1
|
Putha L, Kok LK, Fellner M, Rutledge MT, Gamble AB, Wilbanks SM, Vernall AJ, Tyndall JDA. Covalent Isothiocyanate Inhibitors of Macrophage Migration Inhibitory Factor as Potential Colorectal Cancer Treatments. ChemMedChem 2024; 19:e202400394. [PMID: 38977403 DOI: 10.1002/cmdc.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that has roles in innate and adaptive human immune responses, as well as inflammation. MIF exerts its biological activity by binding to the cell surface receptor CD74 as well as intracellular signalling proteins. MIF also possesses keto-enol tautomerase activity. Inhibition of the tautomerase activity has been associated with loss of biological activity of MIF and a potential anticancer target. Isothiocyanates (ITCs) are a class of compounds present in cruciferous vegetables that inhibit the MIF tautomerase activity via covalent modification of the N-terminal proline. A range of substituted ITCs featuring benzyl, phenethyl and phenyl propyl isothiocyanates were designed, synthesised and tested to determine any structure activity relationship for inhibiting MIF. Crystal structures of covalent compounds 8 and 9 in complex with rhMIF revealed key hydrogen bonding and edge-to-face π stacking interactions. Compound 9 and 11 with sub micromolar activity were tested in the NCI60 cancer cell lines panel. Both compounds showed tissue-specific reduced growth in colon and renal cancer cell lines, while one of these showed potent, dose-dependent inhibition of growth against all seven colon cancer cell lines (GI50<2.5 μM) and all eight renal cancer cell lines (GI50<2.2 μM).
Collapse
Affiliation(s)
- Lohitha Putha
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Liang K Kok
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Matthias Fellner
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Malcolm T Rutledge
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Allan B Gamble
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Sigurd M Wilbanks
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Andrea J Vernall
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
2
|
Maycotte P, Illanes M, Moreno DA. Glucosinolates, isothiocyanates, and their role in the regulation of autophagy and cellular function. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/27/2024] [Indexed: 01/04/2025]
|
3
|
Vivanco PG, Taboada P, Coelho A. The Southern European Atlantic Diet and Its Supplements: The Chemical Bases of Its Anticancer Properties. Nutrients 2023; 15:4274. [PMID: 37836558 PMCID: PMC10574233 DOI: 10.3390/nu15194274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Scientific evidence increasingly supports the strong link between diet and health, acknowledging that a well-balanced diet plays a crucial role in preventing chronic diseases such as obesity, diabetes, cardiovascular issues, and certain types of cancer. This perspective opens the door to developing precision diets, particularly tailored for individuals at risk of developing cancer. It encompasses a vast research area and involves the study of an expanding array of compounds with multilevel "omics" compositions, including genomics, transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics. We review here the components of the Southern European Atlantic Diet (SEAD) from both a chemical and pharmacological standpoint. The information sources consulted, complemented by crystallographic data from the Protein Data Bank, establish a direct link between the SEAD and its anticancer properties. The data collected strongly suggest that SEAD offers an exceptionally healthy profile, particularly due to the presence of beneficial biomolecules in its foods. The inclusion of olive oil and paprika in this diet provides numerous health benefits, and scientific evidence supports the anticancer properties of dietary supplements with biomolecules sourced from vegetables of the brassica genus. Nonetheless, further research is warranted in this field to gain deeper insights into the potential benefits of the SEAD's bioactive compounds against cancer.
Collapse
Affiliation(s)
- Pablo García Vivanco
- Spanish Academy of Nutrition and Dietetics, 31006 Pamplona, Spain
- Nutrition and Digestive Working Group, Spanish Society of Clinical, Family, and Community Pharmacy (SEFAC), 28045 Madrid, Spain
| | - Pablo Taboada
- Department of Condensed Matter Physics, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alberto Coelho
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Treasure K, Harris J, Williamson G. Exploring the anti-inflammatory activity of sulforaphane. Immunol Cell Biol 2023; 101:805-828. [PMID: 37650498 DOI: 10.1111/imcb.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Dysregulation of innate immune responses can result in chronic inflammatory conditions. Glucocorticoids, the current frontline therapy, are effective immunosuppressive drugs but come with a trade-off of cumulative and serious side effects. Therefore, alternative drug options with improved safety profiles are urgently needed. Sulforaphane, a phytochemical derived from plants of the brassica family, is a potent inducer of phase II detoxification enzymes via nuclear factor-erythroid factor 2-related factor 2 (NRF2) signaling. Moreover, a growing body of evidence suggests additional diverse anti-inflammatory properties of sulforaphane through interactions with mediators of key signaling pathways and inflammatory cytokines. Multiple studies support a role for sulforaphane as a negative regulator of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and subsequent cytokine release, inflammasome activation and direct regulation of the activity of macrophage migration inhibitory factor. Significantly, studies have also highlighted potential steroid-sparing activity for sulforaphane, suggesting that it may have potential as an adjunctive therapy for some inflammatory conditions. This review discusses published research on sulforaphane, including proposed mechanisms of action, and poses questions for future studies that might help progress our understanding of the potential clinical applications of this intriguing molecule.
Collapse
Affiliation(s)
- Katie Treasure
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| | - James Harris
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Victorian Heart Hospital, Monash University, Clayton, VIC, Australia
| |
Collapse
|
5
|
Discovery of novel MIF inhibitors that attenuate microglial inflammatory activation by structures-based virtual screening and in vitro bioassays. Acta Pharmacol Sin 2022; 43:1508-1520. [PMID: 34429524 PMCID: PMC9160002 DOI: 10.1038/s41401-021-00753-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pluripotent pro-inflammatory cytokine and is related to acute and chronic inflammatory responses, immune disorders, tumors, and other diseases. In this study, an integrated virtual screening strategy and bioassays were used to search for potent MIF inhibitors. Twelve compounds with better bioactivity than the prototypical MIF-inhibitor ISO-1 (IC50 = 14.41 μM) were identified by an in vitro enzymatic activity assay. Structural analysis revealed that these inhibitors have novel structural scaffolds. Compound 11 was then chosen for further characterization in vitro, and it exhibited marked anti-inflammatory efficacy in LPS-activated BV-2 microglial cells by suppressing the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs). Our findings suggest that MIF may be involved in the regulation of microglial inflammatory activation and that small-molecule MIF inhibitors may serve as promising therapeutic agents for neuroinflammatory diseases.
Collapse
|
6
|
Skeens E, Pantouris G, Shah D, Manjula R, Ombrello MJ, Maluf NK, Bhandari V, Lisi GP, Lolis EJ. A Cysteine Variant at an Allosteric Site Alters MIF Dynamics and Biological Function in Homo- and Heterotrimeric Assemblies. Front Mol Biosci 2022; 9:783669. [PMID: 35252348 PMCID: PMC8893199 DOI: 10.3389/fmolb.2022.783669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory protein with various non-overlapping functions. It is not only conserved in mammals, but it is found in parasites, fish, and plants. Human MIF is a homotrimer with an enzymatic cavity between two subunits with Pro1 as a catalytic base, activates the receptors CD74, CXCR2, and CXCR4, has functional interactions in the cytosol, and is reported to be a nuclease. There is a solvent channel down its 3-fold axis with a recently identified gating residue as an allosteric site important for regulating, to different extents, the enzymatic activity and CD74 binding and signaling. In this study we explore the consequence of converting the allosteric residue Tyr99 to cysteine (Y99C) and characterize its crystallographic structure, NMR dynamics, stability, CD74 function, and enzymatic activity. In addition to the homotrimeric variant, we develop strategies for expressing and purifying a heterotrimeric variant consisting of mixed wild type and Y99C for characterization of the allosteric site to provide more insight.
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Georgios Pantouris
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Chemistry, University of the Pacific, Stockton, CA, United States
| | - Dilip Shah
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ, United States
| | - Ramu Manjula
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Michael J. Ombrello
- Translational Genetics and Genomic Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | | | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ, United States
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
- *Correspondence: George P. Lisi, ; Elias J. Lolis,
| | - Elias J. Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: George P. Lisi, ; Elias J. Lolis,
| |
Collapse
|
7
|
Guerrero-Alonso A, Antunez-Mojica M, Medina-Franco JL. Chemoinformatic Analysis of Isothiocyanates: Their Impact in Nature and Medicine. Mol Inform 2021; 40:e2100172. [PMID: 34363333 DOI: 10.1002/minf.202100172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
Isothiocyanates (ITCs) have a significant impact on food and natural product chemistry. Several dietary components and food chemicals contain the isothiocyanate moiety. In addition, many ITCs interact with macromolecules of biological relevance, making these compounds relevant for potential therapeutic applications and disease prevention. However, there is a lack of systematic analysis of ITCs in chemical and biological databases. Herein, we conducted a comprehensive analysis of ITCs present in public domain databases, including natural products, food chemicals, macromolecular targets of drugs, and the Protein Data Bank. A total of 154 ITCs were found, which can be classified into seven categories: acyclic, cyclic, polycyclic, aromatic, polyaromatic, indolic, and glycosylated. 24 ITCs were reported in 18 vegetable sources, mainly in cruciferous vegetables (Brassica oleracea L.). Calculated properties of pharmaceutical relevance indicated that 11 % of the 154 ITCs would be suitable to be orally absorbed and 48 % permeate the blood-brain-barrier. It was also found that seven molecular targets have been co-crystallized with ITCs and the most frequent is the macrophage migration inhibitory factor. It is expected that this work will contribute to the sub-disciplines of natural products and food informatics.
Collapse
Affiliation(s)
- Araceli Guerrero-Alonso
- Centro de Investigaciones Químicas IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Cuernavaca, MOR, 62209, México
| | - Mayra Antunez-Mojica
- CONACYT-Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209, Morelos, México
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
8
|
Sahrmann PG, Donnan PH, Merz KM, Mansoorabadi SO, Goodwin DC. MRP.py: A Parametrizer of Post-Translationally Modified Residues. J Chem Inf Model 2020; 60:4424-4428. [PMID: 32672967 DOI: 10.1021/acs.jcim.0c00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MRP.py is a Python-based parametrization program for covalently modified amino acid residues for molecular dynamics simulations. Charge derivation is performed via an RESP charge fit, and force constants are obtained through rewriting of either protein or GAFF database parameters. This allows for the description of interfacial interactions between the modifed residue and protein. MRP.py is capable of working with a variety of protein databases. MRP.py's highly general and systematic method of obtaining parameters allows the user to circumvent the process of parametrizing the modified residue-protein interface. Two examples, a covalently bound inhibitor and covalent adduct consisting of modified residues, are provided in the Supporting Information.
Collapse
Affiliation(s)
- Patrick G Sahrmann
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849-5312, United States
| | - Patrick H Donnan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849-5312, United States
| | - Kenneth M Merz
- Department of Chemistry and the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Steven O Mansoorabadi
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849-5312, United States
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849-5312, United States
| |
Collapse
|
9
|
Pantouris G, Khurana L, Ma A, Skeens E, Reiss K, Batista VS, Lisi GP, Lolis EJ. Regulation of MIF Enzymatic Activity by an Allosteric Site at the Central Solvent Channel. Cell Chem Biol 2020; 27:740-750.e5. [PMID: 32433911 DOI: 10.1016/j.chembiol.2020.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/18/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
In proteins with multiple functions, such as macrophage migration inhibitory factor (MIF), the study of its intramolecular dynamic network can offer a unique opportunity to understand how a single protein is able to carry out several nonoverlapping functions. A dynamic mechanism that controls the MIF-induced activation of CD74 was recently discovered. In this study, the regulation of tautomerase activity was explored. The catalytic base Pro1 is found to form dynamic communications with the same allosteric node that regulates CD74 activation. Signal transmission between the allosteric and catalytic sites take place through intramolecular aromatic interactions and a hydrogen bond network that involves residues and water molecules of the MIF solvent channel. Once thought to be a consequence of trimerization, a regulatory function for the solvent channel is now defined. These results provide mechanistic insights into the regulation of catalytic activity and the role of solvent channel water molecules in MIF catalysis.
Collapse
Affiliation(s)
- Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA.
| | - Leepakshi Khurana
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Anthony Ma
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903, USA
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, CT 06510, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06510, USA
| | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903, USA.
| | - Elias J Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
10
|
Mitsiogianni M, Trafalis DT, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. Sulforaphane and iberin are potent epigenetic modulators of histone acetylation and methylation in malignant melanoma. Eur J Nutr 2020; 60:147-158. [PMID: 32215717 DOI: 10.1007/s00394-020-02227-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE(S) Growing evidence supports that isothiocyanates exert a wide range of bioactivities amongst of which is their capacity to interact with the epigenetic machinery in various cancers including melanoma. Our aim was to characterise the effect of sulforaphane and iberin on histone acetylation and methylation as a potential anti-melanoma strategy. METHODS We have utilised an in vitro model of malignant melanoma [consisting of human (A375, Hs294T, VMM1) and murine (B16F-10) melanoma cell lines as well as a non-melanoma (A431) and a non-tumorigenic immortalised keratinocyte (HaCaT) cell line] exposed to sulforaphane or iberin. Cell viability was evaluated by the Alamar blue assay whilst total histone deacetylases and acetyltransferases activities were determined by the Epigenase HDAC Activity/Inhibition and EpiQuik HAT Activity/Inhibition assay kits, respectively. The expression levels of specific histone deacetylases and acetyltransferases together with those of lysine acetylation and methylation marks were obtained by western immunoblotting. RESULTS Overall, both sulforaphane and iberin were able to (1) reduce cell viability, (2) decrease total histone deacetylase activity and (3) modulate the expression levels of various histone deacetylases as well as acetyl and methyl transferases thus modulating the acetylation and methylation status of specific lysine residues on histones 3 and 4 in malignant melanoma cells. CONCLUSIONS Our findings highlight novel insights as to how sulforaphane and iberin differentially regulate the epigenetic response in ways compatible with their anticancer action in malignant melanoma.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Faculty of Health and Life Sciences, Department of Applied Sciences, Group of Translational Biosciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Clinical Pharmacology Unit, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Faculty of Health and Life Sciences, Department of Applied Sciences, Group of Translational Biosciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
- Department of Electron Microscopy and Molecular Pathology, The Cyprus Institute of Neurology and Genetics, 2371, Nicosia, Cyprus.
| |
Collapse
|
11
|
Michelet C, Danchin EGJ, Jaouannet M, Bernhagen J, Panstruga R, Kogel KH, Keller H, Coustau C. Cross-Kingdom Analysis of Diversity, Evolutionary History, and Site Selection within the Eukaryotic Macrophage Migration Inhibitory Factor Superfamily. Genes (Basel) 2019; 10:genes10100740. [PMID: 31554205 PMCID: PMC6826473 DOI: 10.3390/genes10100740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Macrophage migration inhibitory factors (MIF) are multifunctional proteins regulating major processes in mammals, including activation of innate immune responses. MIF proteins also play a role in innate immunity of invertebrate organisms or serve as virulence factors in parasitic organisms, raising the question of their evolutionary history. We performed a broad survey of MIF presence or absence and evolutionary relationships across 803 species of plants, fungi, protists, and animals, and explored a potential relation with the taxonomic status, the ecology, and the lifestyle of individual species. We show that MIF evolutionary history in eukaryotes is complex, involving probable ancestral duplications, multiple gene losses and recent clade-specific re-duplications. Intriguingly, MIFs seem to be essential and highly conserved with many sites under purifying selection in some kingdoms (e.g., plants), while in other kingdoms they appear more dispensable (e.g., in fungi) or present in several diverged variants (e.g., insects, nematodes), suggesting potential neofunctionalizations within the protein superfamily.
Collapse
Affiliation(s)
- Claire Michelet
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRA, CNRS, 400 Route des Chappes, F-06903 Sophia Antipolis, France.
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRA, CNRS, 400 Route des Chappes, F-06903 Sophia Antipolis, France.
| | - Maelle Jaouannet
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRA, CNRS, 400 Route des Chappes, F-06903 Sophia Antipolis, France.
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), D-81377 Munich, Germany.
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Karl-Heinz Kogel
- Department of Phytopathology, Center of BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University (JLU), D-35392 Giessen, Germany.
| | - Harald Keller
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRA, CNRS, 400 Route des Chappes, F-06903 Sophia Antipolis, France.
| | - Christine Coustau
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRA, CNRS, 400 Route des Chappes, F-06903 Sophia Antipolis, France.
| |
Collapse
|
12
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
13
|
Mitsiogianni M, Amery T, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. From chemo-prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention. Pharmacol Ther 2018; 190:187-201. [DOI: 10.1016/j.pharmthera.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Pantouris G, Bucala R, Lolis EJ. Structural Plasticity in the C-Terminal Region of Macrophage Migration Inhibitory Factor-2 Is Associated with an Induced Fit Mechanism for a Selective Inhibitor. Biochemistry 2018; 57:3599-3605. [PMID: 29847104 PMCID: PMC6123015 DOI: 10.1021/acs.biochem.8b00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report the first reversible and selective small molecule inhibitor of pro-inflammatory protein macrophage migration inhibitory factor-2 (also known as MIF-2 or d-DT). 4-(3-Carboxyphenyl)-2,5-pyridinedicarboxylic acid (4-CPPC) shows competitive binding with a 13-fold selectivity for human MIF-2 versus human MIF-1. The crystal structure of MIF-2 complexed with 4-CPPC reveals an induced fit mechanism that is not observed in the numerous MIF-1/inhibitor complexes. Crystallographic analysis demonstrates the structural source of 4-CPPC binding and selectivity for MIF-2. 4-CPPC can be employed to reveal previously unrecognized functions of MIF-1 in biological systems in which both MIF-1 and MIF-2 are expressed, to improve our knowledge of the MIF family of proteins, and to provide new mechanistic insights that can be utilized for the development of potent and selective pharmacological modulators of MIF-2.
Collapse
Affiliation(s)
- Georgios Pantouris
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Richard Bucala
- Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06510, United States,Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Elias J. Lolis
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510, United States,Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06510, United States,Corresponding Author:
| |
Collapse
|
15
|
Pantouris G, Ho J, Shah D, Syed MA, Leng L, Bhandari V, Bucala R, Batista VS, Loria JP, Lolis EJ. Nanosecond Dynamics Regulate the MIF-Induced Activity of CD74. Angew Chem Int Ed Engl 2018; 57:7116-7119. [PMID: 29669180 PMCID: PMC6282165 DOI: 10.1002/anie.201803191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 11/07/2022]
Abstract
Macrophage migration inhibitory factor (MIF) activates CD74, which leads to severe disorders including inflammation, autoimmune diseases and cancer under pathological conditions. Molecular dynamics (MD) simulations up to one microsecond revealed dynamical correlation between a residue located at the opening of one end of the MIF solvent channel, previously thought to be a consequence of homotrimerization, and residues in a distal region responsible for CD74 activation. Experiments verified the allosteric regulatory site and identified a pathway to this site via the MIF β-strands. The reported findings provide fundamental insights on a dynamic mechanism that controls the MIF-induced activation of CD74.
Collapse
Affiliation(s)
- Georgios Pantouris
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Junming Ho
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- School of Chemistry, University of New South Wales, Sydney, NSW 2052 Australia
| | - Dilip Shah
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Mansoor Ali Syed
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Lin Leng
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Vineet Bhandari
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - J. Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Elias J. Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
16
|
Trivedi-Parmar V, Jorgensen WL. Advances and Insights for Small Molecule Inhibition of Macrophage Migration Inhibitory Factor. J Med Chem 2018; 61:8104-8119. [PMID: 29812929 DOI: 10.1021/acs.jmedchem.8b00589] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an upstream regulator of the immune response whose dysregulation is tied to a broad spectrum of inflammatory and proliferative disorders. As its complex signaling pathways and pleiotropic nature have been elucidated, it has become an attractive target for drug discovery. Remarkably, MIF is both a cytokine and an enzyme that functions as a keto-enol tautomerase. Strategies including in silico modeling, virtual screening, high-throughput screening, and screening of anti-inflammatory natural products have led to a large and diverse catalogue of MIF inhibitors as well as some understanding of the structure-activity relationships for compounds binding MIF's tautomerase active site. With possible clinical trials of some MIF inhibitors on the horizon, it is an opportune time to review the literature to seek trends, address inconsistencies, and identify promising new avenues of research.
Collapse
Affiliation(s)
- Vinay Trivedi-Parmar
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - William L Jorgensen
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
17
|
Pantouris G, Ho J, Shah D, Syed MA, Leng L, Bhandari V, Bucala R, Batista VS, Loria JP, Lolis EJ. Nanosecond Dynamics Regulate the MIF‐Induced Activity of CD74. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Georgios Pantouris
- Department of Pharmacology School of Medicine Yale University New Haven CT 06510 USA
| | - Junming Ho
- Department of Chemistry Yale University New Haven CT 06520 USA
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Dilip Shah
- Section of Neonatal-Perinatal Medicine Department of Pediatrics Drexel University College of Medicine Philadelphia PA USA
| | - Mansoor Ali Syed
- Department of Pediatrics Yale School of Medicine New Haven CT 06510 USA
| | - Lin Leng
- Department of Internal Medicine Yale School of Medicine New Haven CT 06510 USA
| | - Vineet Bhandari
- Section of Neonatal-Perinatal Medicine Department of Pediatrics Drexel University College of Medicine Philadelphia PA USA
- Department of Pediatrics Yale School of Medicine New Haven CT 06510 USA
| | - Richard Bucala
- Department of Internal Medicine Yale School of Medicine New Haven CT 06510 USA
- Yale Cancer Center Yale School of Medicine New Haven CT 06510 USA
| | | | - J. Patrick Loria
- Department of Chemistry Yale University New Haven CT 06520 USA
- Department of Molecular Biophysics and Biochemistry Yale University New Haven CT 06520 USA
| | - Elias J. Lolis
- Department of Pharmacology School of Medicine Yale University New Haven CT 06510 USA
- Yale Cancer Center Yale School of Medicine New Haven CT 06510 USA
| |
Collapse
|
18
|
Gao Y, Hou R, Liu F, Liu H, Fei Q, Han Y, Cai R, Peng C, Qi Y. Obacunone causes sustained expression of MKP-1 thus inactivating p38 MAPK to suppress pro-inflammatory mediators through intracellular MIF. J Cell Biochem 2017; 119:837-849. [PMID: 28657665 DOI: 10.1002/jcb.26248] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022]
Abstract
Obacunone (OBA) is a highly oxygenated triterpenoid with various pharmacological activities. In this study, we explored its anti-inflammatory effect and underlying mechanisms in LPS-activated macrophages. Our data showed that OBA potently decreased pro-inflammatory mediators (eg, NO, IL-6, IL-1β, and MCP-1) at the transcriptional and translational levels without cytotoxicity. A mechanism study showed that OBA significantly suppressed p38-mediated AP-1 signaling by stabilizing the mRNA of mitogen-activated protein kinase phosphatase 1 (MKP-1), thus prolonging the expression time of the MKP-1 protein. Next, we used computational target-fishing technology to predict the possible target of OBA. Only one potential target, macrophage migration inhibitory factor (MIF), was presented. Experimentally, the interaction between OBA and MIF was also confirmed. By using an anti-mouse MIF antibody, extracellular MIF (exMIF) was neutralized. Our results showed that autocrine MIF had slight influence on the pro-inflammatory mediator production. Correspondingly, the anti-inflammatory activity of OBA was also not affected. Accordingly, we knocked down the MIF gene in RAW 264.7 cells and obtained stable MIF deficient cells MIF(-), in which the effects of OBA on p38 phosphorylation, AP-1 activation, and pro-inflammatory mediator production in response to LPS nearly disappeared. In contrast to MIF(+) cells, the MKP-1 protein expression time of the MIF(-) cells was markedly prolonged. We conclude that OBA exerts its anti-inflammatory effect by targeting intracellular MIF (inMIF) inhibition to regulate the MKP-1/p38/AP-1 pathway. Our findings also provide a chain of evidence that the inhibition of inMIF, rather than exMIF, may become a novel target for inflammation.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China.,Chegndu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Rui Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Fen Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Haibo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Qiaoling Fei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Yixin Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Cheng Peng
- Chegndu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
19
|
Johler SM, Fuchs J, Seitz G, Armeanu-Ebinger S. Macrophage migration inhibitory factor (MIF) is induced by cytotoxic drugs and is involved in immune escape and migration in childhood rhabdomyosarcoma. Cancer Immunol Immunother 2016; 65:1465-1476. [PMID: 27629595 PMCID: PMC11029580 DOI: 10.1007/s00262-016-1896-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 08/26/2016] [Indexed: 12/15/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is known to be involved in oncogenic transformation, tumour progression, and immunosuppression and is overexpressed in many solid tumours, including paediatric rhabdomyosarcoma (RMS). We investigated the function of MIF in RMS during treatment with cytotoxic drugs. RMS cell lines were analysed by flow cytometry, immunofluorescence staining, and ELISA. We demonstrated the overexpression of MIF in RMS cells and the enhanced expression and secretion after treatment with cytotoxic agents. Migration assays of RMS cells revealed that inhibitors of MIF (ISO-1, Ant.III 4-IPP, Ant.V, sulforaphane (SF)) and blocking antibodies caused reduced migration, indicating a role for MIF in metastatic invasion. Additionally, we investigated the function of MIF in immune escape. The development of a population containing immunosuppressive myeloid-derived suppressor cells was promoted by incubation in conditioned medium of RMS cells comprising MIF and was reversed by MIF inhibitors but not by antibodies. Although most inhibitors may restore immune activity, Ant.III and 10 µM SF disturbed T cell proliferation in a CFSE assay, whereas T cell proliferation was not reduced by 3 µM SF, ISO-1 or antibodies. However, the inhibition of MIF by blocking antibodies did not increase the killing activity of allogenic PBMCs co-cultured with RMS cells. Our results reveal that MIF may be involved in an immune escape mechanism and demonstrate the involvement of MIF in immunogenic cell death during treatment with cytotoxic drugs. Targeting MIF may contribute to the restoration of immune sensitivity and the control of migration and metastatic invasion.
Collapse
Affiliation(s)
- Sarah Maria Johler
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Guido Seitz
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Sorin Armeanu-Ebinger
- Department of Pediatric Surgery and Urology, University Children's Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
| |
Collapse
|
20
|
Singh AK, Pantouris G, Borosch S, Rojanasthien S, Cho TY. Structural basis for decreased induction of class IB PI3-kinases expression by MIF inhibitors. J Cell Mol Med 2016; 21:142-153. [PMID: 27619729 PMCID: PMC5192866 DOI: 10.1111/jcmm.12949] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/11/2016] [Indexed: 01/07/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a master regulator of proinflammatory cytokines and plays pathological roles when not properly regulated in rheumatoid arthritis, lupus, atherosclerosis, asthma and cancer. Unlike canonical cytokines, MIF has vestigial keto-enol tautomerase activity. Most of the current MIF inhibitors were screened for the inhibition of this enzymatic activity. However, only some of the enzymatic inhibitors inhibit receptor-mediated biological functions of MIF, such as cell recruitment, through an unknown molecular mechanism. The goal of this study was to understand the molecular basis underlying the pharmacological inhibition of biological functions of MIF. Here, we demonstrate how the structural changes caused upon inhibitor binding translate into the alteration of MIF-induced downstream signalling. Macrophage migration inhibitory factor activates phosphoinositide 3-kinases (PI3Ks) that play a pivotal role in immune cell recruitment in health and disease. There are several different PI3K isoforms, but little is known about how they respond to MIF. We demonstrate that MIF up-regulates the expression of Class IB PI3Ks in leucocytes. We also demonstrate that MIF tautomerase active site inhibitors down-regulate the expression of Class IB PI3Ks as well as leucocyte recruitment in vitro and in vivo. Finally, based on our MIF:inhibitor complex crystal structures, we hypothesize that the reduction in Class IB PI3K expression occurs because of the displacement of Pro1 towards the second loop of MIF upon inhibitor binding, which results in increased flexibility of the loop 2 and sub-optimal MIF binding to its receptors. These results will provide molecular insights for fine-tuning the biological functions of MIF.
Collapse
Affiliation(s)
- Abhay Kumar Singh
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Georgios Pantouris
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Sebastian Borosch
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Siripong Rojanasthien
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Thomas Yoonsang Cho
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
21
|
Sahoo AK, Goswami U, Dutta D, Banerjee S, Chattopadhyay A, Ghosh SS. Silver Nanocluster Embedded Composite Nanoparticles for Targeted Prodrug Delivery in Cancer Theranostics. ACS Biomater Sci Eng 2016; 2:1395-1402. [DOI: 10.1021/acsbiomaterials.6b00334] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amaresh Kumar Sahoo
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Upashi Goswami
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Deepanjalee Dutta
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Subhamoy Banerjee
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, ‡Department of Biosciences
and Bioengineering, and §Department of
Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
22
|
|
23
|
Pantouris G, Syed MA, Fan C, Rajasekaran D, Cho TY, Rosenberg EM, Bucala R, Bhandari V, Lolis EJ. An Analysis of MIF Structural Features that Control Functional Activation of CD74. ACTA ACUST UNITED AC 2015; 22:1197-205. [PMID: 26364929 DOI: 10.1016/j.chembiol.2015.08.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/19/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022]
Abstract
For more than 15 years, the tautomerase active site of macrophage migration inhibitory factor (MIF) and its catalytic residue Pro1 have been being targeted for the development of therapeutics that block activation of its cell surface receptor, CD74. Neither the biological role of the MIF catalytic site nor the mechanistic details of CD74 activation are well understood. The inherently unstable structure of CD74 remains the biggest obstacle in structural studies with MIF for understanding the basis of CD74 activation. Using a novel approach, we elucidate the mechanistic details that control activation of CD74 by MIF surface residues and identify structural parameters of inhibitors that reduce CD74 biological activation. We also find that N-terminal mutants located deep in the catalytic site affect surface residues immediately outside the catalytic site, which are responsible for reduction of CD74 activation.
Collapse
Affiliation(s)
- Georgios Pantouris
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mansoor Ali Syed
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Chengpeng Fan
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Deepa Rajasekaran
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Thomas Yoonsang Cho
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric M Rosenberg
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Richard Bucala
- Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Vineet Bhandari
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Elias J Lolis
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
24
|
Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumour Biol 2015; 36:4005-16. [DOI: 10.1007/s13277-015-3391-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/25/2015] [Indexed: 12/21/2022] Open
|
25
|
Spencer ES, Dale EJ, Gommans AL, Rutledge MT, Vo CT, Nakatani Y, Gamble AB, Smith RAJ, Wilbanks SM, Hampton MB, Tyndall JDA. Multiple binding modes of isothiocyanates that inhibit macrophage migration inhibitory factor. Eur J Med Chem 2015; 93:501-10. [PMID: 25743213 DOI: 10.1016/j.ejmech.2015.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/08/2015] [Accepted: 02/10/2015] [Indexed: 12/28/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has roles in the innate immune response, and also contributes to inflammatory disease. While the biological properties of MIF are closely linked to protein-protein interactions, MIF also has tautomerase activity. Inhibition of this activity interferes with the interaction of MIF with protein partners e.g. the CD74 receptor, and tautomerase inhibitors show promise in disease models including multiple sclerosis and colitis. Isothiocyanates inhibit MIF tautomerase activity via covalent modification of the N-terminal proline. We systematically explored variants of benzyl and phenethyl isothiocyanates, to define determinants of inhibition. In particular, substitution with hydroxyl, chloro, fluoro and trifluoro moieties at the para and meta positions were evaluated. In assays on treated cells and recombinant protein, the IC50 varied from 250 nM to >100 μM. X-ray crystal structures of selected complexes revealed that two binding modes are accessed by some compounds, perhaps owing to strain in short linkers between the isothiocyanate and aromatic ring. The variety of binding modes confirms the existence of two subsites for inhibitors and establishes a platform for the development of potent inhibitors of MIF that only need to target one of these subsites.
Collapse
Affiliation(s)
- Emma S Spencer
- Centre for Free Radical Research, Department of Pathology, University of Otago, PO Box 4345, Christchurch 8140, New Zealand
| | - Edward J Dale
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Aimée L Gommans
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Malcolm T Rutledge
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Christine T Vo
- National School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Yoshio Nakatani
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Allan B Gamble
- National School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robin A J Smith
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Sigurd M Wilbanks
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology, University of Otago, PO Box 4345, Christchurch 8140, New Zealand.
| | - Joel D A Tyndall
- National School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
26
|
Pantouris G, Rajasekaran D, Garcia AB, Ruiz VG, Leng L, Jorgensen WL, Bucala R, Lolis EJ. Crystallographic and Receptor Binding Characterization of Plasmodium falciparum Macrophage Migration Inhibitory Factor Complexed to Two Potent Inhibitors. J Med Chem 2014; 57:8652-6. [PMID: 25268646 PMCID: PMC4207548 DOI: 10.1021/jm501168q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
We
report the crystal structures of two inhibitors of Plasmodium falciparum macrophage migration inhibitory
factor (PfMIF) with nanomolar Ki’s, analyze their interactions with the active site
of PfMIF, and provide explanations regarding their
selectivity of PfMIF versus human MIF. These inhibitors
were also found to selectively inhibit interactions between PfMIF and the human MIF receptor CD74. The results of this
study provide the framework for the development of new therapeutics
that target PfMIF.
Collapse
Affiliation(s)
- Georgios Pantouris
- Departments
of Pharmacology, ‡Internal Medicine, §Chemistry, and the ∥Yale Cancer Center, Yale University, New Haven, Connecticut 06520-8066, United States
| | - Deepa Rajasekaran
- Departments
of Pharmacology, ‡Internal Medicine, §Chemistry, and the ∥Yale Cancer Center, Yale University, New Haven, Connecticut 06520-8066, United States
| | - Alvaro Baeza Garcia
- Departments
of Pharmacology, ‡Internal Medicine, §Chemistry, and the ∥Yale Cancer Center, Yale University, New Haven, Connecticut 06520-8066, United States
| | - Victor G. Ruiz
- Departments
of Pharmacology, ‡Internal Medicine, §Chemistry, and the ∥Yale Cancer Center, Yale University, New Haven, Connecticut 06520-8066, United States
| | - Lin Leng
- Departments
of Pharmacology, ‡Internal Medicine, §Chemistry, and the ∥Yale Cancer Center, Yale University, New Haven, Connecticut 06520-8066, United States
| | - William L. Jorgensen
- Departments
of Pharmacology, ‡Internal Medicine, §Chemistry, and the ∥Yale Cancer Center, Yale University, New Haven, Connecticut 06520-8066, United States
| | - Richard Bucala
- Departments
of Pharmacology, ‡Internal Medicine, §Chemistry, and the ∥Yale Cancer Center, Yale University, New Haven, Connecticut 06520-8066, United States
| | - Elias J. Lolis
- Departments
of Pharmacology, ‡Internal Medicine, §Chemistry, and the ∥Yale Cancer Center, Yale University, New Haven, Connecticut 06520-8066, United States
| |
Collapse
|
27
|
Rajasekaran D, Zierow S, Syed M, Bucala R, Bhandari V, Lolis EJ. Targeting distinct tautomerase sites of D-DT and MIF with a single molecule for inhibition of neutrophil lung recruitment. FASEB J 2014; 28:4961-71. [PMID: 25016026 DOI: 10.1096/fj.14-256636] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report a new inflammatory activity for extracellular d-dopachrome tautomerase (D-DT), the recruitment of neutrophils to the lung on D-DT intratracheal installation of C57BL/6J mice with an EC50 of 5.6 μg. We also find that D-DT and macrophage migration inhibitory factor (MIF) have additive effects in neutrophil recruitment. Although the tautomerase site of D-DT and its homologue MIF are biophysically very different, 4-iodo-6-phenylpyrimidine (4-IPP) forms a covalent bond with Pro-1 of both proteins, resulting in a 6-phenylpyrimidine (6-PP) adduct. Recruitment of neutrophils to the lung for the 6-PP adducts of D-DT and MIF are reduced by ∼ 50% relative to the apo proteins, demonstrating that an unmodified Pro-1 is important for this activity, but there is no cooperativity in inhibition of the proteins together. The differences in the binding mode of the 6-PP adduct for D-DT was determined by crystallographic studies at 1.13 Å resolution and compared to the structure of the MIF-6-PP complex. There are major differences in the location of the 6-PP adduct to the D-DT and MIF active sites that provide insight into the lack of cooperativity by 4-IPP and into tuning the properties of the covalent inhibitors of D-DT and MIF that are necessary for the development of therapeutic small molecules against neutrophil damage from lung infections such as Pseudomonas aeruginosa in cystic fibrosis and immunocompromised patients.
Collapse
Affiliation(s)
| | | | | | - Richard Bucala
- Department of Internal Medicine, and Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| | | | - Elias J Lolis
- Department of Pharmacology, Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
28
|
MIF intersubunit disulfide mutant antagonist supports activation of CD74 by endogenous MIF trimer at physiologic concentrations. Proc Natl Acad Sci U S A 2013; 110:10994-9. [PMID: 23776208 DOI: 10.1073/pnas.1221817110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine. In addition to its known receptor-mediated biological activities, MIF possesses a catalytic site of unknown function between subunits of a homotrimer. Each subunit contributes three β-strands to adjacent subunits to form a core seven-stranded β-sheet for each monomer. MIF monomers, dimers, or trimers have been reported, but the active form that binds and activates the MIF receptor (CD74) is still a matter of debate. A cysteine mutant (N110C) that covalently locks MIF into a trimer by forming a disulfide with Cys-80 of an adjacent subunit is used to study this issue. Partial catalytic activity and receptor binding to CD74 are retained by N110C (locked trimer), but there is no cellular signaling. Wild-type MIF-induced cellular signaling, in vivo lung neutrophil accumulation, and alveolar permeability are inhibited with a fivefold excess of N110C. NMR and size-exclusion chromatography with light scattering reveal that N110C can form a higher-order oligomer in equilibrium with a single locked trimer. The X-ray structure confirms a local conformational change that disrupts the subunit interface and results in global changes responsible for the oligomeric form. The structure also confirms these changes are consistent for the partial catalytic and receptor binding activities. The absence of any potential monomer and the retention of partial catalytic and receptor binding activities despite changes in conformation (and dynamics) in the mutant support an endogenous MIF trimer that binds and activates CD74 at nanomolar concentrations. This conclusion has implications for therapeutic development.
Collapse
|