1
|
Zhang L, Brown MC, Mutter AC, Greenland KN, Cooley JW, Koder RL. Protein dynamics govern the oxyferrous state lifetime of an artificial oxygen transport protein. Biophys J 2023; 122:4440-4450. [PMID: 37865818 PMCID: PMC10698322 DOI: 10.1016/j.bpj.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 10/23/2023] Open
Abstract
It has long been known that the alteration of protein side chains that occlude or expose the heme cofactor to water can greatly affect the stability of the oxyferrous heme state. Here, we demonstrate that the rate of dynamically driven water penetration into the core of an artificial oxygen transport protein also correlates with oxyferrous state lifetime by reducing global dynamics, without altering the structure of the active site, via the simple linking of the two monomers in a homodimeric artificial oxygen transport protein using a glycine-rich loop. The tethering of these two helices does not significantly affect the active site structure, pentacoordinate heme-binding affinity, reduction potential, or gaseous ligand affinity. It does, however, significantly reduce the hydration of the protein core, as demonstrated by resonance Raman spectroscopy, backbone amide hydrogen exchange, and pKa shifts in buried histidine side chains. This further destabilizes the charge-buried entatic state and nearly triples the oxyferrous state lifetime. These data are the first direct evidence that dynamically driven water penetration is a rate-limiting step in the oxidation of these complexes. It furthermore demonstrates that structural rigidity that limits water penetration is a critical design feature in metalloenzyme construction and provides an explanation for both the failures and successes of earlier attempts to create oxygen-binding proteins.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Physics, The City College of New York, New York, New York
| | - Mia C Brown
- Department of Chemistry, University of Missouri, Columbia, Missouri
| | - Andrew C Mutter
- Department of Biochemistry, The City College of New York, New York, New York
| | - Kelly N Greenland
- Department of Physics, The City College of New York, New York, New York
| | - Jason W Cooley
- Department of Chemistry, University of Missouri, Columbia, Missouri
| | - Ronald L Koder
- Department of Physics, The City College of New York, New York, New York; Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, New York.
| |
Collapse
|
2
|
Abstract
Liquid-liquid phase separation of tropoelastin has long been considered to be an important early step in the complex process of elastin fiber assembly in the body and has inspired the development of elastin-like peptides with a wide range of industrial and biomedical applications. Despite decades of study, the material state of the condensed liquid phase of elastin and its subsequent maturation remain poorly understood. Here, using a model minielastin that mimics the alternating domain structure of full-length tropoelastin, we examine the elastin liquid phase. We combine differential interference contrast (DIC), fluorescence, and scanning electron microscopy with particle-tracking microrheology to resolve the material transition occurring within elastin liquids over time in the absence of exogenous cross-linking. We find that this transition is accompanied by an intermediate stage marked by the coexistence of insoluble solid and dynamic liquid phases giving rise to significant spatial heterogeneities in material properties. We further demonstrate that varying the length of the terminal hydrophobic domains of minielastins can tune the maturation process. This work not only resolves an important step in the hierarchical assembly process of elastogenesis but further contributes mechanistic insight into the diverse repertoire of protein condensate maturation pathways with emerging importance across biology.
Collapse
|
3
|
Horoszko CP, Schnatz PJ, Budhathoki-Uprety J, Rao-Pothuraju RV, Koder RL, Heller DA. Non-Covalent Coatings on Carbon Nanotubes Mediate Photosensitizer Interactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51343-51350. [PMID: 34672190 PMCID: PMC9256527 DOI: 10.1021/acsami.1c14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Carbon nanotube-based donor-acceptor devices are used in applications ranging from photovoltaics and sensors to environmental remediation. Non-covalent contacts between donor dyes and nanotubes are often used to optimize sensitization and scalability. However, inconsistency is often observed despite donor dye studies reporting strong donor-acceptor interactions. Here, we demonstrate that the dye binding location is an important factor in this process: we used coated-acceptor chromatic responses and find that dye binding is affected by the coating layer. The emission response to free- and protein-sequestered porphyrin was tested to compare direct and indirect dye contact. An acceptor complex that preferentially red-shifts in response to sequestered porphyrin was identified. We observe inconsistent optical signals that suggest porphyrin-dye interactions are best described as coating-centric; therefore, the coating interface must be considered in application and assay design.
Collapse
Affiliation(s)
- Christopher P. Horoszko
- Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Peter J. Schnatz
- Department of Physics, City College of New York, New York, NY 10031, United States
| | - Januka Budhathoki-Uprety
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27606, United States
| | | | - Ronald L. Koder
- Department of Physics, City College of New York, New York, NY 10031, United States
- Graduate Programs of Physics, Chemistry, Biochemistry and Biology, The Graduate Center of CUNY, New York, New York 10016, United States
| | - Daniel A. Heller
- Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| |
Collapse
|
4
|
Designing heterotropically activated allosteric conformational switches using supercharging. Proc Natl Acad Sci U S A 2020; 117:5291-5297. [PMID: 32098845 DOI: 10.1073/pnas.1916046117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotropic allosteric activation of protein function, in which binding of one ligand thermodynamically activates the binding of another, different ligand or substrate, is a fundamental control mechanism in metabolism and as such has been a long-aspired capability in protein design. Here we show that greatly increasing the magnitude of a protein's net charge using surface supercharging transforms that protein into an allosteric ligand- and counterion-gated conformational molecular switch. To demonstrate this we first modified the designed helical bundle hemoprotein H4, creating a highly charged protein which both unfolds reversibly at low ionic strength and undergoes the ligand-induced folding transition commonly observed in signal transduction by intrinsically disordered proteins in biology. As a result of the high surface-charge density, ligand binding to this protein is allosterically activated up to 1,300-fold by low concentrations of divalent cations and the polyamine spermine. To extend this process further using a natural protein, we similarly modified Escherichia coli cytochrome b 562 and the resulting protein behaves in a like manner. These simple model systems not only establish a set of general engineering principles which can be used to convert natural and designed soluble proteins into allosteric molecular switches useful in biodesign, sensing, and synthetic biology, the behavior we have demonstrated--functional activation of supercharged intrinsically disordered proteins by low concentrations of multivalent ions--may be a control mechanism utilized by Nature which has yet to be appreciated.
Collapse
|
5
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Greenland KN, Carvajal MFCA, Preston JM, Ekblad S, Dean WL, Chiang JY, Koder RL, Wittebort RJ. Order, Disorder, and Temperature-Driven Compaction in a Designed Elastin Protein. J Phys Chem B 2018; 122:2725-2736. [PMID: 29461832 DOI: 10.1021/acs.jpcb.7b11596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Artificial minielastin constructs have been designed that replicate the structure and function of natural elastins in a simpler context, allowing the NMR observation of structure and dynamics of elastin-like proteins with complete residue-specific resolution. We find that the alanine-rich cross-linking domains of elastin have a partially helical structure, but only when capped by proline-rich hydrophobic domains. We also find that the hydrophobic domains, composed of prominent 6-residue repeats VPGVGG and APGVGV found in natural elastins, appear random coil by both NMR chemical shift analysis and circular dichroism. However, these elastin hydrophobic domains exhibit structural bias for a dynamically disordered conformation that is neither helical nor β sheet with a degree of nonrandom structural bias which is dependent on residue type and position in the sequence. Another nonrandom-coil aspect of hydrophobic domain structure lies in the fact that, in contrast to other intrinsically disordered proteins, these hydrophobic domains retain a relatively condensed conformation whether attached to cross-linking domains or not. Importantly, these domains and the proteins containing them constrict with increasing temperature by up to 30% in volume without becoming more ordered. This property is often observed in nonbiological polymers and suggests that temperature-driven constriction is a new type of protein structural change that is linked to elastin's biological functions of coacervation-driven assembly and elastic recoil.
Collapse
Affiliation(s)
- Kelly N Greenland
- Department of Physics , The City College of New York , New York , New York 10031 , United States
| | | | - Jonathan M Preston
- Department of Physics , The City College of New York , New York , New York 10031 , United States
| | - Siri Ekblad
- Department of Physics , The City College of New York , New York , New York 10031 , United States
| | - William L Dean
- Department of Biochemistry and Molecular Genetics and the James Brown Cancer Center , University of Louisville School of Medicine , Louisville , Kentucky 40292 , United States
| | - Jeff Y Chiang
- Department of Physics , The City College of New York , New York , New York 10031 , United States
| | - Ronald L Koder
- Department of Physics , The City College of New York , New York , New York 10031 , United States.,Graduate Programs of Physics, Chemistry and Biochemistry , The Graduate Center of CUNY , New York , New York 10016 , United States
| | - Richard J Wittebort
- Department of Chemistry , University of Louisville , Louisville , Kentucky 40292 , United States
| |
Collapse
|
7
|
Makino R, Obata Y, Tsubaki M, Iizuka T, Hamajima Y, Kato-Yamada Y, Mashima K, Shiro Y. Mechanistic Insights into the Activation of Soluble Guanylate Cyclase by Carbon Monoxide: A Multistep Mechanism Proposed for the BAY 41-2272 Induced Formation of 5-Coordinate CO-Heme. Biochemistry 2018; 57:1620-1631. [PMID: 29461815 DOI: 10.1021/acs.biochem.7b01240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble guanylate cyclase (sGC) is a heme-containing enzyme that catalyzes cGMP production upon sensing NO. While the CO adduct, sGC-CO, is much less active, the allosteric regulator BAY 41-2272 stimulates the cGMP productivity to the same extent as that of sGC-NO. The stimulatory effect has been thought to be likely associated with Fe-His bond cleavage leading to 5-coordinate CO-heme, but the detailed mechanism remains unresolved. In this study, we examined the mechanism under the condition including BAY 41-2272, 2'-deoxy-3'-GMP and foscarnet. The addition of these effectors caused the original 6-coordinate CO-heme to convert to an end product that was an equimolar mixture of a 5- and a new 6-coordinate CO-heme, as assessed by IR spectral measurements. The two types of CO-hemes in the end product were further confirmed by CO dissociation kinetics. Stopped-flow measurements under the condition indicated that the ferrous sGC bound CO as two reversible steps, where the primary step was assigned to the full conversion of the ferrous enzyme to the 6-coordinate CO-heme, and subsequently followed by the slower second step leading a partial conversion of the 6-coordinate CO-heme to the 5-coordinate CO-heme. The observed rates for both steps linearly depended on CO concentrations. The unexpected CO dependence of the rates in the second step supports a multistep mechanism, in which the 5-coordinate CO-heme is led by CO release from a putative bis-carbonyl intermediate that is likely provided by the binding of a second CO to the 6-coordinate CO-heme. This mechanism provides a new aspect on the activation of sGC by CO.
Collapse
Affiliation(s)
- Ryu Makino
- Department of Life Science, College of Science , Rikkyo University , Nishi-ikebukuro 3-34-1 , Toshima-ku, Tokyo 171-8501 , Japan
| | - Yuji Obata
- Department of Life Science, College of Science , Rikkyo University , Nishi-ikebukuro 3-34-1 , Toshima-ku, Tokyo 171-8501 , Japan
| | - Motonari Tsubaki
- Department of Chemistry, Graduate School of Science , Kobe University , Kobe , Hyogo 657-8501 , Japan
| | - Tetsutaro Iizuka
- RIKEN Harima Institute/Spring8 , 1-1-1 Kouto , Mikazuki-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Yuki Hamajima
- Department of Life Science, College of Science , Rikkyo University , Nishi-ikebukuro 3-34-1 , Toshima-ku, Tokyo 171-8501 , Japan
| | - Yasuyuki Kato-Yamada
- Department of Life Science, College of Science , Rikkyo University , Nishi-ikebukuro 3-34-1 , Toshima-ku, Tokyo 171-8501 , Japan
| | - Keisuke Mashima
- Department of Life Science, College of Science , Rikkyo University , Nishi-ikebukuro 3-34-1 , Toshima-ku, Tokyo 171-8501 , Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science , University of Hyogo , 3-2-1 Kouto , Kamigori-cho, Ako-gun , Hyogo 678-1297 , Japan
| |
Collapse
|
8
|
Brisendine JM, Koder RL. Fast, cheap and out of control--Insights into thermodynamic and informatic constraints on natural protein sequences from de novo protein design. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:485-492. [PMID: 26498191 PMCID: PMC4856154 DOI: 10.1016/j.bbabio.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 12/15/2022]
Abstract
The accumulated results of thirty years of rational and computational de novo protein design have taught us important lessons about the stability, information content, and evolution of natural proteins. First, de novo protein design has complicated the assertion that biological function is equivalent to biological structure - demonstrating the capacity to abstract active sites from natural contexts and paste them into non-native topologies without loss of function. The structure-function relationship has thus been revealed to be either a generality or strictly true only in a local sense. Second, the simplification to "maquette" topologies carried out by rational protein design also has demonstrated that even sophisticated functions such as conformational switching, cooperative ligand binding, and light-activated electron transfer can be achieved with low-information design approaches. This is because for simple topologies the functional footprint in sequence space is enormous and easily exceeds the number of structures which could have possibly existed in the history of life on Earth. Finally, the pervasiveness of extraordinary stability in designed proteins challenges accepted models for the "marginal stability" of natural proteins, suggesting that there must be a selection pressure against highly stable proteins. This can be explained using recent theories which relate non-equilibrium thermodynamics and self-replication. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Joseph M Brisendine
- Department of Physics, The City College of New York, New York, NY 10031, United States; The Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, United States
| | - Ronald L Koder
- Department of Physics, The City College of New York, New York, NY 10031, United States; Graduate Programs of Physics, Chemistry and Biochemistry, The Graduate Center of CUNY, New York, NY 10016, United States.
| |
Collapse
|
9
|
Recent advances in designed coiled coils and helical bundles with inorganic prosthetic groups — from structural to functional applications. Curr Opin Chem Biol 2016; 31:160-5. [DOI: 10.1016/j.cbpa.2016.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 11/17/2022]
|
10
|
Mutter AC, Norman JA, Tiedemann MT, Singh S, Sha S, Morsi S, Ahmed I, Stillman MJ, Koder RL. Rational design of a zinc phthalocyanine binding protein. J Struct Biol 2014; 185:178-85. [PMID: 23827257 PMCID: PMC4244077 DOI: 10.1016/j.jsb.2013.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 02/05/2023]
Abstract
Phthalocyanines have long been used as primary donor molecules in synthetic light-powered devices due to their superior properties when compared to natural light activated molecules such as chlorophylls. Their use in biological contexts, however, has been severely restricted due to their high degree of self-association, and its attendant photoquenching, in aqueous environments. To this end we report the rational redesign of a de novo four helix bundle di-heme binding protein into a heme and Zinc(II) phthalocyanine (ZnPc) dyad in which the ZnPc is electronically and photonically isolated. The redesign required transformation of the homodimeric protein into a single chain four helix bundle and the addition of a negatively charge sulfonate ion to the ZnPc macrocycle. To explore the role of topology on ZnPc binding two constructs were made and the resulting differences in affinity can be explained by steric interference of the newly added connecting loop. Singular binding of ZnPc was verified by absorption, fluorescence, and magnetic circular dichroism spectroscopy. The engineering guidelines determined here, which enable the simple insertion of a monomeric ZnPc binding site into an artificial helical bundle, are a robust starting point for the creation of functional photoactive nanodevices.
Collapse
Affiliation(s)
- Andrew C Mutter
- Department of Physics, The City College of New York, New York, NY 10031, United States
| | - Jessica A Norman
- Department of Physics, The City College of New York, New York, NY 10031, United States
| | | | - Sunaina Singh
- Department of Physics, The City College of New York, New York, NY 10031, United States
| | - Sha Sha
- Department of Physics, The City College of New York, New York, NY 10031, United States
| | - Sara Morsi
- Department of Physics, The City College of New York, New York, NY 10031, United States
| | - Ismail Ahmed
- Department of Biochemistry, The City College of New York, New York, NY 10031, United States
| | - Martin J Stillman
- Department of Physics, The City College of New York, New York, NY 10031, United States
| | - Ronald L Koder
- Department of Physics, The City College of New York, New York, NY 10031, United States.
| |
Collapse
|
11
|
Farid TA, Kodali G, Solomon LA, Lichtenstein BR, Sheehan MM, Fry BA, Bialas C, Ennist NM, Siedlecki JA, Zhao Z, Stetz MA, Valentine KG, Anderson JLR, Wand AJ, Discher BM, Moser CC, Dutton PL. Elementary tetrahelical protein design for diverse oxidoreductase functions. Nat Chem Biol 2013; 9:826-833. [PMID: 24121554 DOI: 10.1038/nchembio.1362] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/09/2013] [Indexed: 11/09/2022]
Abstract
Emulating functions of natural enzymes in man-made constructs has proven challenging. Here we describe a man-made protein platform that reproduces many of the diverse functions of natural oxidoreductases without importing the complex and obscure interactions common to natural proteins. Our design is founded on an elementary, structurally stable 4-α-helix protein monomer with a minimalist interior malleable enough to accommodate various light- and redox-active cofactors and with an exterior tolerating extensive charge patterning for modulation of redox cofactor potentials and environmental interactions. Despite its modest size, the construct offers several independent domains for functional engineering that targets diverse natural activities, including dioxygen binding and superoxide and peroxide generation, interprotein electron transfer to natural cytochrome c and light-activated intraprotein energy transfer and charge separation approximating the core reactions of photosynthesis, cryptochrome and photolyase. The highly stable, readily expressible and biocompatible characteristics of these open-ended designs promise development of practical in vitro and in vivo applications.
Collapse
Affiliation(s)
- Tammer A Farid
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Goutham Kodali
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lee A Solomon
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bruce R Lichtenstein
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Molly M Sheehan
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bryan A Fry
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chris Bialas
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan M Ennist
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica A Siedlecki
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhenyu Zhao
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew A Stetz
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathleen G Valentine
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J L Ross Anderson
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,School of Biochemistry, University of Bristol, Bristol, UK
| | - A Joshua Wand
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bohdana M Discher
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Lin YW, Sawyer EB, Wang J. Rational heme protein design: all roads lead to Rome. Chem Asian J 2013; 8:2534-44. [PMID: 23704071 DOI: 10.1002/asia.201300291] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Indexed: 01/03/2023]
Abstract
Heme proteins are among the most abundant and important metalloproteins, exerting diverse biological functions including oxygen transport, small molecule sensing, selective C-H bond activation, nitrite reduction, and electron transfer. Rational heme protein designs focus on the modification of the heme-binding active site and the heme group, protein hybridization and domain swapping, and de novo design. These strategies not only provide us with unique advantages for illustrating the structure-property-reactivity-function (SPRF) relationship of heme proteins in nature but also endow us with the ability to create novel biocatalysts and biosensors.
Collapse
Affiliation(s)
- Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001 (China)
| | | | | |
Collapse
|