1
|
Famulari A, Correddu D, Di Nardo G, Gilardi G, Mitrikas G, Chiesa M, García-Rubio I. Heme Spin Distribution in the Substrate-Free and Inhibited Novel CYP116B5hd: A Multifrequency Hyperfine Sublevel Correlation (HYSCORE) Study. Molecules 2024; 29:518. [PMID: 38276601 PMCID: PMC10819608 DOI: 10.3390/molecules29020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The cytochrome P450 family consists of ubiquitous monooxygenases with the potential to perform a wide variety of catalytic applications. Among the members of this family, CYP116B5hd shows a very prominent resistance to peracid damage, a property that makes it a promising tool for fine chemical synthesis using the peroxide shunt. In this meticulous study, we use hyperfine spectroscopy with a multifrequency approach (X- and Q-band) to characterize in detail the electronic structure of the heme iron of CYP116B5hd in the resting state, which provides structural details about its active site. The hyperfine dipole-dipole interaction between the electron and proton nuclear spins allows for the locating of two different protons from the coordinated water and a beta proton from the cysteine axial ligand of heme iron with respect to the magnetic axes centered on the iron. Additionally, since new anti-cancer therapies target the inhibition of P450s, here we use the CYP116B5hd system-imidazole as a model for studying cytochrome P450 inhibition by an azo compound. The effects of the inhibition of protein by imidazole in the active-site geometry and electron spin distribution are presented. The binding of imidazole to CYP116B5hd results in an imidazole-nitrogen axial coordination and a low-spin heme FeIII. HYSCORE experiments were used to detect the hyperfine interactions. The combined interpretation of the gyromagnetic tensor and the hyperfine and quadrupole tensors of magnetic nuclei coupled to the iron electron spin allowed us to obtain a precise picture of the active-site geometry, including the orientation of the semi-occupied orbitals and magnetic axes, which coincide with the porphyrin N-Fe-N axes. The electronic structure of the iron does not seem to be affected by imidazole binding. Two different possible coordination geometries of the axial imidazole were observed. The angles between gx (coinciding with one of the N-Fe-N axes) and the projection of the imidazole plane on the heme were determined to be -60° and -25° for each of the two possibilities via measurement of the hyperfine structure of the axially coordinated 14N.
Collapse
Affiliation(s)
- Antonino Famulari
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain;
- Department of Chemistry, University of Turin, Via Giuria 9, 10125 Torino, Italy;
| | - Danilo Correddu
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy (G.D.N.); (G.G.)
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy (G.D.N.); (G.G.)
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy (G.D.N.); (G.G.)
| | - George Mitrikas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341 Athens, Greece;
| | - Mario Chiesa
- Department of Chemistry, University of Turin, Via Giuria 9, 10125 Torino, Italy;
| | - Inés García-Rubio
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain;
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
2
|
Petrik ID, Davydov R, Kahle M, Sandoval B, Dwaraknath S, Ädelroth P, Hoffman B, Lu Y. An Engineered Glutamate in Biosynthetic Models of Heme-Copper Oxidases Drives Complete Product Selectivity by Tuning the Hydrogen-Bonding Network. Biochemistry 2021; 60:346-355. [PMID: 33464878 PMCID: PMC7888536 DOI: 10.1021/acs.biochem.0c00852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Efficiently carrying out the oxygen reduction reaction (ORR) is critical for many applications in biology and chemistry, such as bioenergetics and fuel cells, respectively. In biology, this reaction is carried out by large, transmembrane oxidases such as heme-copper oxidases (HCOs) and cytochrome bd oxidases. Common to these oxidases is the presence of a glutamate residue next to the active site, but its precise role in regulating the oxidase activity remains unclear. To gain insight into its role, we herein report that incorporation of glutamate next to a designed heme-copper center in two biosynthetic models of HCOs improves O2 binding affinity, facilitates protonation of reaction intermediates, and eliminates release of reactive oxygen species. High-resolution crystal structures of the models revealed extended, water-mediated hydrogen-bonding networks involving the glutamate. Electron paramagnetic resonance of the cryoreduced oxy-ferrous centers at cryogenic temperature followed by thermal annealing allowed observation of the key hydroperoxo intermediate that can be attributed to the hydrogen-bonding network. By demonstrating these important roles of glutamate in oxygen reduction biochemistry, this work offers deeper insights into its role in native oxidases, which may guide the design of more efficient artificial ORR enzymes or catalysts for applications such as fuel cells.
Collapse
Affiliation(s)
- Igor D. Petrik
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Roman Davydov
- The Department of Chemistry, Northwestern University, Evanston, Illinois 60201
| | - Maximilian Kahle
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Braddock Sandoval
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sudharsan Dwaraknath
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Brian Hoffman
- The Department of Chemistry, Northwestern University, Evanston, Illinois 60201
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Liou SH, Chuo SW, Qiu Y, Wang LP, Goodin DB. Linkage between Proximal and Distal Movements of P450cam Induced by Putidaredoxin. Biochemistry 2020; 59:2012-2021. [PMID: 32369344 PMCID: PMC9749489 DOI: 10.1021/acs.biochem.0c00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Putidaredoxin (Pdx) is the exclusive reductase and a structural effector for P450cam (CYP101A1). However, the mechanism of how Pdx modulates the conformational states of P450cam remains elusive. Here we report a putative communication pathway for the Pdx-induced conformational change in P450cam using results of double electron-electron resonance (DEER) spectroscopy and molecular dynamics simulations. Use of solution state DEER measurements allows us to observe subtle conformational changes in the internal helices in P450cam among closed, open, and P450cam-Pdx complex states. Molecular dynamics simulations and dynamic network analysis suggest that Pdx binding is coupled to small coordinated movements of several regions of P450cam, including helices C, B', I, G, and F. These changes provide a linkage between the Pdx binding site on the proximal side of the enzyme and helices F/G on the distal side and the site of the largest movement resulting from the Pdx-induced closed-to-open transition. This study provides a detailed rationale for how Pdx exerts its long-recognized effector function at the active site from its binding site on the opposite face of the enzyme.
Collapse
Affiliation(s)
| | | | - Yudong Qiu
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - David B. Goodin
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
4
|
Ugur I, Chandrasekhar P. Proton relay network in P450cam formed upon docking of putidaredoxin. Proteins 2019; 88:558-572. [PMID: 31597203 DOI: 10.1002/prot.25835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/13/2019] [Accepted: 09/28/2019] [Indexed: 11/08/2022]
Abstract
Cytochromes P450 are versatile heme-based enzymes responsible for vital life processes. Of these, P450cam (substrate camphor) has been most studied. Despite this, precise mechanisms of the key O─O cleavage step remain partly elusive to date; effects observed in various enzyme mutants remain partly unexplained. We have carried out extended (to 1000 ns) MM-MD and follow-on quantum mechanics/molecular mechanics computations, both on the well-studied FeOO state and on Cpd(0) (compound 0). Our simulations include (all camphor-bound): (a) WT (wild type), FeOO state. (b) WT, Cpd(0). (c) Pdx (Putidaredoxin, redox partner of P450)-docked-WT, FeOO state. (d) Pdx-docked WT, Cpd(0). (e) Pdx-docked T252A mutant, Cpd(0). Among our key findings: (a) Effect of Pdx docking appears to go far beyond that indicated in prior studies: it leads to specific alterations in secondary structure that create the crucial proton relay network. (b) Specific proton relay networks we identify are: FeOO(H)⋯T252⋯nH 2 O⋯D251 in WT; FeOO(H)⋯nH 2 O⋯D251 in T252A mutant; both occur with Pdx docking. (c) Direct interaction of D251 with -FeOOH is, respectively, rare/frequent in WT/T252A mutant. (d) In WT, T252 is in the proton relay network. (e) Positioning of camphor appears significant: when camphor is part of H-bonding network, second protonation appears to be facilitated.
Collapse
Affiliation(s)
- Ilke Ugur
- Research Division, Ashwin-Ushas Corporation, Marlboro, New Jersey
| | | |
Collapse
|
5
|
Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:178-204. [PMID: 28668640 PMCID: PMC5709052 DOI: 10.1016/j.bbapap.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
6
|
Erdogan H, Vandemeulebroucke A, Nauser T, Bounds PL, Koppenol WH. Jumpstarting the cytochrome P450 catalytic cycle with a hydrated electron. J Biol Chem 2017; 292:21481-21489. [PMID: 29109145 DOI: 10.1074/jbc.m117.813683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/25/2017] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450cam (CYP101Fe3+) regioselectively hydroxylates camphor. Possible hydroxylating intermediates in the catalytic cycle of this well-characterized enzyme have been proposed on the basis of experiments carried out at very low temperatures and shunt reactions, but their presence has not yet been validated at temperatures above 0 °C during a normal catalytic cycle. Here, we demonstrate that it is possible to mimic the natural catalytic cycle of CYP101Fe3+ by using pulse radiolysis to rapidly supply the second electron of the catalytic cycle to camphor-bound CYP101[FeO2]2+ Judging by the appearance of an absorbance maximum at 440 nm, we conclude that CYP101[FeOOH]2+ (compound 0) accumulates within 5 μs and decays rapidly to CYP101Fe3+, with a k440 nm of 9.6 × 104 s-1 All processes are complete within 40 μs at 4 °C. Importantly, no transient absorbance bands could be assigned to CYP101[FeO2+por•+] (compound 1) or CYP101[FeO2+] (compound 2). However, indirect evidence for the involvement of compound 1 was obtained from the kinetics of formation and decay of a tyrosyl radical. 5-Hydroxycamphor was formed quantitatively, and the catalytic activity of the enzyme was not impaired by exposure to radiation during the pulse radiolysis experiment. The rapid decay of compound 0 enabled calculation of the limits for the Gibbs activation energies for the conversions of compound 0 → compound 1 → compound 2 → CYP101Fe3+, yielding a ΔG‡ of 45, 39, and 39 kJ/mol, respectively. At 37 °C, the steps from compound 0 to the iron(III) state would take only 4 μs. Our kinetics studies at 4 °C complement the canonical mechanism by adding the dimension of time.
Collapse
Affiliation(s)
| | - An Vandemeulebroucke
- Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
7
|
Liou SH, Myers WK, Oswald JD, Britt RD, Goodin DB. Putidaredoxin Binds to the Same Site on Cytochrome P450cam in the Open and Closed Conformation. Biochemistry 2017; 56:4371-4378. [DOI: 10.1021/acs.biochem.7b00564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shu-Hao Liou
- Department
of Chemistry, University of California, Davis, California 95616, United States
- Research
Group EPR Spectroscopy, Max-Planck-Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - William K. Myers
- Centre
for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Jason D. Oswald
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - R. David Britt
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - David B. Goodin
- Department
of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
8
|
Girvan HM, Bradley JM, Cheesman MR, Kincaid JR, Liu Y, Czarnecki K, Fisher K, Leys D, Rigby SEJ, Munro AW. Analysis of Heme Iron Coordination in DGCR8: The Heme-Binding Component of the Microprocessor Complex. Biochemistry 2016; 55:5073-83. [DOI: 10.1021/acs.biochem.6b00204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hazel M. Girvan
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Justin M. Bradley
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Myles R. Cheesman
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - James R. Kincaid
- Department
of Chemistry, Marquette University, 535 North 14th Street, Milwaukee, Wisconsin 53233, United States
| | - Yilin Liu
- Department
of Chemistry, Marquette University, 535 North 14th Street, Milwaukee, Wisconsin 53233, United States
| | - Kazimierz Czarnecki
- Department
of Chemistry, Marquette University, 535 North 14th Street, Milwaukee, Wisconsin 53233, United States
| | - Karl Fisher
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - David Leys
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Stephen E. J. Rigby
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Andrew W. Munro
- Centre
for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
9
|
Liou SH, Mahomed M, Lee YT, Goodin DB. Effector Roles of Putidaredoxin on Cytochrome P450cam Conformational States. J Am Chem Soc 2016; 138:10163-72. [PMID: 27452076 DOI: 10.1021/jacs.6b04110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, the effector role of Pdx (putidaredoxin) on cytochrome P450cam conformation is refined by attaching two different spin labels, MTSL or BSL (bifunctional spin-label) onto the F or G helices and using DEER (double electron-electron resonance) to measure the distance between labels. Recent EPR and crystallographic studies have observed that oxidized Pdx induces substrate-bound P450cam to change from the closed to the open state. However, this change was not observed by DEER in the reduced Pdx complex with carbon-monoxide-bound P450cam (Fe(2+)CO). In addition, recent NMR studies have failed to observe a change in P450cam conformation upon binding Pdx. Hence, resolving these issues is important for a full understanding the effector role of Pdx. Here we show that oxidized Pdx induces camphor-bound P450cam to shift from the closed to the open conformation when labeled on either the F or G helices with MTSL. BSL at these sites can either narrow the distance distribution widths dramatically or alter the extent of the conformational change. In addition, we report DEER spectra on a mixed oxidation state containing oxidized Pdx and ferrous CO-bound P450cam, showing that P450cam remains closed. This indicates that CO binding to the heme prevents P450cam from opening, overriding the influence exerted by Pdx binding. Finally, we report the open form P450cam crystal structure with substrate bound, which suggests that crystal packing effects may prevent conformational conversion. Using multiple labeling approaches, DEER provides a unique perspective to resolve how the conformation of P450cam depends on Pdx and ligand states.
Collapse
Affiliation(s)
- Shu-Hao Liou
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Mavish Mahomed
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - Young-Tae Lee
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | - David B Goodin
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
10
|
Sengupta K, Chatterjee S, Dey A. Catalytic H2O2 Disproportionation and Electrocatalytic O2 Reduction by a Functional Mimic of Heme Catalase: Direct Observation of Compound 0 and Compound I in Situ. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02668] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kushal Sengupta
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Sudipta Chatterjee
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Abhishek Dey
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| |
Collapse
|
11
|
Davydov R, Im S, Shanmugam M, Gunderson WA, Pearl NM, Hoffman BM, Waskell L. Role of the Proximal Cysteine Hydrogen Bonding Interaction in Cytochrome P450 2B4 Studied by Cryoreduction, Electron Paramagnetic Resonance, and Electron-Nuclear Double Resonance Spectroscopy. Biochemistry 2016; 55:869-83. [PMID: 26750753 DOI: 10.1021/acs.biochem.5b00744] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystallographic studies have shown that the F429H mutation of cytochrome P450 2B4 introduces an H-bond between His429 and the proximal thiolate ligand, Cys436, without altering the protein fold but sharply decreases the enzymatic activity and stabilizes the oxyferrous P450 2B4 complex. To characterize the influence of this hydrogen bond on the states of the catalytic cycle, we have used radiolytic cryoreduction combined with electron paramagnetic resonance (EPR) and (electron-nuclear double resonance (ENDOR) spectroscopy to study and compare their characteristics for wild-type (WT) P450 2B4 and the F429H mutant. (i) The addition of an H-bond to the axial Cys436 thiolate significantly changes the EPR signals of both low-spin and high-spin heme-iron(III) and the hyperfine couplings of the heme-pyrrole (14)N but has relatively little effect on the (1)H ENDOR spectra of the water ligand in the six-coordinate low-spin ferriheme state. These changes indicate that the H-bond introduced between His and the proximal cysteine decreases the extent of S → Fe electron donation and weakens the Fe(III)-S bond. (ii) The added H-bond changes the primary product of cryoreduction of the Fe(II) enzyme, which is trapped in the conformation of the parent Fe(II) state. In the wild-type enzyme, the added electron localizes on the porphyrin, generating an S = (3)/2 state with the anion radical exchange-coupled to the Fe(II). In the mutant, it localizes on the iron, generating an S = (1)/2 Fe(I) state. (iii) The additional H-bond has little effect on g values and (1)H-(14)N hyperfine couplings of the cryogenerated, ferric hydroperoxo intermediate but noticeably slows its decay during cryoannealing. (iv) In both the WT and the mutant enzyme, this decay shows a significant solvent kinetic isotope effect, indicating that the decay reflects a proton-assisted conversion to Compound I (Cpd I). (v) We confirm that Cpd I formed during the annealing of the cryogenerated hydroperoxy intermediate and that it is the active hydroxylating species in both WT P450 2B4 and the F429H mutant. (vi) Our data also indicate that the added H-bond of the mutation diminishes the reactivity of Cpd I.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Sangchoul Im
- Department of Anesthesiology, University of Michigan, and VA Medical Center , 2215 Fuller Road, Ann Arbor, Michigan 48105, United States
| | - Muralidharan Shanmugam
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - William A Gunderson
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Naw May Pearl
- Department of Anesthesiology, University of Michigan, and VA Medical Center , 2215 Fuller Road, Ann Arbor, Michigan 48105, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan, and VA Medical Center , 2215 Fuller Road, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
12
|
Davydov R, Strushkevich N, Smil D, Yantsevich A, Gilep A, Usanov S, Hoffman BM. Evidence That Compound I Is the Active Species in Both the Hydroxylase and Lyase Steps by Which P450scc Converts Cholesterol to Pregnenolone: EPR/ENDOR/Cryoreduction/Annealing Studies. Biochemistry 2015; 54:7089-97. [PMID: 26603348 DOI: 10.1021/acs.biochem.5b00903] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450scc (CYP 11A1) catalyzes the conversion of cholesterol (Ch) to pregnenolone, the precursor to steroid hormones. This process proceeds via three sequential monooxygenation reactions: two hydroxylations of Ch first form 22(R)-hydroxycholesterol (HC) and then 20α,22(R)-dihydroxycholesterol (DHC); a lyase reaction then cleaves the C20-C22 bond to form pregnenolone. Recent cryoreduction/annealing studies that employed electron paramagnetic resonance (EPR)/electron nuclear double resonance (ENDOR) spectroscopy [Davydov, R., et al. (2012) J. Am. Chem. Soc. 134, 17149] showed that compound I (Cpd I) is the active intermediate in the first step, hydroxylation of Ch. Herein, we have employed EPR and ENDOR spectroscopy to characterize the intermediates in the second and third steps of the enzymatic process, as conducted by 77 K radiolytic one-electron cryoreduction and subsequent annealing of the ternary oxy-cytochrome P450scc complexes with HC and DHC. This procedure is validated by showing that the cryoreduced ternary complexes of oxy-cytochrome P450scc with HC and DHC are catalytically competent and during annealing generate DHC and pregnenolone, respectively. Cryoreduction of the oxy-P450scc-HC ternary complex trapped at 77K produces the superoxo-ferrous P450scc intermediate along with a minor fraction of ferric hydroperoxo intermediates. The superoxo-ferrous intermediate converts into a ferric-hydroperoxo species after annealing at 145 K. During subsequent annealing at 170-180 K, the ferric-hydroperoxo intermediate converts to the primary product complex with the large solvent kinetic isotope effect that indicates Cpd I is being formed, and (1)H ENDOR measurements of the primary product formed in D2O demonstrate that Cpd I is the active species. They show that the primary product contains Fe(III) coordinated to the 20-O(1)H of DHC with the (1)H derived from substrate, the signature of the Cpd I reaction. Hydroperoxo ferric intermediates are the primary species formed during cryoreduction of the oxy-P450scc-DHC ternary complex, and they decay at 185 K with a strong solvent kinetic isotope effect to form low-spin ferric P450scc. Together, these observations indicated that Cpd I also is the active intermediate in the C20,22 lyase final step. In combination with our previous results, this study thus indicates that Cpd I is the active species in each of the three sequential monooxygenation reactions by which P450scc catalytically converts Ch to pregnenolone.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208-3113, United States
| | - Natallia Strushkevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus , Kuprevicha Street 5/2, Minsk 220141, Belarus
| | - David Smil
- Structural Genomics Consortium, University of Toronto , 101 College Street, Toronto, ON, Canada M5G 1L7
| | - Aliaksei Yantsevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus , Kuprevicha Street 5/2, Minsk 220141, Belarus
| | - Andrey Gilep
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus , Kuprevicha Street 5/2, Minsk 220141, Belarus
| | - Sergey Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus , Kuprevicha Street 5/2, Minsk 220141, Belarus
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208-3113, United States
| |
Collapse
|
13
|
Franke A, van Eldik R. Spectroscopic and Kinetic Evidence for the Crucial Role of Compound 0 in the P450cam -Catalyzed Hydroxylation of Camphor by Hydrogen Peroxide. Chemistry 2015; 21:15201-10. [PMID: 26353996 DOI: 10.1002/chem.201501886] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 11/09/2022]
Abstract
The hydroperoxo iron(III) intermediate P450cam Fe(III) -OOH, being the true Compound 0 (Cpd 0) involved in the natural catalytic cycle of P450cam , could be transiently observed in the peroxo-shunt oxidation of the substrate-free enzyme by hydrogen peroxide under mild basic conditions and low temperature. The prolonged lifetime of Cpd 0 enabled us to kinetically examine the formation and reactivity of P450cam Fe(III) -OOH species as a function of varying reaction conditions, such as pH, and concentration of H2 O2 , camphor, and potassium ions. The mechanism of hydrogen peroxide binding to the substrate-free form of P450cam differs completely from that observed for other heme proteins possessing the distal histidine as a general acid-base catalyst and is mainly governed by the ability of H2 O2 to undergo deprotonation at the hydroxo ligand coordinated to the iron(III) center under conditions of pH≥p${K{{{\rm P450}\hfill \atop {\rm a}\hfill}}}$. Notably, no spectroscopic evidence for the formation of either Cpd I or Cpd II as products of heterolytic or homolytic OO bond cleavage, respectively, in Cpd 0 could be observed under the selected reaction conditions. The kinetic data obtained from the reactivity studies involving (1R)-camphor, provide, for the first time, experimental evidence for the catalytic activity of the P450Fe(III) -OOH intermediate in the oxidation of the natural substrate of P450cam .
Collapse
Affiliation(s)
- Alicja Franke
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen (Germany)
| | - Rudi van Eldik
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen (Germany). .,Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland).
| |
Collapse
|
14
|
Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:1-61. [PMID: 26002730 DOI: 10.1007/978-3-319-16009-2_1] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review examines the monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 (CYP) enzymes in bacterial, archaeal and mammalian systems. CYP enzymes catalyze monooxygenation reactions by inserting one oxygen atom from O2 into an enormous number and variety of substrates. The catalytic versatility of CYP stems from its ability to functionalize unactivated carbon-hydrogen (C-H) bonds of substrates through monooxygenation. The oxidative prowess of CYP in catalyzing monooxygenation reactions is attributed primarily to a porphyrin π radical ferryl intermediate known as Compound I (CpdI) (Por•+FeIV=O), or its ferryl radical resonance form (FeIV-O•). CYP-mediated hydroxylations occur via a consensus H atom abstraction/oxygen rebound mechanism involving an initial abstraction by CpdI of a H atom from the substrate, generating a highly-reactive protonated Compound II (CpdII) intermediate (FeIV-OH) and a carbon-centered alkyl radical that rebounds onto the ferryl hydroxyl moiety to yield the hydroxylated substrate. CYP enzymes utilize hydroperoxides, peracids, perborate, percarbonate, periodate, chlorite, iodosobenzene and N-oxides as surrogate oxygen atom donors to oxygenate substrates via the shunt pathway in the absence of NAD(P)H/O2 and reduction-oxidation (redox) auxiliary proteins. It has been difficult to isolate the historically elusive CpdI intermediate in the native NAD(P)H/O2-supported monooxygenase pathway and to determine its precise electronic structure and kinetic and physicochemical properties because of its high reactivity, unstable nature (t½~2 ms) and short life cycle, prompting suggestions for participation in monooxygenation reactions of alternative CYP iron-oxygen intermediates such as the ferric-peroxo anion species (FeIII-OO-), ferric-hydroperoxo species (FeIII-OOH) and FeIII-(H2O2) complex.
Collapse
|
15
|
Davydov R, Laryukhin M, Ledbetter-Rogers A, Sono M, Dawson JH, Hoffman BM. Electron paramagnetic resonance and electron-nuclear double resonance studies of the reactions of cryogenerated hydroperoxoferric-hemoprotein intermediates. Biochemistry 2014; 53:4894-903. [PMID: 25046203 PMCID: PMC4144713 DOI: 10.1021/bi500296d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The fleeting ferric peroxo and hydroperoxo
intermediates of dioxygen
activation by hemoproteins can be readily trapped and characterized
during cryoradiolytic reduction of ferrous hemoprotein–O2 complexes at 77 K. Previous cryoannealing studies suggested
that the relaxation of cryogenerated hydroperoxoferric intermediates
of myoglobin (Mb), hemoglobin, and horseradish peroxidase (HRP), either
trapped directly at 77 K or generated by cryoannealing of a trapped
peroxo-ferric state, proceeds through dissociation of bound H2O2 and formation of the ferric heme without formation
of the ferryl porphyrin π-cation radical intermediate, compound
I (Cpd I). Herein we have reinvestigated the mechanism of decays of
the cryogenerated hydroperoxyferric intermediates of α- and
β-chains of human hemoglobin, HRP, and chloroperoxidase (CPO).
The latter two proteins are well-known to form spectroscopically detectable
quasistable Cpds I. Peroxoferric intermediates are trapped during
77 K cryoreduction of oxy Mb, α-chains, and β-chains of
human hemoglobin and CPO. They convert into hydroperoxoferric intermediates
during annealing at temperatures above 160 K. The hydroperoxoferric
intermediate of HRP is trapped directly at 77 K. All studied hydroperoxoferric
intermediates decay with measurable rates at temperatures above 170
K with appreciable solvent kinetic isotope effects. The hydroperoxoferric
intermediate of β-chains converts to the S =
3/2 Cpd I, which in turn decays to an electron paramagnetic resonance
(EPR)-silent product at temperature above 220 K. For all the other
hemoproteins studied, cryoannealing of the hydroperoxo intermediate
directly yields an EPR-silent majority product. In each case, a second
follow-up 77 K γ-irradiation of the annealed samples yields
low-spin EPR signals characteristic of cryoreduced ferrylheme (compound
II, Cpd II). This indicates that in general the hydroperoxoferric
intermediates relax to Cpd I during cryoanealing at low temperatures,
but when this state is not captured by reaction with a bound substrate,
it is reduced to Cpd II by redox-active products of radiolysis.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | | | | | | | | | |
Collapse
|
16
|
Alvarez LAJ, Bourke B, Pircalabioru G, Georgiev AY, Knaus UG, Daff S, Corcionivoschi N. Cj1411c encodes for a cytochrome P450 involved in Campylobacter jejuni 81-176 pathogenicity. PLoS One 2013; 8:e75534. [PMID: 24086558 PMCID: PMC3784454 DOI: 10.1371/journal.pone.0075534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/14/2013] [Indexed: 11/25/2022] Open
Abstract
Cytochrome P450s are b-heme-containing enzymes that are able to introduce oxygen atoms into a wide variety of organic substrates. They are extremely widespread in nature having diverse functions at both biochemical and physiological level. The genome of C. jejuni 81-176 encodes a single cytochrome P450 (Cj1411c) that has no close homologues. Cj1411c is unusual in its genomic location within a cluster involved in the biosynthesis of outer surface structures. Here we show that E. coli expressed and affinity-purified C. jejuni cytochrome P450 is lipophilic, containing one equivalent Cys-ligated heme. Immunoblotting confirmed the association of cytochrome P450 with membrane fractions. A Cj1411c deletion mutant had significantly reduced ability to infect human cells and was less able to survive following exposure to human serum when compared to the wild type strain. Phenotypically following staining with Alcian blue, we show that a Cj1411c deletion mutant produces significantly less capsular polysaccharide. This study describes the first known membrane-bound bacterial cytochrome P450 and its involvement in Campylobacter virulence.
Collapse
Affiliation(s)
- Luis A. J. Alvarez
- National Children’s Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Billy Bourke
- National Children’s Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Gratiela Pircalabioru
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Atanas Y. Georgiev
- School of Chemistry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Ulla G. Knaus
- National Children’s Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
- Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Simon Daff
- School of Chemistry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Nicolae Corcionivoschi
- National Children’s Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
- Banat’s University of Agricultural Sciences and Veterinary Medicine, School of Animal Sciences and Biotechnology, Timişoara, Romania
- * E-mail:
| |
Collapse
|
17
|
Wang X, Peter S, Ullrich R, Hofrichter M, Groves JT. Driving Force for Oxygen‐Atom Transfer by Heme‐Thiolate Enzymes. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xiaoshi Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
| | - Sebastian Peter
- Department of Bio‐ and Environmental Sciences, International Graduate School of Zittau, 02763 Zittau (Germany)
| | - René Ullrich
- Department of Bio‐ and Environmental Sciences, International Graduate School of Zittau, 02763 Zittau (Germany)
| | - Martin Hofrichter
- Department of Bio‐ and Environmental Sciences, International Graduate School of Zittau, 02763 Zittau (Germany)
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
| |
Collapse
|
18
|
Wang X, Peter S, Ullrich R, Hofrichter M, Groves JT. Driving force for oxygen-atom transfer by heme-thiolate enzymes. Angew Chem Int Ed Engl 2013; 52:9238-41. [PMID: 23825007 DOI: 10.1002/anie.201302137] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/18/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoshi Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|