1
|
Chang CC, Coyle SM. Regulatable assembly of synthetic microtubule architectures using engineered microtubule-associated protein-IDR condensates. J Biol Chem 2024; 300:107544. [PMID: 38992434 PMCID: PMC11342785 DOI: 10.1016/j.jbc.2024.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Microtubule filaments are assembled into higher-order structures using microtubule-associated proteins. However, synthetic MAPs that direct the formation of new structures are challenging to design, as nanoscale biochemical activities must be organized across micron length-scales. Here, we develop modular MAP-IDR condensates (synMAPs) that enable inducible assembly of higher-order microtubule structures for synthetic exploration in vitro and in mammalian cells. synMAPs harness a small microtubule-binding domain from oligodendrocytes (TPPP) whose activity we show can be rewired by interaction with unrelated condensate-forming IDR sequences. This combination is sufficient to allow synMAPs to self-organize multivalent structures that bind and bridge microtubules into higher-order architectures. By regulating the connection between the microtubule-binding domain and condensate-forming components of a synMAP, the formation of these structures can be triggered by small molecules or cell-signaling inputs. We systematically test a panel of synMAP circuit designs to define how the assembly of these synthetic microtubule structures can be controlled at the nanoscale (via microtubule-binding affinity) and microscale (via condensate formation). synMAPs thus provide a modular starting point for the design of higher-order microtubule systems and an experimental testbed for exploring condensate-directed mechanisms of higher-order microtubule assembly from the bottom-up.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott M Coyle
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
2
|
Han Y, Hammerl J, Flemming FE, Schuergers N, Wilde A. A cyanobacterial chemotaxis-like system controls phototactic orientation via phosphorylation of two antagonistic response regulators. MICROLIFE 2024; 5:uqae012. [PMID: 38887653 PMCID: PMC11181946 DOI: 10.1093/femsml/uqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Photosynthetic cyanobacteria exhibit phototaxis, utilizing type IV pili (T4P) to navigate either toward or away from a light source. The Tax1 system is a chemotaxis-like signal transduction pathway that controls the switch in cell polarity, which is crucial for positive phototaxis in Synechocystis sp. PCC 6803. The system consists of the blue/green light sensor PixJ, which controls the histidine kinase PixL and two CheY-like response regulators, PixG and PixH. However, the molecular mechanism by which Tax1 regulates T4P activity and polarity is poorly understood. Here, we investigated the phosphotransfer between PixL and its cognate response regulators in vitro and analyzed the localization and function of wild-type and phosphorylation-deficient PixG and PixH during phototaxis. We found that both PixG and PixH are phosphorylated by PixL but have different roles in phototaxis regulation. Only phosphorylated PixG interacts with the T4P motor protein PilB1 and localizes to the leading cell pole under directional light, thereby promoting positive phototaxis. In contrast, PixH is a negative regulator of PixG phosphorylation and inhibits positive phototaxis. We also demonstrated that the C-terminal receiver domain of PixL is essential for positive phototaxis, and modulates the kinase activity of PixL. Our findings reveal the molecular basis of positive phototaxis regulation by the Tax1 system and provide insights into the division of labor between PatA-type and CheY-like response regulators in cyanobacterial chemotaxis-like systems. Furthermore, these findings highlight similarities in the regulation of movement direction during twitching motility in phototactic and chemotactic bacteria.
Collapse
Affiliation(s)
- Yu Han
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Jonas Hammerl
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albertstr. 19A, University of Freiburg, Germany
| | - Felicitas E Flemming
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Schuergers
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Chang CC, Coyle SM. Regulatable assembly of synthetic microtubule architectures using engineered MAP-IDR condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532644. [PMID: 38105997 PMCID: PMC10723337 DOI: 10.1101/2023.03.14.532644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microtubules filaments are assembled into higher-order structures and machines critical for cellular processes using microtubule-associated proteins (MAPs). However, the design of synthetic MAPs that direct the formation of new structures in cells is challenging, as nanoscale biochemical activities must be organized across micron length-scales. Here we develop synthetic MAP-IDR condensates (synMAPs) that provide tunable and regulatable assembly of higher-order microtubule structures in vitro and in mammalian cells. synMAPs harness a small microtubule-binding domain from oligodendrocytes (TPPP) whose activity can be synthetically rewired by interaction with condensate-forming IDR sequences. This combination allows synMAPs to self-organize multivalent structures that bind and bridge microtubules into synthetic architectures. Regulating the connection between the microtubule-binding and condensate-forming components allows synMAPs to act as nodes in more complex cytoskeletal circuits in which the formation and dynamics of the microtubule structure can be controlled by small molecules or cell-signaling inputs. By systematically testing a panel of synMAP circuit designs, we define a two-level control scheme for dynamic assembly of microtubule architectures at the nanoscale (via microtubule-binding) and microscale (via condensate formation). synMAPs provide a compact and rationally engineerable starting point for the design of more complex microtubule architectures and cellular machines.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Scott M. Coyle
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
4
|
Tokonami S, Nakasone Y, Terazima M. Effects of N- and C-terminal regions on oligomeric formation of blue light sensor protein SyPixD. Protein Sci 2023; 32:e4658. [PMID: 37184370 PMCID: PMC10211260 DOI: 10.1002/pro.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
A sensor of blue-light using flavin adenine dinucleotide (BLUF) is a typical blue light photoreceptor domain that is found in many photosensor proteins in bacteria and some eukaryotic algae. SyPixD in Synechocystis is one of the well-studied BLUF proteins. In the dark state, it forms a decamer and, upon photoexcitation, a dissociation reaction takes place to yield dimers. Such change in the intermolecular interactions of the protomers is important for the biological function. The effect of the N- and C-terminal sequences on the stability of SyPixD oligomeric states and photoreactions of SyPixD were studied to understand how the oligomeric form is maintained with weak interaction. It was found that a few residues that frequently persist at the N-terminus after removing a tag for purification are sensitive to the stability of the decamer structure. Even two or three residues at the N-terminus considerably reduces decamer stability, whereas four or more residues completely prevent decamer formation. Unexpectedly, truncating C-terminal sequences, which locate far from any protomer interface and of which structure is undetermined in crystal structure, also destabilizes the decamer structure. This destabilization is also apparent from the dissociation reaction dynamics detected by the transient grating and transient absorption measurements. The dissociation reaction is faster and the yield increases when the C-terminus does not contain seven amino acid residues. Photoexcitation induces a conformational change in the C-terminus of the decamer but not the dimer.
Collapse
Affiliation(s)
- Shunrou Tokonami
- Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
| |
Collapse
|
5
|
Tokonami S, Onose M, Nakasone Y, Terazima M. Slow Conformational Changes of Blue Light Sensor BLUF Proteins in Milliseconds. J Am Chem Soc 2022; 144:4080-4090. [PMID: 35196858 DOI: 10.1021/jacs.1c13121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blue light sensor using flavin (BLUF) proteins consist of flavin-binding BLUF domains and functional domains. Upon blue light excitation, the hydrogen bond network around the flavin chromophore changes, and the absorption spectrum in the visible region exhibits a red shift. Ultimately, the light information received in the BLUF domain is transmitted to the functional region. It has been believed that this red shift is complete within nanoseconds. In this study, slow reaction kinetics were discovered in milliseconds (τ1- and τ2-phase) for all the BLUF proteins examined (AppA, OaPAC, BlrP1, YcgF, PapB, SyPixD, and TePixD). Despite extensive reports on BLUF, this is the first clear observation of the BLUF protein absorption change with the duration in the millisecond time region. From the measurements of some domain-deleted mutants of OaPAC and two chimeric mutants of PixD proteins, it was found that the slower dynamics (τ2-phase) are strongly affected by the size and nature of the C-terminal region adjacent to the BLUF domain. Hence, this millisecond reaction is a significant indicator of conformational changes in the C-terminal region, which is essential for the biological functions. On the other hand, the τ1-phase commonly exists in all BLUF proteins, including any mutants. The origin of the slow dynamics was studied using site-specific mutants. These results clearly show the importance of Trp in the BLUF domain. Based on this, a reaction scheme for the BLUF reaction is proposed.
Collapse
Affiliation(s)
- Shunrou Tokonami
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Morihiko Onose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Sugimoto Y, Masuda S. In vivo localization and oligomerization of PixD and PixE for controlling phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. J GEN APPL MICROBIOL 2021; 67:54-58. [PMID: 33342920 DOI: 10.2323/jgam.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phototaxis is a phenomenon where cyanobacteria move toward a light source. Previous studies have shown that the blue-light-using-flavin (BLUF)-type photoreceptor PixD and the response regulator-like protein PixE control the phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. The pixD-null mutant moves away from light, whereas WT, pixE mutant, and pixD pixE double mutant move toward the light. This indicates that PixE functions downstream of PixD and influences the direction of movement. However, it is still unclear how the light signal received by PixD is transmitted to PixE, and then subsequently transmitted to the type IV pili motor mechanism. Here, we investigated intracellular localization and oligomerization of PixD and PixE to elucidate mechanisms of phototaxis regulation. Blue-native PAGE analysis, coupled with western blotting, indicated that most PixD exist as a dimer in soluble fractions, whereas PixE localized in ~250 kDa and ~450 kDa protein complexes in membrane fractions. When blue-native PAGE was performed after illuminating the membrane fractions with blue light, PixE levels in the ~250 kDa and ~450 kDa complexes were reduced and increased, respectively. These results suggest that PixE, localized in the ~450 kDa complex, controls activity of the motor ATPase PilB1 to regulate pilus motility.
Collapse
Affiliation(s)
- Yuki Sugimoto
- Department of Life Science and Technology, Tokyo Institute of Technology
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
7
|
Conradi FD, Mullineaux CW, Wilde A. The Role of the Cyanobacterial Type IV Pilus Machinery in Finding and Maintaining a Favourable Environment. Life (Basel) 2020; 10:life10110252. [PMID: 33114175 PMCID: PMC7690835 DOI: 10.3390/life10110252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Type IV pili (T4P) are proteinaceous filaments found on the cell surface of many prokaryotic organisms and convey twitching motility through their extension/retraction cycles, moving cells across surfaces. In cyanobacteria, twitching motility is the sole mode of motility properly characterised to date and is the means by which cells perform phototaxis, the movement towards and away from directional light sources. The wavelength and intensity of the light source determine the direction of movement and, sometimes in concert with nutrient conditions, act as signals for some cyanobacteria to form mucoid multicellular assemblages. Formation of such aggregates or flocs represents an acclimation strategy to unfavourable environmental conditions and stresses, such as harmful light conditions or predation. T4P are also involved in natural transformation by exogenous DNA, secretion processes, and in cellular adaptation and survival strategies, further cementing the role of cell surface appendages. In this way, cyanobacteria are finely tuned by external stimuli to either escape unfavourable environmental conditions via phototaxis, exchange genetic material, and to modify their surroundings to fit their needs by forming multicellular assemblies.
Collapse
Affiliation(s)
- Fabian D. Conradi
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (F.D.C.); (C.W.M.)
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (F.D.C.); (C.W.M.)
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Schänzlestr. 1, 79104 Freiburg; Germany
- Correspondence:
| |
Collapse
|
8
|
Jakob A, Nakamura H, Kobayashi A, Sugimoto Y, Wilde A, Masuda S. The (PATAN)-CheY-Like Response Regulator PixE Interacts with the Motor ATPase PilB1 to Control Negative Phototaxis in the Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2020; 61:296-307. [PMID: 31621869 DOI: 10.1093/pcp/pcz194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/09/2019] [Indexed: 05/22/2023]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 can move directionally on a moist surface toward or away from a light source to reach optimal light conditions for its photosynthetic lifestyle. This behavior, called phototaxis, is mediated by type IV pili (T4P), which can pull a single cell into a certain direction. Several photoreceptors and their downstream signal transduction elements are involved in the control of phototaxis. However, the critical steps of local pilus assembly in positive and negative phototaxis remain elusive. One of the photoreceptors controlling negative phototaxis in Synechocystis is the blue-light sensor PixD. PixD forms a complex with the CheY-like response regulator PixE that dissociates upon illumination with blue light. In this study, we investigate the phototactic behavior of pixE deletion and overexpression mutants in response to unidirectional red light with or without additional blue-light irradiation. Furthermore, we show that PixD and PixE partly localize in spots close to the cytoplasmic membrane. Interaction studies of PixE with the motor ATPase PilB1, demonstrated by in vivo colocalization, yeast two-hybrid and coimmunoprecipitation analysis, suggest that the PixD-PixE signal transduction system targets the T4P directly, thereby controlling blue-light-dependent negative phototaxis. An intriguing feature of PixE is its distinctive structure with a PATAN (PatA N-terminus) domain. This domain is found in several other regulators, which are known to control directional phototaxis. As our PilB1 coimmunoprecipitation analysis revealed an enrichment of PATAN domain response regulators in the eluate, we suggest that multiple environmental signals can be integrated via these regulators to control pilus function.
Collapse
Affiliation(s)
- Annik Jakob
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Hiroshi Nakamura
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Atsuko Kobayashi
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551 Japan
| | - Yuki Sugimoto
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Annegret Wilde
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Shinji Masuda
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551 Japan
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
9
|
Nakasone Y, Kikukawa K, Masuda S, Terazima M. Time-Resolved Study of Interprotein Signaling Process of a Blue Light Sensor PapB–PapA Complex. J Phys Chem B 2019; 123:3210-3218. [DOI: 10.1021/acs.jpcb.9b00196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Koutaro Kikukawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama 226-5801, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake, Kitashirakawa,
Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
10
|
Abstract
Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences , University of Parma , Parco Area delle Scienze 7/A-43124 Parma , Italy
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry, City College of New York , New York , New York 10031 , United States.,Ph.D. Programs in Biochemistry, Chemistry, and Biology , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Andreas Möglich
- Lehrstuhl für Biochemie , Universität Bayreuth , 95447 Bayreuth , Germany.,Research Center for Bio-Macromolecules , Universität Bayreuth , 95447 Bayreuth , Germany.,Bayreuth Center for Biochemistry & Molecular Biology , Universität Bayreuth , 95447 Bayreuth , Germany
| |
Collapse
|
11
|
Fujisawa T, Masuda S. Light-induced chromophore and protein responses and mechanical signal transduction of BLUF proteins. Biophys Rev 2017; 10:327-337. [PMID: 29235080 PMCID: PMC5899715 DOI: 10.1007/s12551-017-0355-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/15/2017] [Indexed: 11/26/2022] Open
Abstract
Photoreceptor proteins have been used to study how protein conformational changes are induced by alterations in their environments and how their signals are transmitted to downstream factors to dictate physiological responses. These proteins are attractive models because their signal transduction aspects and structural changes can be precisely regulated in vivo and in vitro based on light intensity. Among the known photoreceptors, members of the blue light–using flavin (BLUF) protein family have been well characterized with regard to how they control various light-dependent physiological responses in several microorganisms. Herein, we summarize our current understanding of their photoactivation and signal-transduction mechanisms. For signal transduction, we review recent studies concerning how the BLUF protein, PixD, transmits a light-induced signal to its downstream factor, PixE, to modulate phototaxis of the cyanobacterium Synechocystis sp. PCC6803.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry, Graduate School of Science and Engineering, Saga University, Saga, 840-8502 Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
12
|
Wilde A, Mullineaux CW. Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiol Rev 2017; 41:900-922. [PMID: 29077840 PMCID: PMC5812497 DOI: 10.1093/femsre/fux045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/12/2017] [Indexed: 12/02/2022] Open
Abstract
The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea.
Collapse
Affiliation(s)
- Annegret Wilde
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
13
|
Vargas-Cortez T, Morones-Ramirez JR, Balderas-Renteria I, Zarate X. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H+. Protein Expr Purif 2017; 132:44-49. [DOI: 10.1016/j.pep.2017.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 01/05/2023]
|
14
|
Sugimoto Y, Nakamura H, Ren S, Hori K, Masuda S. Genetics of the Blue Light-Dependent Signal Cascade That Controls Phototaxis in the Cyanobacterium Synechocystis sp. PCC6803. PLANT & CELL PHYSIOLOGY 2017; 58:458-465. [PMID: 28028165 DOI: 10.1093/pcp/pcw218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/04/2016] [Indexed: 05/22/2023]
Abstract
The Synechocystis sp. PCC6803 can move on a solid surface in response to light, a phenomenon called phototaxis. Although many of the photoreceptors involved in phototaxis have been identified, the mechanisms that regulate directional motility of Synechocystis are not well understood. Previous studies showed that a mutant lacking the blue light-using flavin (BLUF) photoreceptor PixD exhibits negative phototaxis under conditions where the wild type responds positively. PixD interacts with the pseudo-response regulator-like protein PixE in a light-dependent manner, suggesting that this intermolecular interaction is important for phototaxis regulation, although genetic evidence has been lacking. To gain further insight into phototaxis regulation by PixD-PixE signaling, we constructed the deletion mutants ΔPixE and ΔPixD-ΔPixE, and characterized their phenotypes, which matched those of the wild type (positive phototaxis). Because ΔPixD exhibited negative phototaxis, PixE must function downstream of PixD. Under intense blue light (>100 μmol m-2 s-1; 470 nm) the wild type exhibited negative phototaxis, but ΔPixD-PixE exhibited positive phototaxis toward low-intensity blue light (∼0.8 μmol m-2 s-1; 470 nm). These results suggest that an unknown light-sensing system(s), that is necessary for directional cell movement, can be activated by low-intensity blue light; on the other hand, PixD needs high-intensity blue light to be activated. We also isolated spontaneous mutants that compensated for the pixE deletion. Genome-wide sequencing of the mutants revealed that the uncharacterized gene sll2003 regulates positive and negative phototaxis in response to light intensity.
Collapse
Affiliation(s)
- Yuki Sugimoto
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Nakamura
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shukun Ren
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, USA
| | - Koichi Hori
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
15
|
Ren S, Sugimoto Y, Kobayashi T, Masuda S. Cross-linking analysis reveals the putative dimer structure of the cyanobacterial BLUF photoreceptor PixD. FEBS Lett 2015; 589:1879-82. [PMID: 25980609 DOI: 10.1016/j.febslet.2015.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 11/17/2022]
Abstract
PixD is a blue light using flavin (BLUF)-type blue-light photoreceptor controlling phototaxis in the cyanobacterium Synechocystis sp. PCC6803. The crystal structure of PixD shows a decamer, although in solution an equilibrium is maintained between the dimer and decamer. Because the ratio of these two conformers is altered by illumination, the equilibrium state determines photosensitivity. However, no structural information is available for the PixD dimer. Here, we report a predicted structure for the dimer based on docking simulation, mutagenesis, and mass spectrometry-based cross-linking analyses. The results indicate the importance of the PixD C-terminus for dimer preference and photosensitivity.
Collapse
Affiliation(s)
- Shukun Ren
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Sugimoto
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Taichi Kobayashi
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, Japan; Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
16
|
Wu M, Li Y, Fu X, Wang J, Zhang S, Yang L. Profiling the interaction mechanism of quinoline/quinazoline derivatives as MCHR1 antagonists: an in silico method. Int J Mol Sci 2014; 15:15475-502. [PMID: 25257526 PMCID: PMC4200842 DOI: 10.3390/ijms150915475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/30/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022] Open
Abstract
Melanin concentrating hormone receptor 1 (MCHR1), a crucial regulator of energy homeostasis involved in the control of feeding and energy metabolism, is a promising target for treatment of obesity. In the present work, the up-to-date largest set of 181 quinoline/quinazoline derivatives as MCHR1 antagonists was subjected to both ligand- and receptor-based three-dimensional quantitative structure–activity (3D-QSAR) analysis applying comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The optimal predictable CoMSIA model exhibited significant validity with the cross-validated correlation coefficient (Q2) = 0.509, non-cross-validated correlation coefficient (R2ncv) = 0.841 and the predicted correlation coefficient (R2pred) = 0.745. In addition, docking studies and molecular dynamics (MD) simulations were carried out for further elucidation of the binding modes of MCHR1 antagonists. MD simulations in both water and lipid bilayer systems were performed. We hope that the obtained models and information may help to provide an insight into the interaction mechanism of MCHR1 antagonists and facilitate the design and optimization of novel antagonists as anti-obesity agents.
Collapse
Affiliation(s)
- Mingwei Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian 116024, China.
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian 116024, China.
| | - Xinmei Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Jinghui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian 116024, China.
| | - Shuwei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian University of Technology, Dalian 116024, China.
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Graduate School of the Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
17
|
Masuda S, Nakatani Y, Ren S, Tanaka M. Blue light-mediated manipulation of transcription factor activity in vivo. ACS Chem Biol 2013; 8:2649-53. [PMID: 24063403 DOI: 10.1021/cb400174d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a novel technique for manipulating the activity of transcription factors with blue light (termed "PICCORO") using the bacterial BLUF-type photoreceptor protein PixD. The chimeric dominant-negative T-box transcription factor No Tail formed heterologous complexes with a PixD decamer in a light-dependent manner, and these complexes affected transcription repressor activity. When applied to zebrafish embryos, PICCORO permitted regulation of the activity of the mutant No Tail in response to 472-nm light provided by a light-emitting diode.
Collapse
Affiliation(s)
- Shinji Masuda
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Yuki Nakatani
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shukun Ren
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Mikiko Tanaka
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
18
|
Anusuya S, Natarajan J. The eradication of leprosy: molecular modeling techniques for novel drug discovery. Expert Opin Drug Discov 2013; 8:1239-51. [PMID: 23924296 DOI: 10.1517/17460441.2013.826188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Leprosy is a slowly progressing bacterial infection caused by Mycobacterium leprae. The World Health Organization recommended multidrug therapy (MDT) which is extremely effective and halts the progress of the disease. Even though the objective of eliminating leprosy as a public health problem has been achieved successfully, leprosy is not yet eradicated. Furthermore, the long-term use of MDT results in single- and multidrug resistance. Therefore, there is still a need for new drug discovery for leprosy. AREAS COVERED The authors explain the importance of discovery of new drug to leprosy and the significance of homology modeling to drug discovery. This review highlights the principle steps, applications, and the resources of homology modeling. Finally, the authors emphasize the application of different structure-based drug design (SBDD) approaches to design novel therapeutics for leprosy. EXPERT OPINION MDT has proved to be effective in controlling infection, with prevalence of leprosy now predominantly isolated to the developing countries. The emergence of single- and multidrug-resistant strains of M. leprae has, however, provided some concern with the need for newer antibacterial agents. Drug resistance can be overcome by multi-targeted therapy. SBDD approaches, which reported many successful drugs, depend predominantly on the three-dimensional (3D) structure of drug targets. As of 2013, only very few experimental structures are available for M. leprae proteins. Hence, SBDD, in leprosy research, relies heavily on homology modeling to predict the 3D structure of drug targets and to design better therapeutics.
Collapse
Affiliation(s)
- Shanmugam Anusuya
- V.M.K.V. Engineering College, Department of Bioinformatics , Salem 636308, Tamil Nadu , India
| | | |
Collapse
|