS J 2017; 284:1218-1232. [PMID: 28236662 DOI: 10.1111/febs.14049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022]
Abstract
Secretion systems are protein complexes essential for bacterial virulence and potential targets for antivirulence drugs. In the intracellular pathogen Brucella suis, a type IV secretion system mediates the translocation of virulence factors into host cells and it is essential for pathogenicity. VirB8 is a core component of the secretion system and dimerization is important for functionality of the protein complex. We set out to study dimerization and possible conformational changes of VirB8 from B. suis (VirB8s) using nuclear magnetic resonance, X-ray crystallography, and differential scanning fluorimetry. We identified changes of the protein induced by a concentration-dependent monomer-to-dimer transition of the periplasmic domain (VirB8sp). We also show that the presence of the detergent CHAPS alters several signals in the heteronuclear single quantum coherence (HSQC) spectra and some of these chemical shift changes correspond to those observed during monomer-dimer transition. X-ray analysis of a monomeric variant (VirB8spM102R ) demonstrates that significant structural changes occur in the protein's α-helical regions (α2 and α4). We localized chemical shift changes of residues at the dimer interface as well as to the α1 helix that links this interface to a surface groove that binds dimerization inhibitors. Fragment-based screening identified small molecules that bind to VirB8sp and two of them have differential binding affinity for wild-type and the VirB8spM102R variant underlining their different conformations. The observed chemical shift changes suggest conformational changes of VirB8s during monomer-dimer transition that may play a role during secretion system assembly or function and they provide insights into the mechanism of inhibitor action. DATABASE BMRB accession no. 26852 and PDB 5JBS.
Collapse
Affiliation(s)
- Mahzad Sharifahmadian
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Tarun Arya
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Benoit Bessette
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Lauriane Lecoq
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Edward Ruediger
- Institut de Recherche en Immunologie et Cancer (IRIC), Université de Montréal, Canada
| | - James G Omichinski
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Canada
| |
Collapse
|
16
|
Sharifahmadian M, Baron C. Type IV Secretion in Agrobacterium tumefaciens and Development of Specific Inhibitors. Curr Top Microbiol Immunol 2017. [PMID: 29536359 DOI: 10.1007/978-3-319-75241-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) comprises 12 membrane-bound proteins, and it assembles a surface-exposed T-pilus. It is considered to be the archetypical system that is generally used to orient the nomenclature of other T4SS. Whereas the sequence similarities between T4SSs from different organisms are often limited, the general mechanism of action appears to be conserved, and the evolutionary relationship to bacterial conjugation systems and to T4SSs from animal pathogens is well established. Agrobacterium is a natural genetic engineer that is extensively used for the generation of transgenic plants for research and for agro-biotechnological applications. It also served as an early model for the understanding of pathogen-host interactions and for the transfer of macromolecular virulence factors into host cells. The knowledge on the mechanism of its T4SS inspired the search for small molecules that inhibit the virulence of bacterial pathogens and of bacterial conjugation. Inhibitors of bacterial virulence and of conjugation have interesting potential as alternatives to antibiotics and as inhibitors of antimicrobial resistance gene transfer. Mechanistic work on the Agrobacterium T4SS will continue to inspire the search for inhibitor target sites and drug design.
Collapse
Affiliation(s)
- Mahzad Sharifahmadian
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
17
|
Casu B, Smart J, Hancock MA, Smith M, Sygusch J, Baron C. Structural Analysis and Inhibition of TraE from the pKM101 Type IV Secretion System. J Biol Chem 2016; 291:23817-23829. [PMID: 27634044 DOI: 10.1074/jbc.m116.753327] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 11/06/2022] Open
Abstract
Gram-negative bacteria use type IV secretion systems (T4SSs) for a variety of macromolecular transport processes that include the exchange of genetic material. The pKM101 plasmid encodes a T4SS similar to the well-studied model systems from Agrobacterium tumefaciens and Brucella suis Here, we studied the structure and function of TraE, a homolog of VirB8 that is an essential component of all T4SSs. Analysis by X-ray crystallography revealed a structure that is similar to other VirB8 homologs but displayed an altered dimerization interface. The dimerization interface observed in the X-ray structure was corroborated using the bacterial two-hybrid assay, biochemical characterization of the purified protein, and in vivo complementation, demonstrating that there are different modes of dimerization among VirB8 homologs. Analysis of interactions using the bacterial two-hybrid and cross-linking assays showed that TraE and its homologs from Agrobacterium, Brucella, and Helicobacter pylori form heterodimers. They also interact with heterologous VirB10 proteins, indicating a significant degree of plasticity in the protein-protein interactions of VirB8-like proteins. To further assess common features of VirB8-like proteins, we tested a series of small molecules derived from inhibitors of Brucella VirB8 dimerization. These molecules bound to TraE in vitro, docking predicted that they bind to a structurally conserved surface groove of the protein, and some of them inhibited pKM101 plasmid transfer. VirB8-like proteins thus share functionally important sites, and these can be exploited for the design of specific inhibitors of T4SS function.
Collapse
Affiliation(s)
- Bastien Casu
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Jonathan Smart
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Mark A Hancock
- the SPR-MS Facility, Faculty of Medicine, McGill University, Montréal, Quebec H3G 1Y6, Canada
| | - Mark Smith
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Jurgen Sygusch
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| | - Christian Baron
- From the Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada, and
| |
Collapse
|
18
|
Fercher C, Probst I, Kohler V, Goessweiner-Mohr N, Arends K, Grohmann E, Zangger K, Meyer NH, Keller W. VirB8-like protein TraH is crucial for DNA transfer in Enterococcus faecalis. Sci Rep 2016; 6:24643. [PMID: 27103580 PMCID: PMC4840375 DOI: 10.1038/srep24643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/04/2016] [Indexed: 12/02/2022] Open
Abstract
Untreatable bacterial infections caused by a perpetual increase of antibiotic resistant strains represent a serious threat to human healthcare in the 21(st) century. Conjugative DNA transfer is the most important mechanism for antibiotic resistance and virulence gene dissemination among bacteria and is mediated by a protein complex, known as type IV secretion system (T4SS). The core of the T4SS is a multiprotein complex that spans the bacterial envelope as a channel for macromolecular secretion. We report the NMR structure and functional characterization of the transfer protein TraH encoded by the conjugative Gram-positive broad-host range plasmid pIP501. The structure exhibits a striking similarity to VirB8 proteins of Gram-negative secretion systems where they play an essential role in the scaffold of the secretion machinery. Considering TraM as the first VirB8-like protein discovered in pIP501, TraH represents the second protein affiliated with this family in the respective transfer operon. A markerless traH deletion in pIP501 resulted in a total loss of transfer in Enterococcus faecalis as compared with the pIP501 wild type (wt) plasmid, demonstrating that TraH is essential for pIP501 mediated conjugation. Moreover, oligomerization state and topology of TraH in the native membrane were determined providing insights in molecular organization of a Gram-positive T4SS.
Collapse
Affiliation(s)
- Christian Fercher
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria
| | - Ines Probst
- Division of Infectious Diseases, University Medical Center Freiburg, Germany
- Faculty of Biology, Microbiology, Albert-Ludwigs-University Freiburg, Germany
| | - Verena Kohler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria
| | - Nikolaus Goessweiner-Mohr
- Center for Structural System Biology (CSSB), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Germany
- Beuth University of Applied Sciences, Berlin, Germany
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Graz, Austria
| | - N. Helge Meyer
- Department of General and Visceral Surgery, University of Oldenburg, Germany
| | - Walter Keller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria
| |
Collapse
|
19
|
Abstract
Conjugative transfer is the most important means of spreading antibiotic resistance and virulence factors among bacteria. The key vehicles of this horizontal gene transfer are a group of mobile genetic elements, termed conjugative plasmids. Conjugative plasmids contain as minimum instrumentation an origin of transfer (oriT), DNA-processing factors (a relaxase and accessory proteins), as well as proteins that constitute the trans-envelope transport channel, the so-called mating pair formation (Mpf) proteins. All these protein factors are encoded by one or more transfer (tra) operons that together form the DNA transport machinery, the Gram-positive type IV secretion system. However, multicellular Gram-positive bacteria belonging to the streptomycetes appear to have evolved another mechanism for conjugative plasmid spread reminiscent of the machinery involved in bacterial cell division and sporulation, which transports double-stranded DNA from donor to recipient cells. Here, we focus on the protein key players involved in the plasmid spread through the two different modes and present a new secondary structure homology-based classification system for type IV secretion protein families. Moreover, we discuss the relevance of conjugative plasmid transfer in the environment and summarize novel techniques to visualize and quantify conjugative transfer in situ.
Collapse
|
20
|
Abstract
Type IV secretion systems (T4SSs) are large multisubunit translocons, found in both gram-negative and gram-positive bacteria and in some archaea. These systems transport a diverse array of substrates from DNA and protein-DNA complexes to proteins, and play fundamental roles in both bacterial pathogenesis and bacterial adaptation to the cellular milieu in which bacteria live. This review describes the various biochemical and structural advances made toward understanding the biogenesis, architecture, and function of T4SSs.
Collapse
Affiliation(s)
- Vidya Chandran Darbari
- Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
21
|
Villamil Giraldo AM, Mary C, Sivanesan D, Baron C. VirB6 and VirB10 from the Brucella type IV secretion system interact via the N-terminal periplasmic domain of VirB6. FEBS Lett 2015; 589:1883-9. [PMID: 26071378 DOI: 10.1016/j.febslet.2015.05.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 11/30/2022]
Abstract
Type IV secretion systems are multi-protein complexes that transfer macromolecules across the cell envelope of bacteria. Identifying the sites of interaction between the twelve proteins (VirB1-VirB11 and VirD4) that form these complexes is key to understanding their assembly and function. We have here used phage display, bacterial two-hybrid and fluorescence-based interaction assays to identify an N-terminal domain of the inner membrane protein VirB6 as a site of interaction with the envelope-spanning VirB10 protein. Our results are consistent with the notion that VirB6 acts in concert with VirB10 as well as with VirB8 during secretion system assembly and function.
Collapse
Affiliation(s)
- Ana Maria Villamil Giraldo
- Université de Montréal, Pavillon Roger-Gaudry, Department of Biochemistry and Molecular Medicine, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Charline Mary
- Université de Montréal, Pavillon Roger-Gaudry, Department of Biochemistry and Molecular Medicine, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Durgajini Sivanesan
- Université de Montréal, Pavillon Roger-Gaudry, Department of Biochemistry and Molecular Medicine, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Christian Baron
- Université de Montréal, Pavillon Roger-Gaudry, Department of Biochemistry and Molecular Medicine, C.P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
22
|
de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1505-17. [PMID: 25892682 DOI: 10.1016/j.ajpath.2015.03.003] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 01/18/2023]
Abstract
This review of Brucella-host interactions and immunobiology discusses recent discoveries as the basis for pathogenesis-informed rationales to prevent or treat brucellosis. Brucella spp., as animal pathogens, cause human brucellosis, a zoonosis that results in worldwide economic losses, human morbidity, and poverty. Although Brucella spp. infect humans as an incidental host, 500,000 new human infections occur annually, and no patient-friendly treatments or approved human vaccines are reported. Brucellae display strong tissue tropism for lymphoreticular and reproductive systems with an intracellular lifestyle that limits exposure to innate and adaptive immune responses, sequesters the organism from the effects of antibiotics, and drives clinical disease manifestations and pathology. Stealthy brucellae exploit strategies to establish infection, including i) evasion of intracellular destruction by restricting fusion of type IV secretion system-dependent Brucella-containing vacuoles with lysosomal compartments, ii) inhibition of apoptosis of infected mononuclear cells, and iii) prevention of dendritic cell maturation, antigen presentation, and activation of naive T cells, pathogenesis lessons that may be informative for other intracellular pathogens. Data sets of next-generation sequences of Brucella and host time-series global expression fused with proteomics and metabolomics data from in vitro and in vivo experiments now inform interactive cellular pathways and gene regulatory networks enabling full-scale systems biology analysis. The newly identified effector proteins of Brucella may represent targets for improved, safer brucellosis vaccines and therapeutics.
Collapse
Affiliation(s)
- Paul de Figueiredo
- Department of Veterinary Pathobiology, Texas A&M University and Texas AgriLife Research, College Station, Texas; Norman Borlaug Center, Texas A&M University, College Station, Texas; Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University and Texas AgriLife Research, College Station, Texas
| | - Allison Rice-Ficht
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Carlos A Rossetti
- Institute of Pathobiology, CICVyA-CNIA, National Institute of Animal Agriculture Technology (INTA), Buenos Aires, Argentina
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University and Texas AgriLife Research, College Station, Texas.
| |
Collapse
|
23
|
Structural organisation of the type IV secretion systems. Curr Opin Microbiol 2013; 17:24-31. [PMID: 24581689 PMCID: PMC3969286 DOI: 10.1016/j.mib.2013.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 02/04/2023]
Abstract
Type IV secretion systems are nanomachines that transport substrates through bacterial membranes. Structures of components obtained by crystallography are presented. Higher resolution core complex structures revealed localisations of protein components. Docking of known and modelled atomic structures uncovers interactions between components.
Type IV secretion (T4S) systems are large dynamic nanomachines that transport DNAs and/or proteins through the membranes of bacteria. Because of their complexity and multi-protein organisation, T4S systems have been extremely challenging to study structurally. However in the past five years significant milestones have been achieved by X-ray crystallography and cryo-electron microscopy. This review describes some of the more recent advances: the structures of some of the protein components of the T4S systems and the complete core complex structure that was determined using electron microscopy.
Collapse
|
24
|
Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. Conjugative type IV secretion systems in Gram-positive bacteria. Plasmid 2013; 70:289-302. [PMID: 24129002 PMCID: PMC3913187 DOI: 10.1016/j.plasmid.2013.09.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/21/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023]
Abstract
The conjugative transfer mechanism of broad-host-range, Enterococcus sex pheromone and Clostridium plasmids is reviewed. Comparisons with Gram-negative type IV secretion systems are presented. The current understanding of the unique Streptomyces double stranded DNA transfer mechanism is reviewed.
Bacterial conjugation presents the most important means to spread antibiotic resistance and virulence factors among closely and distantly related bacteria. Conjugative plasmids are the mobile genetic elements mainly responsible for this task. All the genetic information required for the horizontal transmission is encoded on the conjugative plasmids themselves. Two distinct concepts for horizontal plasmid transfer in Gram-positive bacteria exist, the most prominent one transports single stranded plasmid DNA via a multi-protein complex, termed type IV secretion system, across the Gram-positive cell envelope. Type IV secretion systems have been found in virtually all unicellular Gram-positive bacteria, whereas multicellular Streptomycetes seem to have developed a specialized system more closely related to the machinery involved in bacterial cell division and sporulation, which transports double stranded DNA from donor to recipient cells. This review intends to summarize the state of the art of prototype systems belonging to the two distinct concepts; it focuses on protein key players identified so far and gives future directions for research in this emerging field of promiscuous interbacterial transport.
Collapse
|
25
|
Zheng JX, Li Y, Zhang H, Fan HJ, Lu CP. Identification and characterization of a novel hemolysis-related gene in Streptococcus suis serotype 2. PLoS One 2013; 8:e74674. [PMID: 24069329 PMCID: PMC3775796 DOI: 10.1371/journal.pone.0074674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/02/2013] [Indexed: 11/18/2022] Open
Abstract
Streptococcussuis serotype 2 (SS 2) is an important zoonotic pathogen that has caused two major infectious outbreaks of streptococcal toxic shock syndrome (STSS) in China. A novel gene located in the 89K pathogenicity island (PAI) encoding a putative hemolysin-III-related protein (Hhly3) has been previously characterized. In this study, the SS2 deletion mutant of the exogenous gene hhly3 was constructed by homologous recombination. This protein was found to exhibit cytolytic activity, and hemolytic activity of the hhly3 gene knockout mutant (Δhhly3) was significantly lower than that in the wild-type strain ZY05719. In addition, qRT-PCR revealed that Hhly3 played an important role in the expression of the secreted hemolysin SLY, which may be the key reason for the decreased hemolytic activity. Consequently, compared with the WT strain, the infection and pathogenicity of Δhhly3 was also decreased, as evidenced by in vitro bacterial growth in whole blood and by the in vivo zebrafish test, suggesting that hhly3 is a novel exogenous hemolysis-related gene in SS2 strains.
Collapse
Affiliation(s)
- Jun-xi Zheng
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yue Li
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hong-jie Fan
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail:
| | - Cheng-ping Lu
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Bhatty M, Laverde Gomez JA, Christie PJ. The expanding bacterial type IV secretion lexicon. Res Microbiol 2013; 164:620-39. [PMID: 23542405 DOI: 10.1016/j.resmic.2013.03.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/01/2012] [Accepted: 02/05/2013] [Indexed: 02/06/2023]
Abstract
The bacterial type IV secretion systems (T4SSs) comprise a biologically diverse group of translocation systems functioning to deliver DNA or protein substrates from donor to target cells generally by a mechanism dependent on establishment of direct cell-to-cell contact. Members of one T4SS subfamily, the conjugation systems, mediate the widespread and rapid dissemination of antibiotic resistance and virulence traits among bacterial pathogens. Members of a second subfamily, the effector translocators, are used by often medically-important pathogens to deliver effector proteins to eukaryotic target cells during the course of infection. Here we summarize our current understanding of the structural and functional diversity of T4SSs and of the evolutionary processes shaping this diversity. We compare mechanistic and architectural features of T4SSs from Gram-negative and -positive species. Finally, we introduce the concept of the 'minimized' T4SSs; these are systems composed of a conserved set of 5-6 subunits that are distributed among many Gram-positive and some Gram-negative species.
Collapse
Affiliation(s)
- Minny Bhatty
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
Mating pair formation homologue TraG is a variable membrane protein essential for contact-independent type IV secretion of chromosomal DNA by Neisseria gonorrhoeae. J Bacteriol 2013; 195:1666-79. [PMID: 23378511 DOI: 10.1128/jb.02098-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neisseria gonorrhoeae uses a type IV secretion system (T4SS) to secrete chromosomal DNA into the surrounding milieu. The DNA is effective in transforming gonococci in the population, and this mechanism of DNA donation may contribute to the high degree of genetic diversity in this species. Similar to other F-like T4SSs, the gonococcal T4SS requires a putative membrane protein, TraG, for DNA transfer. In F-plasmid and related systems, the homologous protein acts in pilus production, mating pair stabilization, and entry exclusion. We characterized the localization, membrane topology, and variation of TraG in N. gonorrhoeae. TraG was found to be an inner-membrane protein with one large periplasmic region and one large cytoplasmic region. Each gonococcal strain carried one of three different alleles of traG. Strains that carried the smallest allele of traG were found to lack the peptidoglycanase gene atlA but carried a peptidoglycan endopeptidase gene in place of atlA. The purified endopeptidase degraded gonococcal peptidoglycan in vitro, cutting the peptide cross-links. Although the other two traG alleles functioned for DNA secretion in strain MS11, the smallest traG did not support DNA secretion. Despite the requirement for a mating pair stabilization homologue, static coculture transformation experiments demonstrated that DNA transfer was nuclease sensitive and required active uptake by the recipient, thus demonstrating that transfer occurred by transformation and not conjugation. Together, these results demonstrate the TraG acts in a process of DNA export not specific to conjugation and that different forms of TraG affect what substrates can be transported.
Collapse
|
28
|
Abstract
Bacteria have evolved several secretion machineries to bring about transport of various virulence factors, nutrients, nucleic acids and cell-surface appendages that are essential for their pathogenesis. T4S (Type IV secretion) systems are versatile secretion systems found in various Gram-negative and Gram-positive bacteria and in few archaea. They are large multisubunit translocons secreting a diverse array of substrates varying in size and nature from monomeric proteins to nucleoprotein complexes. T4S systems have evolved from conjugation machineries and are implicated in antibiotic resistance gene transfer and transport of virulence factors in Legionella pneumophila causing Legionnaires’ disease, Brucella suis causing brucellosis and Helicobacter pylori causing gastroduodenal diseases. The best-studied are the Agrobacterium tumefaciens VirB/D4 and the Escherichia coli plasmid pKM101 T4S systems. Recent structural advances revealing the cryo-EM (electron microscopy) structure of the core translocation assembly and high-resolution structure of the outer-membrane pore of T4S systems have made paradigm shifts in the understanding of T4S systems. The present paper reviews the advances made in biochemical and structural studies and summarizes our current understanding of the molecular architecture of this mega-assembly.
Collapse
|
29
|
Goessweiner-Mohr N, Grumet L, Arends K, Pavkov-Keller T, Gruber CC, Gruber K, Birner-Gruenberger R, Kropec-Huebner A, Huebner J, Grohmann E, Keller W. The 2.5 Å structure of the enterococcus conjugation protein TraM resembles VirB8 type IV secretion proteins. J Biol Chem 2013; 288:2018-28. [PMID: 23188825 PMCID: PMC3548508 DOI: 10.1074/jbc.m112.428847] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/20/2012] [Indexed: 11/24/2022] Open
Abstract
Conjugative plasmid transfer is the most important means of spreading antibiotic resistance and virulence genes among bacteria and therefore presents a serious threat to human health. The process requires direct cell-cell contact made possible by a multiprotein complex that spans cellular membranes and serves as a channel for macromolecular secretion. Thus far, well studied conjugative type IV secretion systems (T4SS) are of Gram-negative (G-) origin. Although many medically relevant pathogens (e.g., enterococci, staphylococci, and streptococci) are Gram-positive (G+), their conjugation systems have received little attention. This study provides structural information for the transfer protein TraM of the G+ broad host range Enterococcus conjugative plasmid pIP501. Immunolocalization demonstrated that the protein localizes to the cell wall. We then used opsonophagocytosis as a novel tool to verify that TraM was exposed on the cell surface. In these assays, antibodies generated to TraM recruited macrophages and enabled killing of pIP501 harboring Enteroccocus faecalis cells. The crystal structure of the C-terminal, surface-exposed domain of TraM was determined to 2.5 Å resolution. The structure, molecular dynamics, and cross-linking studies indicated that a TraM trimer acts as the biological unit. Despite the absence of sequence-based similarity, TraM unexpectedly displayed a fold similar to the T4SS VirB8 proteins from Agrobacterium tumefaciens and Brucella suis (G-) and to the transfer protein TcpC from Clostridium perfringens plasmid pCW3 (G+). Based on the alignments of secondary structure elements of VirB8-like proteins from mobile genetic elements and chromosomally encoded T4SS from G+ and G- bacteria, we propose a new classification scheme of VirB8-like proteins.
Collapse
Affiliation(s)
- Nikolaus Goessweiner-Mohr
- From the Karl-Franzens-University Graz, Institute of Molecular Biosciences, Structural Biology, 8010 Graz, Austria
| | - Lukas Grumet
- From the Karl-Franzens-University Graz, Institute of Molecular Biosciences, Structural Biology, 8010 Graz, Austria
| | - Karsten Arends
- the Technical University Berlin, Environmental Microbiology/Genetics, 10587 Berlin, Germany
- the Robert Koch Institute, 13086 Berlin, Germany
| | - Tea Pavkov-Keller
- the Austrian Centre of Industrial Biotechnology GmbH, 8010 Graz, Austria
| | | | - Karl Gruber
- From the Karl-Franzens-University Graz, Institute of Molecular Biosciences, Structural Biology, 8010 Graz, Austria
| | - Ruth Birner-Gruenberger
- the Medical University Graz, Institute for Pathology and Center of Medical Research, Core Facility Mass Spectrometry, 8010 Graz, Austria, and
| | - Andrea Kropec-Huebner
- the Division of Infectious Diseases, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Johannes Huebner
- the Division of Infectious Diseases, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Elisabeth Grohmann
- the Technical University Berlin, Environmental Microbiology/Genetics, 10587 Berlin, Germany
- the Division of Infectious Diseases, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Walter Keller
- From the Karl-Franzens-University Graz, Institute of Molecular Biosciences, Structural Biology, 8010 Graz, Austria
| |
Collapse
|