1
|
Grigoletto A, Marotti V, Tedeschini T, Campara B, Marigo I, Ingangi V, Pasut G. Improving the Therapeutic Potential of G-CSF through Compact Circular PEGylation Based on Orthogonal Conjugations. Biomacromolecules 2023; 24:4229-4239. [PMID: 37638739 PMCID: PMC10498445 DOI: 10.1021/acs.biomac.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Indexed: 08/29/2023]
Abstract
In this study, a circular conjugate of granulocyte colony-stimulating factor (G-CSF) was prepared by conjugating the two end-chains of poly(ethylene glycol) (PEG) to two different sites of the protein. For the orthogonal conjugation, a heterobifunctional PEG chain was designed and synthesized, bearing the dipeptide ZGln-Gly (ZQG) at one end-chain, for transglutaminase (TGase) enzymatic selective conjugation at Lys41 of G-CSF, and an aldehyde group at the opposite end-chain, for N-terminal selective reductive alkylation of the protein. The cPEG-Nter/K41-G-CSF circular conjugate was characterized by physicochemical methods and compared with native G-CSF and the corresponding linear monoconjugates of G-CSF, PEG-Nter-G-CSF, and PEG-K41-G-CSF. The results demonstrated that the circular conjugate had improved physicochemical and thermal stability, prolonged pharmacokinetic interaction, and retained the biological activity of G-CSF. The PEGylation strategy employed in this study has potential applications in the design of novel protein-based therapeutics.
Collapse
Affiliation(s)
- Antonella Grigoletto
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Valentina Marotti
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Tommaso Tedeschini
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Benedetta Campara
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Ilaria Marigo
- Department
of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Istituto
Oncologico Veneto IOV − IRCCS, Via Gattamelata 64, 35128 Padova, Italy
| | - Vincenzo Ingangi
- Istituto
Oncologico Veneto IOV − IRCCS, Via Gattamelata 64, 35128 Padova, Italy
| | - Gianfranco Pasut
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
2
|
Bychkova VE, Dolgikh DA, Balobanov VA, Finkelstein AV. The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception. Molecules 2022; 27:molecules27144361. [PMID: 35889244 PMCID: PMC9319461 DOI: 10.3390/molecules27144361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/01/2023] Open
Abstract
Quite a long time ago, Oleg B. Ptitsyn put forward a hypothesis about the possible functional significance of the molten globule (MG) state for the functioning of proteins. MG is an intermediate between the unfolded and the native state of a protein. Its experimental detection and investigation in a cell are extremely difficult. In the last decades, intensive studies have demonstrated that the MG-like state of some globular proteins arises from either their modifications or interactions with protein partners or other cell components. This review summarizes such reports. In many cases, MG was evidenced to be functionally important. Thus, the MG state is quite common for functional cellular proteins. This supports Ptitsyn’s hypothesis that some globular proteins may switch between two active states, rigid (N) and soft (MG), to work in solution or interact with partners.
Collapse
Affiliation(s)
- Valentina E. Bychkova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow, Russia;
| | - Vitalii A. Balobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
- Correspondence:
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| |
Collapse
|
3
|
Cahuzac H, Sallustrau A, Malgorn C, Beau F, Barbe P, Babin V, Dubois S, Palazzolo A, Thai R, Correia I, Lee KB, Garcia-Argote S, Lequin O, Keck M, Nozach H, Feuillastre S, Ge X, Pieters G, Audisio D, Devel L. Monitoring In Vivo Performances of Protein-Drug Conjugates Using Site-Selective Dual Radiolabeling and Ex Vivo Digital Imaging. J Med Chem 2022; 65:6953-6968. [PMID: 35500280 PMCID: PMC9833330 DOI: 10.1021/acs.jmedchem.2c00401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In preclinical models, the development and optimization of protein-drug conjugates require accurate determination of the plasma and tissue profiles of both the protein and its conjugated drug. To this aim, we developed a bioanalytical strategy based on dual radiolabeling and ex vivo digital imaging. By combining enzymatic and chemical reactions, we obtained homogeneous dual-labeled anti-MMP-14 Fabs (antigen-binding fragments) conjugated to monomethyl auristatin E where the protein scaffold was labeled with carbon-14 (14C) and the conjugated drug with tritium (3H). These antibody-drug conjugates with either a noncleavable or a cleavable linker were then evaluated in vivo. By combining liquid scintillation counting and ex vivo dual-isotope radio-imaging, it was possible not only to monitor both components simultaneously during their circulation phase but also to quantify accurately their amount accumulated within the different organs.
Collapse
Affiliation(s)
- Héloïse Cahuzac
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Antoine Sallustrau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Carole Malgorn
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Fabrice Beau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Peggy Barbe
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Victor Babin
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Steven Dubois
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Alberto Palazzolo
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Isabelle Correia
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Ki Baek Lee
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston 1825 Pressler St, Houston TX 77030
| | - Sébastien Garcia-Argote
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Mathilde Keck
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Hervé Nozach
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Xin Ge
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston 1825 Pressler St, Houston TX 77030
| | - Gregory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Davide Audisio
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France),
| |
Collapse
|
4
|
Bolzati C, Salvarese N, Spolaore B, Vittadini A, Forrer D, Brunello S, Ghiani S, Maiocchi A. Water-Soluble [Tc(N)(PNP)] Moiety for Room-Temperature 99mTc Labeling of Sensitive Target Vectors. Mol Pharm 2022; 19:876-894. [DOI: 10.1021/acs.molpharmaceut.1c00816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Cristina Bolzati
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
| | - Nicola Salvarese
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
| | - Barbara Spolaore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo, 5, I-35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padua, 35121 Padova, Italy
| | - Andrea Vittadini
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, I-35131 Padova, Italy
| | - Daniel Forrer
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, I-35131 Padova, Italy
| | - Sara Brunello
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
| | - Simona Ghiani
- Bracco Imaging SpA, Bioindustry Park del Canavese, Via Ribes 5, Colleretto Giacosa, 10010 Torino, Italy
| | | |
Collapse
|
5
|
Haque M, Forte N, Baker JR. Site-selective lysine conjugation methods and applications towards antibody-drug conjugates. Chem Commun (Camb) 2021; 57:10689-10702. [PMID: 34570125 PMCID: PMC8516052 DOI: 10.1039/d1cc03976h] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Site-selective protein modification is of significant interest in chemical biology research, with lysine residues representing a particularly challenging target. Whilst lysines are popular for bioconjugation, due to their nucleophilicity, solvent accessibility and the stability of the resultant conjugates, their high abundance means site-selectivity is very difficult to achieve. Antibody-drug conjugates (ADCs) present a powerful therapeutic application of protein modification, and have often relied extensively upon lysine bioconjugation for their synthesis. Here we discuss advances in methodologies for achieving site-selective lysine modification, particularly within the context of antibody conjugate construction, including the cysteine-to-lysine transfer (CLT) protocol which we have recently reported.
Collapse
Affiliation(s)
- Muhammed Haque
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Nafsika Forte
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - James R Baker
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
6
|
Kumari P, Bowmik S, Paul SK, Biswas B, Banerjee SK, Murty US, Ravichandiran V, Mohan U. Sortase A: A chemoenzymatic approach for the labeling of cell surfaces. Biotechnol Bioeng 2021; 118:4577-4589. [PMID: 34491580 DOI: 10.1002/bit.27935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 01/31/2023]
Abstract
Sortase A, a transpeptidase enzyme is present in many Gram-positive bacteria and helps in the recruitment of the cell surface proteins. Over the last two decades, Sortase A has become an attractive tool for performing in vivo and in vitro ligations. Sortase A-mediated ligation has continuously been used for its specificity, robustness, and highly efficient nature. These properties make it a popular choice among protein engineers as well as researchers from different fields. In this review, we give an overview of Sortase A-mediated ligation of various molecules on the cell surfaces, which can have diverse applications in interdisciplinary fields.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Sujoy Bowmik
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Sudipto Kumar Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Bidisha Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | | | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, West Bengal, India
| |
Collapse
|
7
|
Fuchsbauer HL. Approaching transglutaminase from Streptomyces bacteria over three decades. FEBS J 2021; 289:4680-4703. [PMID: 34102019 DOI: 10.1111/febs.16060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
Transglutaminases are protein cross-linking and protein-modifying enzymes that have attracted considerable interest due to their causal involvement in various diseases and versatility in industrial applications. In particular, microbial transglutaminases (MTG) from Streptomyces bacteria have managed in recent years to evolve from simple food additives to specialized enzymes for the site-directed modification of therapeutic proteins. The review summarizes relevant studies from the beginning dealing with the occurrence, production, structure, catalysis, and substrate molecules of MTG enzymes. It also addresses biotechnological procedures with MTG from S. mobaraensis (SmMTG) as the most prominent representative in focus. Reassessment of the available data revealed unexpected insights into catalysis of SmMTG and other transglutaminases, suggesting selection of glutamine donor proteins by subsites at the front vestibule and the existence of distinct lysine pockets. Flexibility of the SmMTG-accessible glutamine donor substrate regions seems to be more important than the glutamine environment. Nevertheless, residues in close vicinity to glutamines also determine interaction with the SmMTG subsites. The apparent lack of subsites for lysine donor proteins suggests self-assembly of the substrate proteins prior to enzymatic cross-linking. The study of natural substrate proteins, especially their mutual interaction, is proposed to further illuminate catalysis of SmMTG. To this end, structure and function of the characterized substrate proteins from S. mobaraensis are discussed in conclusion.
Collapse
Affiliation(s)
- Hans-Lothar Fuchsbauer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Germany
| |
Collapse
|
8
|
Bolzati C, Spolaore B. Enzymatic Methods for the Site-Specific Radiolabeling of Targeting Proteins. Molecules 2021; 26:3492. [PMID: 34201280 PMCID: PMC8229434 DOI: 10.3390/molecules26123492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Site-specific conjugation of proteins is currently required to produce homogenous derivatives for medicine applications. Proteins derivatized at specific positions of the polypeptide chain can actually show higher stability, superior pharmacokinetics, and activity in vivo, as compared with conjugates modified at heterogeneous sites. Moreover, they can be better characterized regarding the composition of the derivatization sites as well as the conformational and activity properties. To this aim, several site-specific derivatization approaches have been developed. Among these, enzymes are powerful tools that efficiently allow the generation of homogenous protein-drug conjugates under physiological conditions, thus preserving their native structure and activity. This review will summarize the progress made over the last decade on the use of enzymatic-based methodologies for the production of site-specific labeled immunoconjugates of interest for nuclear medicine. Enzymes used in this field, including microbial transglutaminase, sortase, galactosyltransferase, and lipoic acid ligase, will be overviewed and their recent applications in the radiopharmaceutical field will be described. Since nuclear medicine can benefit greatly from the production of homogenous derivatives, we hope that this review will aid the use of enzymes for the development of better radio-conjugates for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Cristina Bolzati
- Institute of Condensed Matter Chemistry and Technologies for Energy ICMATE-CNR, Corso Stati Uniti, 4, I-35127 Padova, Italy
| | - Barbara Spolaore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via Marzolo, 5, I-35131 Padova, Italy
- CRIBI Biotechnology Center, University of Padua, Viale G. Colombo, 3, I-35131 Padova, Italy
| |
Collapse
|
9
|
Sadiki A, Vaidya SR, Abdollahi M, Bhardwaj G, Dolan ME, Turna H, Arora V, Sanjeev A, Robinson TD, Koid A, Amin A, Zhou ZS. Site-specific conjugation of native antibody. Antib Ther 2020; 3:271-284. [PMID: 33644685 PMCID: PMC7906296 DOI: 10.1093/abt/tbaa027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Traditionally, non-specific chemical conjugations, such as acylation of amines on lysine or alkylation of thiols on cysteines, are widely used; however, they have several shortcomings. First, the lack of site-specificity results in heterogeneous products and irreproducible processes. Second, potential modifications near the complementarity-determining region may reduce binding affinity and specificity. Conversely, site-specific methods produce well-defined and more homogenous antibody conjugates, ensuring developability and clinical applications. Moreover, several recent side-by-side comparisons of site-specific and stochastic methods have demonstrated that site-specific approaches are more likely to achieve their desired properties and functions, such as increased plasma stability, less variability in dose-dependent studies (particularly at low concentrations), enhanced binding efficiency, as well as increased tumor uptake. Herein, we review several standard and practical site-specific bioconjugation methods for native antibodies, i.e., those without recombinant engineering. First, chemo-enzymatic techniques, namely transglutaminase (TGase)-mediated transamidation of a conserved glutamine residue and glycan remodeling of a conserved asparagine N-glycan (GlyCLICK), both in the Fc region. Second, chemical approaches such as selective reduction of disulfides (ThioBridge) and N-terminal amine modifications. Furthermore, we list site-specific antibody–drug conjugates in clinical trials along with the future perspectives of these site-specific methods.
Collapse
Affiliation(s)
- Amissi Sadiki
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Shefali R Vaidya
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Mina Abdollahi
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Gunjan Bhardwaj
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Michael E Dolan
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA.,Downstream Development, Biologics Process Development, Millennium Pharmaceuticals, Inc., (a wholly-owned subsidiary of Takeda Pharmaceuticals Company Limited), Cambridge, Massachusetts 02139, USA
| | - Harpreet Turna
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Varnika Arora
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Athul Sanjeev
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Timothy D Robinson
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Andrea Koid
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Aashka Amin
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University Boston, Massachusetts 02115-5000, USA.,Barnett Institute of Chemical and Biological Analysis, Northeastern University Boston, Massachusetts 02115-5000, USA
| |
Collapse
|
10
|
Ceresino EB, Johansson E, Sato HH, Plivelic TS, Hall SA, Kuktaite R. Morphological and structural heterogeneity of solid gliadin food foams modified with transglutaminase and food grade dispersants. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Ceresino EB, Kuktaite R, Hedenqvist MS, Sato HH, Johansson E. Processing conditions and transglutaminase sources to “drive” the wheat gluten dough quality. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Reinventing the nutraceutical value of gluten: The case of l-theanine-gluten as a potential alternative to the gluten exclusion diet in celiac disease. Food Chem 2020; 324:126840. [DOI: 10.1016/j.foodchem.2020.126840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/08/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
|
13
|
Chio TI, Demestichas BR, Brems BM, Bane SL, Tumey LN. Expanding the Versatility of Microbial Transglutaminase Using α‐Effect Nucleophiles as Noncanonical Substrates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tak Ian Chio
- Department of Chemistry Binghamton University State University of New York 25 Murray Hill Rd Vestal NY 13850 USA
| | - Breanna R. Demestichas
- Department of Chemistry Binghamton University State University of New York 25 Murray Hill Rd Vestal NY 13850 USA
| | - Brittany M. Brems
- Department of Pharmaceutical Sciences Binghamton University State University of New York 96 Corliss Ave Johnson City NY 13790 USA
| | - Susan L. Bane
- Department of Chemistry Binghamton University State University of New York 25 Murray Hill Rd Vestal NY 13850 USA
| | - L. Nathan Tumey
- Department of Pharmaceutical Sciences Binghamton University State University of New York 96 Corliss Ave Johnson City NY 13790 USA
| |
Collapse
|
14
|
Chio TI, Demestichas BR, Brems BM, Bane SL, Tumey LN. Expanding the Versatility of Microbial Transglutaminase Using α-Effect Nucleophiles as Noncanonical Substrates. Angew Chem Int Ed Engl 2020; 59:13814-13820. [PMID: 32268004 DOI: 10.1002/anie.202001830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Indexed: 12/12/2022]
Abstract
The substrate promiscuity of microbial transglutaminase (mTG) has been exploited in various applications in biotechnology, in particular for the attachment of alkyl amines to glutamine-containing peptides and proteins. Here, we expand the substrate repertoire to include hydrazines, hydrazides, and alkoxyamines, resulting in the formation of isopeptide bonds with varied susceptibilities to hydrolysis or exchange by mTG. Furthermore, we demonstrate that simple unsubstituted hydrazine and dihydrazides can be used to install reactive hydrazide handles onto the side chain of internal glutamine residues. The distinct hydrazide handles can be further coupled with carbonyls, including ortho-carbonylphenylboronic acids, to form site-specific and functional bioconjugates with tunable hydrolytic stability. The extension of the substrate scope of mTG beyond canonical amines thus substantially broadens the versatility of the enzyme, providing a new approach to facilitate novel applications.
Collapse
Affiliation(s)
- Tak Ian Chio
- Department of Chemistry, Binghamton University, State University of New York, 25 Murray Hill Rd, Vestal, NY, 13850, USA
| | - Breanna R Demestichas
- Department of Chemistry, Binghamton University, State University of New York, 25 Murray Hill Rd, Vestal, NY, 13850, USA
| | - Brittany M Brems
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, 96 Corliss Ave, Johnson City, NY, 13790, USA
| | - Susan L Bane
- Department of Chemistry, Binghamton University, State University of New York, 25 Murray Hill Rd, Vestal, NY, 13850, USA
| | - L Nathan Tumey
- Department of Pharmaceutical Sciences, Binghamton University, State University of New York, 96 Corliss Ave, Johnson City, NY, 13790, USA
| |
Collapse
|
15
|
Doti N, Caporale A, Monti A, Sandomenico A, Selis F, Ruvo M. A recent update on the use of microbial transglutaminase for the generation of biotherapeutics. World J Microbiol Biotechnol 2020; 36:53. [PMID: 32172335 DOI: 10.1007/s11274-020-02829-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/07/2020] [Indexed: 01/12/2023]
Abstract
The recent scientific progresses on the use of enzyme-mediated reactions in organic, non-aqueous and aqueous media have significantly supported the growing demand of new biotechnological and/or pharmacological products. Today, a plethora of microbial enzymes, used as biocatalysts, are available. Among these, microbial transglutaminases (MTGs) are broadly used for their ability to catalyse the formation of an isopeptide bond between the γ-amide group of glutamines and the ε-amino group of lysine. Due to their promiscuity towards primary amine-containing substrates and the more stringent specificity for glutamine-containing peptide sequences, several combined approaches can be tailored for different settings, making MTGs very attractive catalysts for generating protein-protein and protein small molecule's conjugates. The present review offers a recent update on the modifications attainable by MTG-catalysed bioreactions as reported between 2014 and 2019. In particular, we present a detailed and comparative overview on the MTG-based methods for proteins and antibodies engineering, with a particular outlook on the synthesis of homogeneous antibody-drug conjugates.
Collapse
Affiliation(s)
- N Doti
- Institute of Biostructure and Bioimaging, CNR (IBB-CNR), Via Mezzocannone, 16, 80134, Naples, Italy.
| | - A Caporale
- Institute of Crystallography, CNR (IC-CNR), c/o Area Science Park s.s. 14 Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Alessandra Monti
- Institute of Biostructure and Bioimaging, CNR (IBB-CNR), Via Mezzocannone, 16, 80134, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABIF), University L. Vanvitelli, Via Vivaldi, 43, 80100, Caserta, Italy
| | - A Sandomenico
- Institute of Biostructure and Bioimaging, CNR (IBB-CNR), Via Mezzocannone, 16, 80134, Naples, Italy
| | - Fabio Selis
- BioVIIIx R&D, Via B. Brin, 59C, 80142, Naples, Italy
| | - M Ruvo
- Institute of Biostructure and Bioimaging, CNR (IBB-CNR), Via Mezzocannone, 16, 80134, Naples, Italy.
| |
Collapse
|
16
|
Deweid L, Avrutina O, Kolmar H. Microbial transglutaminase for biotechnological and biomedical engineering. Biol Chem 2019; 400:257-274. [PMID: 30291779 DOI: 10.1515/hsz-2018-0335] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
Research on bacterial transglutaminase dates back to 1989, when the enzyme has been isolated from Streptomyces mobaraensis. Initially discovered during an extensive screening campaign to reduce costs in food manufacturing, it quickly appeared as a robust and versatile tool for biotechnological and pharmaceutical applications due to its excellent activity and simple handling. While pioneering attempts to make use of its extraordinary cross-linking ability resulted in heterogeneous polymers, currently it is applied to site-specifically ligate diverse biomolecules yielding precisely modified hybrid constructs comprising two or more components. This review covers the extensive and rapidly growing field of microbial transglutaminase-mediated bioconjugation with the focus on pharmaceutical research. In addition, engineering of the enzyme by directed evolution and rational design is highlighted. Moreover, cumbersome drawbacks of this technique mainly caused by the enzyme's substrate indiscrimination are discussed as well as the ways to bypass these limitations.
Collapse
Affiliation(s)
- Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, D-64287 Darmstadt, Germany
| |
Collapse
|
17
|
Spolaore B, Fernández J, Lomonte B, Massimino ML, Tonello F. Enzymatic labelling of snake venom phospholipase A 2 toxins. Toxicon 2019; 170:99-107. [PMID: 31563525 DOI: 10.1016/j.toxicon.2019.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Almost all animal venoms contain secretory phospholipases A2 (PLA2s), 14 kDa disulfide-rich enzymes that hydrolyze membrane phospholipids at the sn-2 position, releasing lysophospholipids and fatty acids. These proteins, depending on their sequence, show a wide variety of biochemical, toxic and pharmacological effects and deserve to be studied for their numerous possible applications, and to improve antivenom drugs. The cellular localization and activity of a protein can be studied by conjugating it with a tag. In this work, we applied an enzymatic labelling method, using Streptomyces mobaraense transglutaminase, on three snake venom PLA2s: a recombinant neuro- and myotoxic group I PLA2 from Notechis scutatus scutatus, and two myotoxic group II PLA2s from Bothrops asper - one of them a natural catalytically inactive variant. We demonstrate that TGase can be used to produce active mono- or bi-derivatives of these three PLA2s modified at specific Lys residues, and that all three of these proteins, conjugated with fluorescent peptides, are internalized in primary myotubes.
Collapse
Affiliation(s)
- Barbara Spolaore
- Dipartimento di Scienze del Farmaco, Università di Padova, Via F. Marzolo, 5, 35131, Padova, Italy.
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | | | - Fiorella Tonello
- Istituto di Neuroscienze, CNR, Viale G. Colombo, 3, 35121, Padova, Italy.
| |
Collapse
|
18
|
Caporale A, Monti A, Selis F, Sandomenico A, Tonon G, Ruvo M, Doti N. A comparative analysis of catalytic activity and stability of microbial transglutaminase in controlled denaturing conditions. J Biotechnol 2019; 302:48-57. [PMID: 31229602 DOI: 10.1016/j.jbiotec.2019.06.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Microbial transglutaminases (MTGs) catalyzes the formation of Gln-Lys isopeptide bonds and are widely used for the cross-linking of proteins and peptides in food and in biotechnological applications for bioconjugation reactions. In view of its practical utility, a comparative study of the catalytic activity and stability of the enzyme in a wide range of denaturing conditions has been performed through Circular Dichroism (CD), fluorescence and activity assays performed with model substrates. In agreement with previous results, we show that MTG has a significant structural and functional tolerance to pH changes, whereas the enzyme stability and activity decrease in presence of increasing amounts of denaturing agents, such as urea and guanidinium chloride (GdnHCl). Noteworthy, the activity of MTG in denaturing conditions differs markedly from that in pseudo-physiological settings, shifting unexpectedly toward higher substrate specificity. Also, the use of controlled amounts of denaturing agents (1.0-1.5 M urea) largely improves yields and purity of the final products of 10-15% and 25-30%, respectively. These findings widen the range of applicability of the MTG-mediated biocatalysis for industrial and biotechnological purposes.
Collapse
Affiliation(s)
| | - Alessandra Monti
- IBB-CNR, Via Mezzocannone 16, 80134, Napoli, Italy; Università degli studi della Campania "Luigi Vanvitelli", Via Vivaldi n. 43 - 81100 Caserta, Caserta, Italy
| | - Fabio Selis
- BIOVIIIx, via Brin, 59, 80142, Napoli, Italy
| | | | | | - Menotti Ruvo
- IBB-CNR, Via Mezzocannone 16, 80134, Napoli, Italy.
| | | |
Collapse
|
19
|
Bioengineering of microbial transglutaminase for biomedical applications. Appl Microbiol Biotechnol 2019; 103:2973-2984. [PMID: 30805670 DOI: 10.1007/s00253-019-09669-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Microbial transglutaminase (mTGase) is commonly known in the food industry as meat glue due to its incredible ability to "glue" meat proteins together. Aside from being widely exploited in the meat processing industries, mTGase is also widely applied in other food and textile industries by catalysing the formation of isopeptide bonds between peptides or protein substrates. The advancement of technology has opened up new avenues for mTGase in the field of biomedical engineering. Efforts have been made to study the structural properties of mTGase in order to gain an in-depth understanding of the structure-function relationship. This review highlights the developments in mTGase engineering together with its role in biomedical applications including biomaterial fabrication for tissue engineering and biotherapeutics.
Collapse
|
20
|
Faraj SE, Noguera ME, Delfino JM, Santos J. Global Implications of Local Unfolding Phenomena, Probed by Cysteine Reactivity in Human Frataxin. Sci Rep 2019; 9:1731. [PMID: 30742023 PMCID: PMC6370780 DOI: 10.1038/s41598-019-39429-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
Local events that affect specific regions of proteins are of utmost relevance for stability and function. The aim of this study is to quantitatively assess the importance of locally-focused dynamics by means of a simple chemical modification procedure. Taking human Frataxin as a working model, we investigated local fluctuations of the C-terminal region (the last 16 residues of the protein) by means of three L → C replacement mutants: L98C, L200C and L203C. The conformation and thermodynamic stability of each variant was assessed. All the variants exhibited native features and high stabilities: 9.1 (wild type), 8.1 (L198C), 7.0 (L200C) and 10.0 kcal mol-1 (L203C). In addition, kinetic rates of Cys chemical modification by DTNB and DTDPy were measured, conformational dynamics data were extracted and free energy for the local unfolding of the C-terminal region was estimated. The analysis of these results indicates that the conformation of the C-terminal region fluctuates with partial independence from global unfolding events. Additionally, numerical fittings of the kinetic model of the process suggest that the local transition occurs in the seconds to minutes timescale. In fact, standard free energy differences for local unfolding were found to be significantly lower than those of the global unfolding reaction, showing that chemical modification results may not be explained in terms of the global unfolding reaction alone. These results provide unequivocal experimental evidence of local phenomena with global effects and contribute to understanding how global and local stability are linked to protein dynamics.
Collapse
Affiliation(s)
- Santiago E Faraj
- Alejandro Paladini Institute of Biological Chemistry and Chemical Physics (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (C1113AAD), Buenos Aires, Argentina
| | - Martín E Noguera
- Alejandro Paladini Institute of Biological Chemistry and Chemical Physics (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (C1113AAD), Buenos Aires, Argentina
| | - José María Delfino
- Alejandro Paladini Institute of Biological Chemistry and Chemical Physics (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (C1113AAD), Buenos Aires, Argentina
| | - Javier Santos
- Alejandro Paladini Institute of Biological Chemistry and Chemical Physics (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (C1113AAD), Buenos Aires, Argentina. .,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biociencias, Biotecnología y Biomedicina (iB3). Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA, C.A.B.A., Argentina.
| |
Collapse
|
21
|
Zhang Y, Park KY, Suazo KF, Distefano MD. Recent progress in enzymatic protein labelling techniques and their applications. Chem Soc Rev 2018; 47:9106-9136. [PMID: 30259933 PMCID: PMC6289631 DOI: 10.1039/c8cs00537k] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-based conjugates are valuable constructs for a variety of applications. Conjugation of proteins to fluorophores is commonly used to study their cellular localization and the protein-protein interactions. Modification of therapeutic proteins with either polymers or cytotoxic moieties greatly enhances their pharmacokinetics or potency. To label a protein of interest, conventional direct chemical reaction with the side-chains of native amino acids often yields heterogeneously modified products. This renders their characterization complicated, requires difficult separation steps and may impact protein function. Although modification can also be achieved via the insertion of unnatural amino acids bearing bioorthogonal functional groups, these methods can have lower protein expression yields, limiting large scale production. As a site-specific modification method, enzymatic protein labelling is highly efficient and robust under mild reaction conditions. Significant progress has been made over the last five years in modifying proteins using enzymatic methods for numerous applications, including the creation of clinically relevant conjugates with polymers, cytotoxins or imaging agents, fluorescent or affinity probes to study complex protein interaction networks, and protein-linked materials for biosensing. This review summarizes developments in enzymatic protein labelling over the last five years for a panel of ten enzymes, including sortase A, subtiligase, microbial transglutaminase, farnesyltransferase, N-myristoyltransferase, phosphopantetheinyl transferases, tubulin tyrosin ligase, lipoic acid ligase, biotin ligase and formylglycine generating enzyme.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
22
|
Massimino ML, Simonato M, Spolaore B, Franchin C, Arrigoni G, Marin O, Monturiol-Gross L, Fernández J, Lomonte B, Tonello F. Cell surface nucleolin interacts with and internalizes Bothrops asper Lys49 phospholipase A 2 and mediates its toxic activity. Sci Rep 2018; 8:10619. [PMID: 30006575 PMCID: PMC6045611 DOI: 10.1038/s41598-018-28846-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/20/2018] [Indexed: 01/01/2023] Open
Abstract
Phospholipases A2 are a major component of snake venoms. Some of them cause severe muscle necrosis through an unknown mechanism. Phospholipid hydrolysis is a possible explanation of their toxic action, but catalytic and toxic properties of PLA2s are not directly connected. In addition, viperid venoms contain PLA2-like proteins, which are very toxic even if they lack catalytic activity due to a critical mutation in position 49. In this work, the PLA2-like Bothrops asper myotoxin-II, conjugated with the fluorophore TAMRA, was found to be internalized in mouse myotubes, and in RAW264.7 cells. Through experiments of protein fishing and mass spectrometry analysis, using biotinylated Mt-II as bait, we found fifteen proteins interacting with the toxin and among them nucleolin, a nucleolar protein present also on cell surface. By means of confocal microscopy, Mt-II and nucleolin were shown to colocalise, at 4 °C, on cell membrane where they form Congo-red sensitive assemblies, while at 37 °C, 20 minutes after the intoxication, they colocalise in intracellular spots going from plasmatic membrane to paranuclear and nuclear area. Finally, nucleolin antagonists were found to inhibit the Mt-II internalization and toxic activity and were used to identify the nucleolin regions involved in the interaction with the toxin.
Collapse
Affiliation(s)
| | - Morena Simonato
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Barbara Spolaore
- Dipartimento di Scienze del Farmaco, Università di Padova, Via F. Marzolo, 5, 35131, Padova, Italy
| | - Cinzia Franchin
- Dipartimento di Scienze Biomediche, Università di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
- Centro di Proteomica, Università di Padova e Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129, Padova, Italy
| | - Giorgio Arrigoni
- Dipartimento di Scienze Biomediche, Università di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
- Centro di Proteomica, Università di Padova e Azienda Ospedaliera di Padova, Via G. Orus 2/B, 35129, Padova, Italy
| | - Oriano Marin
- Dipartimento di Scienze Biomediche, Università di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Laura Monturiol-Gross
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, 11501, San José, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, 11501, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, 11501, San José, Costa Rica
| | - Fiorella Tonello
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
23
|
Site-specific derivatization of human interferon β-1a at lysine residues using microbial transglutaminase. Amino Acids 2018; 50:923-932. [PMID: 29627904 DOI: 10.1007/s00726-018-2563-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/29/2018] [Indexed: 11/27/2022]
Abstract
Microbial transglutaminase (TGase) has been successfully used to produce site-specific protein conjugates derivatized at the level of glutamine (Gln) or lysine (Lys) residues with diverse applications. Here, we study the drug human interferon β-1a (IFN) as a substrate of TGase. The derivatization reaction was performed using carbobenzoxy-L-glutaminyl-glycine to modify Lys residues and dansylcadaverine for Gln residues. The 166 amino acids polypeptide chain of IFN β-1a contains 11 Lys and 11 Gln residues potential sites of TGase derivatization. By means of mass spectrometry analyses, we demonstrate the highly selective derivatization of this protein by TGase at the level of Lys115 and as secondary site at the level of Lys33, while no reactive Gln residue was detected. Limited proteolysis experiments were performed on IFN to determine flexible regions of the protein under physiological conditions. Interestingly, primary and secondary sites of limited proteolysis and of TGase derivatization occur at the same regions of the polypeptide chain, indicating that the extraordinary selectivity of the TGase-mediated reaction is dictated by the conformational features of the protein substrate. We envisage that the TGase-mediated derivatization of IFN can be used to produce interesting derivatives of this important therapeutic protein.
Collapse
|
24
|
Salvarese N, Spolaore B, Marangoni S, Pasin A, Galenda A, Tamburini S, Cicoria G, Refosco F, Bolzati C. Transglutaminase-mediated conjugation and nitride-technetium-99m labelling of a bis(thiosemicarbazone) bifunctional chelator. J Inorg Biochem 2018. [PMID: 29529469 DOI: 10.1016/j.jinorgbio.2018.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An assessment study involving the use of the transglutaminase (TGase) conjugation method and the nitride-technetium-99m labelling on a bis(thiosemicarbazone) (BTS) bifunctional chelating agent is presented. The previously described chelator diacetyl-2-(N4-methyl-3-thiosemicarbazone)-3-(N4-amino-3-thiosemicarbazone), H2ATSM/A, has been functionalized with 6-aminohexanoic acid (ε-Ahx) to generate the bifunctional chelating agent diacetyl-2-(N4-methyl-3-thiosemicarbazone)-3-[N4-(amino)-(6-aminohexanoic acid)-3-thiosemicarbazone], H2ATSM/A-ε-Ahx (1), suitable for conjugation to glutamine (Gln) residues of bioactive molecules via TGase. The feasibility of the TGase reaction in the synthesis of a bioconjugate derivative was investigated using Substance P (SP) as model peptide. Compounds 1 and H2ATSM/A-ε-Ahx-SP (2) were labelled with nitride-technetium-99m, obtaining the complexes [99mTc][Tc(N)(ATSM/A-ε-Ahx)] (99mTc1) and [99mTc][Tc(N)(ATSM/A-ε-Ahx-SP)] (99mTc2). The chemical identity of 99mTc1 and 99mTc2 was confirmed by radio/UV-RP-HPLC combined with ESI-MS analysis on the respective carrier-added products 99g/99mTc1 and 99g/99mTc2. The stability of the radiolabelled complexes after incubation in various environments was investigated. All the results were compared with those obtained for the corresponding 64Cu-analogues, 64Cu1 and 64Cu2. The TGase reaction allows the conjugation of 1 with the peptide, but it is not highly efficient due to instability of the chelator in the required conditions. The SP-conjugated complexes are unstable in mouse and human sera. However, indeed the BTS system can be exploited as nitride-technetium-99m chelator for highly efficient technetium labelling, thus making compound 1 worthy of further investigations for new targeted technetium and copper radiopharmaceuticals encompassing Single Photon Emission Computed Tomography and Positron Emission Tomography imaging.
Collapse
Affiliation(s)
- Nicola Salvarese
- ICMATE-CNR, Corso Stati Uniti 4, 35127 Padua, Italy; Dipartimento di Scienze del Farmaco, Università Degli Studi di Padova, Via F. Marzolo 5, 35131 Padua, Italy.
| | - Barbara Spolaore
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Selena Marangoni
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Anna Pasin
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | | | | | - Gianfranco Cicoria
- Medical Physics Department, Azienda Ospedaliera Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Via Massarenti 9, 40138 Bologna, Italy
| | | | - Cristina Bolzati
- ICMATE-CNR, Corso Stati Uniti 4, 35127 Padua, Italy; Dipartimento di Scienze del Farmaco, Università Degli Studi di Padova, Via F. Marzolo 5, 35131 Padua, Italy.
| |
Collapse
|
25
|
Maso K, Grigoletto A, Pasut G. Transglutaminase and Sialyltransferase Enzymatic Approaches for Polymer Conjugation to Proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 112:123-142. [PMID: 29680235 DOI: 10.1016/bs.apcsb.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Proteins hold a central role in medicine and biology, also confirmed by the several therapeutic applications based on biologic drugs. Such therapies are of great relevance thanks to high potency and safety of proteins. Nevertheless, many proteins as therapeutics might present issues like fast kidney clearance, rapid enzymatic degradation, or immunogenicity. Such defects implicate frequent administrations or administrations at high doses of the therapeutics, thus yielding or exacerbating potential side effects. A successful technology for improving the clinical profiles of proteins is the conjugation of polymers to the protein surface. The design of a protein-polymer conjugate presents critical aspects that determine the efficacy and safety of the final product. The control over stoichiometry and conjugation site is a strict criterion on which researchers have been intensively focused during the years, in order to obtain homogeneous and batch-to-batch reproducible products. An innovative site-specific conjugation strategy relies on the use of enzymes as tools to mediate polymer conjugation. Enzymatic approaches are attractive because they allow site-selective polymer conjugation at specific protein amino acids. In these reactions, the polymer is a substrate analog that replaces the native substrate. Furthermore, enzymes can count other advantages such as high yields of conversion and physiological conditions of reaction. This chapter provides a meaningful description of protein-polymer conjugation through transglutaminase-mediated and sialyltransferase-mediated enzymatic strategies, reporting the mechanism of action and some relevant examples.
Collapse
Affiliation(s)
| | | | - Gianfranco Pasut
- University of Padua, Padua, Italy; Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
26
|
Rachel NM, Quaglia D, Lévesque É, Charette AB, Pelletier JN. Engineered, highly reactive substrates of microbial transglutaminase enable protein labeling within various secondary structure elements. Protein Sci 2017; 26:2268-2279. [PMID: 28857311 DOI: 10.1002/pro.3286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 12/15/2022]
Abstract
Microbial transglutaminase (MTG) is a practical tool to enzymatically form isopeptide bonds between peptide or protein substrates. This natural approach to crosslinking the side-chains of reactive glutamine and lysine residues is solidly rooted in food and textile processing. More recently, MTG's tolerance for various primary amines in lieu of lysine have revealed its potential for site-specific protein labeling with aminated compounds, including fluorophores. Importantly, MTG can label glutamines at accessible positions in the body of a target protein, setting it apart from most labeling enzymes that react exclusively at protein termini. To expand its applicability as a labeling tool, we engineered the B1 domain of Protein G (GB1) to probe the selectivity and enhance the reactivity of MTG toward its glutamine substrate. We built a GB1 library where each variant contained a single glutamine at positions covering all secondary structure elements. The most reactive and selective variants displayed a >100-fold increase in incorporation of a recently developed aminated benzo[a]imidazo[2,1,5-cd]indolizine-type fluorophore, relative to native GB1. None of the variants were destabilized. Our results demonstrate that MTG can react readily with glutamines in α-helical, β-sheet, and unstructured loop elements and does not favor one type of secondary structure. Introducing point mutations within MTG's active site further increased reactivity toward the most reactive substrate variant, I6Q-GB1, enhancing MTG's capacity to fluorescently label an engineered, highly reactive glutamine substrate. This work demonstrates that MTG-reactive glutamines can be readily introduced into a protein domain for fluorescent labeling.
Collapse
Affiliation(s)
- Natalie M Rachel
- Department of Chemistry, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,PROTEO, the Québec Network for Protein Function, Engineering and Applications, Québec, G1V 0A6, Canada.,CGCC, the Center in Green Chemistry and Catalysis, Montréal, Québec, H3A 0B8, Canada
| | - Daniela Quaglia
- Department of Chemistry, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,PROTEO, the Québec Network for Protein Function, Engineering and Applications, Québec, G1V 0A6, Canada.,CGCC, the Center in Green Chemistry and Catalysis, Montréal, Québec, H3A 0B8, Canada
| | - Éric Lévesque
- Department of Chemistry, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,CGCC, the Center in Green Chemistry and Catalysis, Montréal, Québec, H3A 0B8, Canada
| | - André B Charette
- Department of Chemistry, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,CGCC, the Center in Green Chemistry and Catalysis, Montréal, Québec, H3A 0B8, Canada
| | - Joelle N Pelletier
- Department of Chemistry, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.,PROTEO, the Québec Network for Protein Function, Engineering and Applications, Québec, G1V 0A6, Canada.,CGCC, the Center in Green Chemistry and Catalysis, Montréal, Québec, H3A 0B8, Canada.,Department of Biochemistry, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
27
|
Rachel NM, Toulouse JL, Pelletier JN. Transglutaminase-Catalyzed Bioconjugation Using One-Pot Metal-Free Bioorthogonal Chemistry. Bioconjug Chem 2017; 28:2518-2523. [DOI: 10.1021/acs.bioconjchem.7b00509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Natalie M. Rachel
- PROTEO, Québec Network for Protein Function, Engineering and Applications, Québec, G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H3A 0B8, Canada
| | - Jacynthe L. Toulouse
- PROTEO, Québec Network for Protein Function, Engineering and Applications, Québec, G1V 0A6, Canada
| | - Joelle N. Pelletier
- PROTEO, Québec Network for Protein Function, Engineering and Applications, Québec, G1V 0A6, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
28
|
Spidel JL, Vaessen B, Albone EF, Cheng X, Verdi A, Kline JB. Site-Specific Conjugation to Native and Engineered Lysines in Human Immunoglobulins by Microbial Transglutaminase. Bioconjug Chem 2017; 28:2471-2484. [PMID: 28820579 DOI: 10.1021/acs.bioconjchem.7b00439] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of microbial transglutaminase (MTG) to produce site-specific antibody-drug conjugates (ADCs) has thus far focused on the transamidation of engineered acyl donor glutamine residues in an antibody based on the hypothesis that the lower specificity of MTG for acyl acceptor lysines may result in the transamidation of multiple native lysine residues, thereby yielding heterogeneous products. We investigated the utilization of native IgG lysines as acyl acceptor sites for glutamine-based acyl donor substrates. Of the approximately 80 lysines in multiple recombinant IgG monoclonal antibodies (mAbs), none were transamidated. Because recombinant mAbs lack the C-terminal Lys447 due to cleavage by carboxypeptidase B in the production cell host, we explored whether blocking the cleavage of Lys447 by the addition of a C-terminal amino acid could result in transamidation of Lys447 by a variety of acyl donor substrates. MTG efficiently transamidated Lys447 in the presence of any nonacidic, nonproline amino acid residue at position 448. Lysine scanning mutagenesis throughout the antibody further revealed several transamidation sites in both the heavy- and light-chain constant regions. Additionally, scanning mutagenesis of the hinge region in a Fab' fragment revealed sites of transamidation that were not reactive in the context of the full-length mAb. Here, we demonstrate the utility of single lysine substitutions and the C-terminal Lys447 for engineering efficient acyl acceptor sites suitable for site-specific conjugation to a range of glutamine-based acyl donor substrates.
Collapse
Affiliation(s)
- Jared L Spidel
- Morphotek Inc. , 210 Welsh Pool Road, Exton, Pennsylvania 19341, United States
| | - Benjamin Vaessen
- Morphotek Inc. , 210 Welsh Pool Road, Exton, Pennsylvania 19341, United States
| | - Earl F Albone
- Morphotek Inc. , 210 Welsh Pool Road, Exton, Pennsylvania 19341, United States
| | - Xin Cheng
- Morphotek Inc. , 210 Welsh Pool Road, Exton, Pennsylvania 19341, United States
| | - Arielle Verdi
- Morphotek Inc. , 210 Welsh Pool Road, Exton, Pennsylvania 19341, United States
| | - J Bradford Kline
- Morphotek Inc. , 210 Welsh Pool Road, Exton, Pennsylvania 19341, United States
| |
Collapse
|
29
|
Grigoletto A, Mero A, Yoshioka H, Schiavon O, Pasut G. Covalent immobilisation of transglutaminase: stability and applications in protein PEGylation. J Drug Target 2017; 25:856-864. [PMID: 28805084 DOI: 10.1080/1061186x.2017.1363211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbial transglutaminase enzyme (mTGase) is an extremely useful enzyme that is increasingly employed in the food and pharmaceutical industries and as a tool for protein modification and tagging. The current study describes how we immobilised mTGase (iTGase) on a solid support to improve its stability during the PEGylation process by which polyethylene glycol chains are attached to protein and peptide drugs. When the enzyme was immobilised at the N-terminal sequence on agarose beads, it retained more than 53% of its starting activity. Kinetic studies on the immobilised and free mTGase disclosed a 1.7 and 1.5 fold decrease of Km and Vmax, respectively. Protein PEGylation was carried out using α-lactalbumin (α-LA) and granulocyte colony stimulating factor (G-CSF). In the former case, the iTGase showed a selective conjugation towards only one Gln residue of α-LA, avoiding formation of a mono- and bi-conjugate mixture that is achieved using the free enzyme. In the latter case, the immobilised enzyme still remained selective towards only one Gln, but avoided the undesired formation of deamidated G-CSF that took place when free mTGase was used. Overall, the results of the current study highlight the suitability of iTGase in preparing site-selective protein-polymer conjugates.
Collapse
Affiliation(s)
| | - Anna Mero
- a Department of Pharmaceutical Sciences , University of Padua , Padua , Italy
| | | | - Oddone Schiavon
- a Department of Pharmaceutical Sciences , University of Padua , Padua , Italy
| | - Gianfranco Pasut
- a Department of Pharmaceutical Sciences , University of Padua , Padua , Italy.,c Veneto Institute of Oncology IOV - IRCCS , Padua , Italy
| |
Collapse
|
30
|
Hattori Y, Heidenreich D, Ono Y, Sugiki T, Yokoyama KI, Suzuki EI, Fujiwara T, Kojima C. Protein 19F-labeling using transglutaminase for the NMR study of intermolecular interactions. JOURNAL OF BIOMOLECULAR NMR 2017; 68:271-279. [PMID: 28756478 DOI: 10.1007/s10858-017-0125-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
The preparation of stable isotope-labeled proteins is important for NMR studies, however, it is often hampered in the case of eukaryotic proteins which are not readily expressed in Escherichia coli. Such proteins are often conveniently investigated following post-expression chemical isotope tagging. Enzymatic 15N-labeling of glutamine side chains using transglutaminase (TGase) has been applied to several proteins for NMR studies. 19F-labeling is useful for interaction studies due to its high NMR sensitivity and susceptibility. Here, 19F-labeling of glutamine side chains using TGase and 2,2,2-trifluoroethylamine hydrochloride was established for use in an NMR study. This enzymatic 19F-labeling readily provided NMR detection of protein-drug and protein-protein interactions with complexes of about 100 kDa since the surface residues provided a good substrate for TGase. The 19F-labeling method was 3.5-fold more sensitive than 15N-labeling, and could be combined with other chemical modification techniques such as lysine 13C-methylation. 13C-dimethylated-19F-labeled FKBP12 provided more accurate information concerning the FK506 binding site.
Collapse
Affiliation(s)
- Yoshikazu Hattori
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihamaboji, 180, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - David Heidenreich
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, 60438, Frankfurt am Main, Germany
| | - Yuki Ono
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Toshihiko Sugiki
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Kei-Ichi Yokoyama
- Institute for Innovation Ajinomoto Co., Inc, Suzuki-cho 1-1, Kawasaki-ku, Kawasaki, 210-8681, Japan
| | - Ei-Ichiro Suzuki
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan.
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama, 240-8501, Japan.
| |
Collapse
|
31
|
Lévesque É, Bechara WS, Constantineau-Forget L, Pelletier G, Rachel NM, Pelletier JN, Charette AB. General C-H Arylation Strategy for the Synthesis of Tunable Visible Light-Emitting Benzo[a]imidazo[2,1,5-c,d]indolizine Fluorophores. J Org Chem 2017; 82:5046-5067. [PMID: 28441020 DOI: 10.1021/acs.joc.6b02928] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein we report the discovery of the benzo[a]imidazo[2,1,5-c,d]indolizine motif displaying tunable emission covering most of the visible spectrum. The polycyclic core is obtained from readily available amides via a chemoselective process involving Tf2O-mediated amide cyclodehydration, followed by intramolecular C-H arylation. Additionally, these fluorescent heterocycles are easily functionalized using electrophilic reagents, enabling divergent access to varied substitution. The effects of said substitution on the compounds' photophysical properties were rationalized by density functional theory calculations. For some compounds, emission wavelengths are directly correlated to the substituent's Hammett constants. Easily introduced nonconjugated reactive functional groups allow the labeling of biomolecules without modification of emissive properties. This work provides a straightforward platform for the synthesis of new moderately bright fluorescent dyes remarkable for their chemical stability, predictability, and unusually high excitation-emission differential.
Collapse
Affiliation(s)
- Éric Lévesque
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - William S Bechara
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Léa Constantineau-Forget
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Guillaume Pelletier
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Natalie M Rachel
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Joelle N Pelletier
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - André B Charette
- Centre in Green Chemistry and Catalysis, Faculty of Arts and Sciences, Department of Chemistry, Université de Montréal , P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
32
|
Li B, Zhou F, Huang K, Wang Y, Mei S, Zhou Y, Jing T. Environmentally friendly chitosan/PEI-grafted magnetic gelatin for the highly effective removal of heavy metals from drinking water. Sci Rep 2017; 7:43082. [PMID: 28225082 PMCID: PMC5320531 DOI: 10.1038/srep43082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/19/2017] [Indexed: 12/02/2022] Open
Abstract
The development of environmentally friendly sorbents with a high adsorption capacity is an essential problem in the removal of heavy metals from drinking water. In this study, magnetic gelatin was prepared using transglutaminase as a cross-linker, which could only catalyze an acyl-transfer reaction between lysine and glutamine residues of the gelatin and not affect other amino groups. Therefore, it was beneficial for the further modification based on the amino groups, and did not affect the spatial structure of gelatin, which can effectively prevent the embedding of active sites in the polymer matrix. After modification with the chitosan/polyethylenimine copolymers, the numbers of amino groups was greatly increased, and the magnetic composites exhibited a high adsorption capacity, excellent water compatibility and simple magnetic separation. The adsorption capacities of lead and cadmium were 341 mg g−1 and 321 mg g−1, respectively, which could be used for the removal of metal ions in drinking water.
Collapse
Affiliation(s)
- Bingbing Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Feng Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Kai Huang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yipei Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| |
Collapse
|
33
|
Bhokisham N, Pakhchanian H, Quan D, Tschirhart T, Tsao CY, Payne GF, Bentley WE. Modular construction of multi-subunit protein complexes using engineered tags and microbial transglutaminase. Metab Eng 2016; 38:1-9. [DOI: 10.1016/j.ymben.2016.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/21/2016] [Accepted: 05/05/2016] [Indexed: 11/25/2022]
|
34
|
Spolaore B, Raboni S, Satwekar AA, Grigoletto A, Mero A, Montagner IM, Rosato A, Pasut G, Fontana A. Site-Specific Transglutaminase-Mediated Conjugation of Interferon α-2b at Glutamine or Lysine Residues. Bioconjug Chem 2016; 27:2695-2706. [PMID: 27731976 DOI: 10.1021/acs.bioconjchem.6b00468] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interferon α (IFN α) subtypes are important protein drugs that have been used to treat infectious diseases and cancers. Here, we studied the reactivity of IFN α-2b to microbial transglutaminase (TGase) with the aim of obtaining a site-specific conjugation of this protein drug. Interestingly, TGase allowed the production of two monoderivatized isomers of IFN with high yields. Characterization by mass spectrometry of the two conjugates indicated that they are exclusively modified at the level of Gln101 if the protein is reacted in the presence of an amino-containing ligand (i.e., dansylcadaverine) or at the level of Lys164 if a glutamine-containing molecule is used (i.e., carbobenzoxy-l-glutaminyl-glycine, ZQG). We explained the extraordinary specificity of the TGase-mediated reaction on the basis of the conformational features of IFN. Indeed, among the 10 Lys and 12 Gln residues of the protein, only Gln101 and Lys164 are located in highly flexible protein regions. The TGase-mediated derivatization of IFN was then applied to the production of IFN derivatives conjugated to a 20 kDa polyethylene glycol (PEG), using PEG-NH2 for Gln101 derivatization and PEG modified with ZQG for Lys164 derivatization. The two mono-PEGylated isomers of IFN were obtained in good yields, purified, and characterized in terms of protein conformation, antiviral activity, and pharmacokinetics. Both conjugates maintained a native-like secondary structure, as indicated by far-UV circular dichroism spectra. Importantly, they disclosed good in vitro antiviral activity retention (about only 1.6- to 1.8-fold lower than that of IFN) and half-lives longer (about 5-fold) than that of IFN after intravenous administration to rats. Overall, these results provide evidence that TGase can be used for the development of site-specific derivatives of IFN α-2b possessing interesting antiviral and pharmacokinetic properties.
Collapse
Affiliation(s)
- Barbara Spolaore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy.,CRIBI Biotechnology Centre, University of Padua , viale Giuseppe Colombo 3, 35121 Padua, Italy
| | - Samanta Raboni
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy
| | - Abhijeet A Satwekar
- CRIBI Biotechnology Centre, University of Padua , viale Giuseppe Colombo 3, 35121 Padua, Italy
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy
| | - Anna Mero
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy
| | | | - Antonio Rosato
- Veneto Institute of Oncology IOV - IRCCS , via Gattamelata 64, I-35128 Padua, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padua , via Nicolò Giustiniani 2, 35124 Padua, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy.,Veneto Institute of Oncology IOV - IRCCS , via Gattamelata 64, I-35128 Padua, Italy
| | - Angelo Fontana
- CRIBI Biotechnology Centre, University of Padua , viale Giuseppe Colombo 3, 35121 Padua, Italy
| |
Collapse
|
35
|
Massa S, Xavier C, Muyldermans S, Devoogdt N. Emerging site-specific bioconjugation strategies for radioimmunotracer development. Expert Opin Drug Deliv 2016; 13:1149-63. [DOI: 10.1080/17425247.2016.1178235] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sam Massa
- In vivo Cellular and Molecular Imaging laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Catarina Xavier
- In vivo Cellular and Molecular Imaging laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
36
|
Zhou JQ, He T, Wang JW. PEGylation of cytochrome c at the level of lysine residues mediated by a microbial transglutaminase. Biotechnol Lett 2016; 38:1121-9. [DOI: 10.1007/s10529-016-2083-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/17/2016] [Indexed: 11/28/2022]
|
37
|
Zhou JQ, He T, Wang JW. The microbial transglutaminase immobilization on carboxylated poly(N-isopropylacrylamide) for thermo-responsivity. Enzyme Microb Technol 2016; 87-88:44-51. [PMID: 27178794 DOI: 10.1016/j.enzmictec.2016.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/19/2023]
Abstract
Microbial transglutaminase (mTG) is widely utilized in the PEGylation of pharmaceutical proteins. mTG immobilization can be achieved via covalent bonding on solid supports. However, the catalytic efficiency of mTG immobilized on solid supports was significantly reduced by mass transfer limitation. To overcome this limitation, mTG was covalently immobilized on the thermo-responsive carboxylated poly(N-isopropylacrylamide) (pNIPAM). The pNIPAM-mTG conjugate exhibited reversibly solubility in aqueous solution with a low critical solution temperature (LCST) at 39°C, i.e., it was insoluble above 39°C and soluble below 39°C. The pH dependence of the pNIPAM-mTG conjugate was similar with that of the native mTG. Upon conjugation to pNIPAM, the optimal temperature of mTG shifted down from 50-55°C to 40-45°C, and the thermal stability of the conjugate was elevated. The easy separation of the pNIPAM-mTG conjugate with its substrate and the catalytic efficiency of the pNIPAM-mTG conjugate were demonstrated by employing the pNIPAM-mTG conjugate to cross-link bovine serum albumin (BSA) and catalyze PEGylation of therapeutic protein, cytochrome c (Cyt C), respectively. The thermo-responsive mTG is suitable to modify proteins in food processing and biomedical engineering.
Collapse
Affiliation(s)
- Jian Qin Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Ting He
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
38
|
Rachel NM, Pelletier JN. One-pot peptide and protein conjugation: a combination of enzymatic transamidation and click chemistry. Chem Commun (Camb) 2016; 52:2541-4. [DOI: 10.1039/c5cc09163b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic transamidation and copper-catalyzed azide–alkyne cycloaddition (CuAAC) were combined to yield covalently conjugated peptides and proteins.
Collapse
Affiliation(s)
- N. M. Rachel
- Department of Chemistry
- Université de Montréal
- Montréal
- Canada
- PROTEO
| | - J. N. Pelletier
- Department of Chemistry
- Université de Montréal
- Montréal
- Canada
- PROTEO
| |
Collapse
|
39
|
Efficient chemo-enzymatic gluten detoxification: reducing toxic epitopes for celiac patients improving functional properties. Sci Rep 2015; 5:18041. [PMID: 26691232 PMCID: PMC4686914 DOI: 10.1038/srep18041] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
Protein engineering of gluten, the exogenous effector in celiac disease, seeking its detoxification by selective chemical modification of toxic epitopes is a very attractive strategy and promising technology when compared to pharmacological treatment or genetic engineering of wheat. Here we present a simple and efficient chemo-enzymatic methodology that decreases celiac disease toxic epitopes of gluten proteins improving its technological value through microbial transglutaminase-mediated transamidation of glutamine with n-butylamine under reducing conditions. First, we found that using low concentrations of amine-nucleophile under non-reducing conditions, the decrease in toxic epitopes is mainly due to transglutaminase-mediated cross-linking. Second, using high amine nucleophile concentrations protein cross-linking is substantially reduced. Third, reducing conditions increase 7-fold the transamidation reaction further decreasing toxic epitopes amount. Fourth, using n-butylamine improves gluten hydrophobicity that strengthens the gluten network. These results open the possibility of tailoring gluten for producing hypoallergenic flours while still taking advantage of the unique viscoelastic properties of gluten.
Collapse
|
40
|
Siegmund V, Schmelz S, Dickgiesser S, Beck J, Ebenig A, Fittler H, Frauendorf H, Piater B, Betz UAK, Avrutina O, Scrima A, Fuchsbauer H, Kolmar H. Locked by Design: A Conformationally Constrained Transglutaminase Tag Enables Efficient Site‐Specific Conjugation. Angew Chem Int Ed Engl 2015; 54:13420-4. [DOI: 10.1002/anie.201504851] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Vanessa Siegmund
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Stefan Schmelz
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Inhoffenstr. 7, 38124 Braunschweig (Germany)
| | - Stephan Dickgiesser
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Jan Beck
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Aileen Ebenig
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Heiko Fittler
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Holm Frauendorf
- Institut für Organische und Biomolekulare Chemie, Zentrale Analytik/Massenspektrometrie, Georg‐August‐Universität Göttingen, Tammannstr. 2, 37077 Göttingen (Germany)
| | - Birgit Piater
- Merck KGaA, Frankfurterstr. 250, 64293 Darmstadt (Germany)
| | | | - Olga Avrutina
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| | - Andrea Scrima
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Inhoffenstr. 7, 38124 Braunschweig (Germany)
| | - Hans‐Lothar Fuchsbauer
- Fachbereich Chemie‐ und Biotechnologie, Hochschule Darmstadt, Schnittspahnstraße 12, 64287 Darmstadt (Germany)
| | - Harald Kolmar
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Germany)
| |
Collapse
|
41
|
Siegmund V, Schmelz S, Dickgiesser S, Beck J, Ebenig A, Fittler H, Frauendorf H, Piater B, Betz UAK, Avrutina O, Scrima A, Fuchsbauer H, Kolmar H. Durch Design verbrückt: ein konformativ eingeschränkter Transglutaminase‐Marker ermöglicht effiziente ortsspezifische Konjugation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vanessa Siegmund
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Stefan Schmelz
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Braunschweig (Deutschland)
| | - Stephan Dickgiesser
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Jan Beck
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Aileen Ebenig
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Heiko Fittler
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Holm Frauendorf
- Institut für Organische und Biomolekulare Chemie, Zentrale Analytik/Massenspektrometrie, Universität Göttingen (Deutschland)
| | | | | | - Olga Avrutina
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| | - Andrea Scrima
- Arbeitsgruppe Strukturbiologie der Autophagie, Abteilung Struktur und Funktion der Proteine, Helmholtz‐Zentrum für Infektionsforschung, Braunschweig (Deutschland)
| | | | - Harald Kolmar
- Clemens‐Schöpf‐Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich‐Weiss‐Straße 4, 64287 Darmstadt (Deutschland)
| |
Collapse
|
42
|
Malešević M, Migge A, Hertel TC, Pietzsch M. A fluorescence-based array screen for transglutaminase substrates. Chembiochem 2015; 16:1169-74. [PMID: 25940638 DOI: 10.1002/cbic.201402709] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 01/05/2023]
Abstract
Transglutaminases (EC 2.3.2.13) form an enzyme family that catalyzes the formation of isopeptide bonds between the γ-carboxamide group of glutamine and the ε-amine group of lysine residues of peptides and proteins. Other primary amines can be accepted in place of lysine. Because of their important physiological and pathophysiological functions, transglutaminases have been studied for 60 years. However, the substrate preferences of this enzyme class remain largely elusive. In this study, we used focused combinatorial libraries of 400 peptides to investigate the influence of the amino acids adjacent to the glutamine and lysine residues on the catalysis of isopeptide bond formation by microbial transglutaminase. Using the peptide microarray technology we found a strong positive influence of hydrophobic and basic amino acids, especially arginine, tyrosine, and leucine. Several tripeptide substrates were synthesized, and enzymatic kinetic parameters were determined both by microarray analysis and in solution.
Collapse
Affiliation(s)
- Miroslav Malešević
- Institute of Biochemistry and Biotechnology, Department of Enzymology, Project Group gFP5, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale (Germany)
| | - Andreas Migge
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Faculty of Sciences I, Biosciences, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale (Germany)
| | - Thomas C Hertel
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Faculty of Sciences I, Biosciences, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale (Germany)
| | - Markus Pietzsch
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Faculty of Sciences I, Biosciences, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale (Germany).
| |
Collapse
|
43
|
Dennler P, Bailey LK, Spycher PR, Schibli R, Fischer E. Microbial transglutaminase and c-myc-tag: a strong couple for the functionalization of antibody-like protein scaffolds from discovery platforms. Chembiochem 2015; 16:861-7. [PMID: 25688874 DOI: 10.1002/cbic.201500009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 12/30/2022]
Abstract
Antibody-like proteins selected from discovery platforms are preferentially functionalized by site-specific modification as this approach preserves the binding abilities and allows a side-by-side comparison of multiple conjugates. Here we present an enzymatic bioconjugation platform that targets the c-myc-tag peptide sequence (EQKLISEEDL) as a handle for the site-specific modification of antibody-like proteins. Microbial transglutaminase (MTGase) was exploited to form a stable isopeptide bond between the glutamine on the c-myc-tag and various primary-amine-functionalized substrates. We attached eight different functionalities to a c-myc-tagged antibody fragment and used these bioconjugates for downstream applications such as protein multimerization, immobilization on surfaces, fluorescence microscopy, fluorescence-activated cell sorting, and in vivo nuclear imaging. The results demonstrate the versatility of our conjugation strategy for transforming a c-myc-tagged protein into any desired probe.
Collapse
Affiliation(s)
- Patrick Dennler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA10A, 5232 Villigen PSI, (Switzerland)
| | | | | | | | | |
Collapse
|
44
|
Caporale A, Selis F, Sandomenico A, Jotti GS, Tonon G, Ruvo M. The LQSP tetrapeptide is a new highly efficient substrate of microbial transglutaminase for the site-specific derivatization of peptides and proteins. Biotechnol J 2014; 10:154-61. [DOI: 10.1002/biot.201400466] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/13/2014] [Accepted: 10/29/2014] [Indexed: 11/08/2022]
|
45
|
Kline T, Steiner AR, Penta K, Sato AK, Hallam TJ, Yin G. Methods to Make Homogenous Antibody Drug Conjugates. Pharm Res 2014; 32:3480-93. [PMID: 25511917 PMCID: PMC4596908 DOI: 10.1007/s11095-014-1596-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023]
Abstract
Antibody drug conjugates (ADCs) have progressed from hypothesis to approved therapeutics in less than 30 years, and the technologies available to modify both the antibodies and the cytotoxic drugs are expanding rapidly. For reasons well reviewed previously, the field is trending strongly toward homogeneous, defined antibody conjugation. In this review we present the antibody and small molecule chemistries that are currently used and being explored to develop specific, homogenous ADCs.
Collapse
Affiliation(s)
- Toni Kline
- Sutro Biopharma, Inc, 310 Utah Ave Ste 150, South San Francisco, California, 94080, USA
| | - Alexander R Steiner
- Sutro Biopharma, Inc, 310 Utah Ave Ste 150, South San Francisco, California, 94080, USA
| | - Kalyani Penta
- Sutro Biopharma, Inc, 310 Utah Ave Ste 150, South San Francisco, California, 94080, USA
| | - Aaron K Sato
- Sutro Biopharma, Inc, 310 Utah Ave Ste 150, South San Francisco, California, 94080, USA
| | - Trevor J Hallam
- Sutro Biopharma, Inc, 310 Utah Ave Ste 150, South San Francisco, California, 94080, USA
| | - Gang Yin
- Sutro Biopharma, Inc, 310 Utah Ave Ste 150, South San Francisco, California, 94080, USA.
| |
Collapse
|
46
|
Affiliation(s)
- Pavel Strop
- Rinat-Pfizer Inc., 230 East Grand Avenue, South San Francisco, California 94080, United States
| |
Collapse
|
47
|
Dennler P, Chiotellis A, Fischer E, Brégeon D, Belmant C, Gauthier L, Lhospice F, Romagne F, Schibli R. Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug Chem 2014; 25:569-78. [PMID: 24483299 DOI: 10.1021/bc400574z] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most chemical techniques used to produce antibody-drug conjugates (ADCs) result in a heterogeneous mixture of species with variable drug-to-antibody ratios (DAR) which will potentially display different pharmacokinetics, stability, and safety profiles. Here we investigated two strategies to obtain homogeneous ADCs based on site-specific modification of deglycosylated antibodies by microbial transglutaminase (MTGase), which forms isopeptidic bonds between Gln and Lys residues. We have previously shown that MTGase solely recognizes Gln295 within the heavy chain of IgGs as a substrate and can therefore be exploited to generate ADCs with an exact DAR of 2. The first strategy included the direct, one-step attachment of the antimitotic toxin monomethyl auristatin E (MMAE) to the antibody via different spacer entities with a primary amine functionality that is recognized as a substrate by MTGase. The second strategy was a chemo-enzymatic, two-step approach whereby a reactive spacer entity comprising a bio-orthogonal thiol or azide function was attached to the antibody by MTGase and subsequently reacted with a suitable MMAE-derivative. To this aim, we investigated two different chemical approaches, namely, thiol-maleimide and strain-promoted azide-alkyne cycloaddition (SPAAC). Direct enzymatic attachment of MMAE-spacer derivatives at an 80 molar excess of drug yielded heterogeneous ADCs with a DAR of between 1.0 to 1.6. In contrast to this, the chemo-enzymatic approach only required a 2.5 molar excess of toxin to yield homogeneous ADCs with a DAR of 2.0 in the case of SPAAC and 1.8 for the thiol-maleimide approach. As a proof-of-concept, trastuzumab (Herceptin) was armed with the MMAE via the chemo-enzymatic approach using SPAAC and tested in vitro. Trastuzumab-MMAE efficiently killed BT-474 and SK-BR-3 cells with an IC50 of 89.0 pM and 21.7 pM, respectively. Thus, the chemo-enzymatic approach using MTGase is an elegant strategy to form ADCs with a defined DAR of 2. Furthermore, the approach is directly applicable to a broad variety of antibodies as it does not require prior genetic modifications of the antibody sequence.
Collapse
Affiliation(s)
- Patrick Dennler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute , 5232 Villigen PSI, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Spolaore B, Damiano N, Raboni S, Fontana A. Site-specific derivatization of avidin using microbial transglutaminase. Bioconjug Chem 2014; 25:470-80. [PMID: 24517223 DOI: 10.1021/bc400378h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Avidin conjugates have several important applications in biotechnology and medicine. In this work, we investigated the possibility to produce site-specific derivatives of avidin using microbial transglutaminase (TGase). TGase allows the modification of proteins at the level of Gln or Lys residues using as substrate an alkyl-amine or a Gln-mimicking moiety, respectively. The reaction is site-specific, since Gln and Lys derivatization occurs preferentially at residues embedded in flexible regions of protein substrates. An analysis of the X-ray structure of avidin allowed us to predict Gln126 and Lys127 as potential sites of TGase's attack, because these residues are located in the flexible/unfolded C-terminal region of the protein. Surprisingly, incubation of avidin with TGase in the presence of alkylamine containing substrates (dansylcadaverine, 5-hydroxytryptamine) revealed a very low level of derivatization of the Gln126 residue. Analysis of the TGase reaction on synthetic peptide analogues of the C-terminal portion of avidin indicated that the lack of reactivity of Gln126 was likely due to the fact that this residue is proximal to negatively charged carboxylate groups, thus hampering the interaction of the substrate at the negatively charged active site of TGase. On the other hand, incubation of avidin with TGase in the presence of carbobenzoxy-l-glutaminyl-glycine in order to derivatize Lys residue(s) resulted in a clean and high yield production of an avidin derivative, retaining the biotin binding properties and the quaternary structure of the native protein. Proteolytic digestion of the modified protein, followed by mass spectrometry, allowed us to identify Lys127 as the major site of reaction, together with a minor modification of Lys58. By using TGase, avidin was also conjugated via a Lys-Gln isopeptide bond to a protein containing a single reactive Gln residue, namely, Gln126 of granulocyte-macrophage colony-stimulating factor. TGase can thus be exploited for the site-specific derivatization of avidin with small molecules or proteins.
Collapse
Affiliation(s)
- Barbara Spolaore
- CRIBI Biotechnology Centre, University of Padua , Viale G. Colombo 3, 35121 Padua, Italy
| | | | | | | |
Collapse
|
49
|
Rachel NM, Pelletier JN. Biotechnological applications of transglutaminases. Biomolecules 2013; 3:870-88. [PMID: 24970194 PMCID: PMC4030973 DOI: 10.3390/biom3040870] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 12/28/2022] Open
Abstract
In nature, transglutaminases catalyze the formation of amide bonds between proteins to form insoluble protein aggregates. This specific function has long been exploited in the food and textile industries as a protein cross-linking agent to alter the texture of meat, wool, and leather. In recent years, biotechnological applications of transglutaminases have come to light in areas ranging from material sciences to medicine. There has also been a substantial effort to further investigate the fundamentals of transglutaminases, as many of their characteristics that remain poorly understood. Those studies also work towards the goal of developing transglutaminases as more efficient catalysts. Progress in this area includes structural information and novel chemical and biological assays. Here, we review recent achievements in this area in order to illustrate the versatility of transglutaminases.
Collapse
Affiliation(s)
- Natalie M Rachel
- Chimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.
| | - Joelle N Pelletier
- Chimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.
| |
Collapse
|
50
|
Grünberg J, Jeger S, Sarko D, Dennler P, Zimmermann K, Mier W, Schibli R. DOTA-functionalized polylysine: a high number of DOTA chelates positively influences the biodistribution of enzymatic conjugated anti-tumor antibody chCE7agl. PLoS One 2013; 8:e60350. [PMID: 23565233 PMCID: PMC3614955 DOI: 10.1371/journal.pone.0060350] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
Site-specific enzymatic reactions with microbial transglutaminase (mTGase) lead to a homogenous species of immunoconjugates with a defined ligand/antibody ratio. In the present study, we have investigated the influence of different numbers of 1,4,7,10-tetraazacyclododecane-N-N′-N′′-N′′′-tetraacetic acid (DOTA) chelats coupled to a decalysine backbone on the in vivo behavior of the chimeric monoclonal anti-L1CAM antibody chCE7agl. The enzymatic conjugation of (DOTA)1-decalysine, (DOTA)3-decalysine or (DOTA)5-decalysine to the antibody heavy chain (via Gln295/297) gave rise to immunoconjugates containing two, six or ten DOTA moieties respectively. Radiolabeling of the immunoconjugates with 177Lu yielded specific activities of approximately 70 MBq/mg, 400 MBq/mg and 700 MBq/mg with increasing numbers of DOTA chelates. Biodistribution experiments in SKOV3ip human ovarian cancer cell xenografts demonstrated a high and specific accumulation of radioactivity at the tumor site for all antibody derivatives with a maximal tumor accumulation of 43.6±4.3% ID/g at 24 h for chCE7agl-[(DOTA)-decalysine]2, 30.6±12.0% ID/g at 24 h for chCE7agl-[(DOTA)3-decalysine]2 and 49.9±3.1% ID/g at 48 h for chCE7agl-[(DOTA)5-decalysine)]2. The rapid elimination from the blood of chCE7agl-[(DOTA)-decalysine]2 (1.0±0.1% ID/g at 24 h) is associated with a high liver accumulation (23.2±4.6% ID/g at 24 h). This behavior changed depending on the numbers of DOTA moieties coupled to the decalysine peptide with a slower blood clearance (5.1±1.0 (DOTA)3 versus 11.7±1.4% ID/g (DOTA)5, p<0.005 at 24 h) and lower radioactivity levels in the liver (21.4±3.4 (DOTA)3 versus 5.8±0.7 (DOTA)5, p<0.005 at 24 h). We conclude that the site-specific and stoichiometric uniform conjugation of the highly DOTA-substituted decalysine ((DOTA)5-decalysine) to an anti-tumor antibody leads to the formation of immunoconjugates with high specific activity and excellent in vivo behavior and is a valuable option for radioimmunotherapy and potentially antibody-drug conjugates (ADCs).
Collapse
Affiliation(s)
- Jürgen Grünberg
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Simone Jeger
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Dikran Sarko
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Patrick Dennler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Kurt Zimmermann
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- * E-mail:
| |
Collapse
|