1
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
2
|
Bignon E, Rizza S, Filomeni G, Papaleo E. Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase. Comput Struct Biotechnol J 2019; 17:415-429. [PMID: 30996821 PMCID: PMC6451115 DOI: 10.1016/j.csbj.2019.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is an essential signaling molecule in the regulation of multiple cellular processes. It is endogenously synthesized by NO synthase (NOS) as the product of L-arginine oxidation to L-citrulline, requiring NADPH, molecular oxygen, and a pterin cofactor. Two NOS isoforms are constitutively present in cells, nNOS and eNOS, and a third is inducible (iNOS). Despite their biological relevance, the details of their complex structural features and reactivity mechanisms are still unclear. In this review, we summarized the contribution of computational biochemistry to research on NOS molecular mechanisms. We described in detail its use in studying aspects of structure, dynamics and reactivity. We also focus on the numerous outstanding questions in the field that could benefit from more extensive computational investigations.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Signaling and Oxidative Stress Group, Cell Stress and Survival Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark.,Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Rios-Ibarra CP, Torres-De La Cruz V, Ochoa-Ruiz AG, Rivas-Estilla AM. Quantification of nitric oxide by high-performance liquid chromatography-fluorometric method in subgenomic hepatitis C virus-replicon expressing Huh7 cells upon treatment with acetylsalicylic acid. Exp Ther Med 2018; 16:2621-2626. [PMID: 30186494 DOI: 10.3892/etm.2018.6515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
As nitric oxide (NO) expression levels are lower in hepatocytes compared with other cell types, it is difficult to quantify this compound via Griess assay. The aim of the present study was to quantify NO concentration in the cell culture medium from a subgenomic hepatitis C virus (HCV)-replicon expressing Huh-7 cell system using a high-performance liquid chromatography (HPLC)-fluorescence detector in the presence or absence of acetylsalicylic acid (ASA) treatment. HCV-replicon cells were incubated with ASA (4 mM) for 24, 48 and 72 h. Thereafter, the medium was collected to measure nitrites (NO2-) as an indirect indicator of NO levels using diaminonaphtalene as a derivate agent. NO levels were significantly higher (1.7-fold) in Huh-7 replicon cells treated with ASA (72 h post-treatment) than untreated cells (P<0.05); NO inhibitor reduced ~30% the level of NO in Huh-7 replicon cells treated with ASA (48 h post-treatment; P<0.05). The findings suggested that the HPLC-fluorescence method provided an accurate and efficient measurement of NO production in Huh-7-HCV-replicon cells culture medium.
Collapse
Affiliation(s)
- Clara Patricia Rios-Ibarra
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, México.,Department of Bioengineering, Tecnologico de Monterrey, Campus Guadalajara, Zapopan, Jalisco 45138, México
| | - Victor Torres-De La Cruz
- Biomedical Research Center, Northeast Mexican Social Security Institute, Monterrey, Nuevo León 64720, México
| | - Andrea Gabriela Ochoa-Ruiz
- Department of Bioengineering, Tecnologico de Monterrey, Campus Guadalajara, Zapopan, Jalisco 45138, México
| | - Ana María Rivas-Estilla
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, México
| |
Collapse
|
4
|
Shamovsky I, Belfield G, Lewis R, Narjes F, Ripa L, Tyrchan C, Öberg L, Sjö P. Theoretical studies of the second step of the nitric oxide synthase reaction: Electron tunneling prevents uncoupling. J Inorg Biochem 2018; 181:28-40. [PMID: 29407906 DOI: 10.1016/j.jinorgbio.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO·) is a messenger molecule with diverse physiological roles including host defense, neurotransmission and vascular function. The synthesis of NO· from l-arginine is catalyzed by NO-synthases and occurs in two steps through the intermediary Nω-hydroxy-l-arginine (NHA). In both steps the P450-like reaction cycle is coupled with the redox cycle of the cofactor tetrahydrobiopterin (H4B). The mechanism of the second step is studied by Density Functional Theory calculations to ascertain the canonical sequence of proton and electron transfer (PT and ET) events. The proposed mechanism is controlled by the interplay of two electron donors, H4B and NHA. Consistent with experimental data, the catalytic cycle proceeds through the ferric-hydroperoxide complex (Cpd 0) and the following aqua-ferriheme resting state, and involves interim partial oxidation of H4B. The mechanism starts with formation of Cpd 0 from the ferrous-dioxy reactant complex by PT from the C-ring heme propionate coupled with hole transfer to H4B through the highest occupied π-orbital of NHA as a bridge. This enables PT from NHA+· to the proximal oxygen leading to the shallow ferriheme-H2O2 oxidant. Subsequent Fenton-like peroxide bond cleavage triggered by ET from the NHA-derived iminoxy-radical leads to the protonated Cpd II diradicaloid singlet stabilized by spin delocalization in H4B, and the closed-shell coordination complex of HO- with iminoxy-cation. The complex is converted to the transient C-adduct, which releases intended products upon PT to the ferriheme-HO- complex coupled with ET to the H4B+·. Deferred ET from the substrate or undue ET from/to the cofactor leads to side products.
Collapse
Affiliation(s)
- Igor Shamovsky
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden.
| | - Graham Belfield
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Richard Lewis
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Frank Narjes
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Christian Tyrchan
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Lisa Öberg
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Peter Sjö
- Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| |
Collapse
|
5
|
Tsutsui Y, Kobayashi K, Takeuchi F, Tsubaki M, Kozawa T. Reaction Intermediates of Nitric Oxide Synthase from Deinococcus radiodurans as Revealed by Pulse Radiolysis: Evidence for Intramolecular Electron Transfer from Biopterin to Fe II-O 2 Complex. Biochemistry 2018; 57:1611-1619. [PMID: 29320163 DOI: 10.1021/acs.biochem.7b00887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nitric oxide synthase (NOS) is a cytochrome P450-type mono-oxygenase that catalyzes the oxidation of l-arginine (Arg) to nitric oxide (NO) through a reaction intermediate N-hydroxy-l-arginine (NHA). The mechanism underlying the reaction catalyzed by NOS from Deinococcus radiodurans was investigated using pulse radiolysis. Radiolytically generated hydrated electrons reduced the heme iron of NOS within 2 μs. Subsequently, ferrous heme reacted with O2 to form a ferrous-dioxygen intermediate with a second-order rate constant of 2.8 × 108 M-1 s-1. In the tetrahydrofolate (H4F)-bound enzyme, the ferrous-dioxygen intermediate was found to decay an another intermediate with a first-order rate constant of 2.2 × 103 s-1. The spectrum of the intermediate featured an absorption maximum at 440 nm and an absorption minimum at 390 nm. In the absence of H4F, this step did not proceed, suggesting that H4F was reduced with the ferrous-dioxygen intermediate to form a second intermediate. The intermediate further converted to the original ferric form with a first-order rate constant of 4 s-1. A similar intermediate could be detected after pulse radiolysis in the presence of NHA, although the intermediate decayed more slowly (0.5 s-1). These data suggested that a common catalytically active intermediate involved in the substrate oxidation of both Arg and NHA may be formed during catalysis. In addition, we investigated the solvent isotope effects on the kinetics of the intermediate after pulse radiolysis. Our experiments revealed dramatic kinetic solvent isotope effects on the conversion of the intermediate to the ferric form, of 10.5 and 2.5 for Arg and NHA, respectively, whereas the faster phases were not affected. These data suggest that the proton transfer in DrNOS is the rate-limiting reaction of the intermediate with the substrates.
Collapse
Affiliation(s)
- Yuko Tsutsui
- The Institute of Scientific and Industrial Research , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| | - Kazuo Kobayashi
- The Institute of Scientific and Industrial Research , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| | - Fusako Takeuchi
- Institute for Promotion of Higher Education , Kobe University , 1-2-1 Tsurukabuto , Nada-ku, Kobe , Hyogo 657-8501 , Japan
| | - Motonari Tsubaki
- Graduate School of Science, Department of Chemistry , Kobe University , 1-1 Rokkodai-cho , Nada-ku, Kobe , Hyogo 657-8501 , Japan
| | - Takahiro Kozawa
- The Institute of Scientific and Industrial Research , Osaka University , Mihogaoka 8-1 , Ibaraki , Osaka 567-0047 , Japan
| |
Collapse
|
6
|
Fernandez Diaz-Rullo F, Zamberlan F, Mewis RE, Fekete M, Broche L, Cheyne LA, Dall'Angelo S, Duckett SB, Dawson D, Zanda M. Synthesis and hyperpolarisation of eNOS substrates for quantification of NO production by 1H NMR spectroscopy. Bioorg Med Chem 2017; 25:2730-2742. [PMID: 28365086 PMCID: PMC5399308 DOI: 10.1016/j.bmc.2017.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/13/2017] [Accepted: 03/18/2017] [Indexed: 01/05/2023]
Abstract
Hyperpolarization enhances the intensity of the NMR signals of a molecule, whose in vivo metabolic fate can be monitored by MRI with higher sensitivity. SABRE is a hyperpolarization technique that could potentially be used to image nitric oxide (NO) production in vivo. This would be very important, because NO dysregulation is involved in several pathologies, including cardiovascular ones. The nitric oxide synthase (NOS) pathway leads to NO production via conversion of l-arginine into l-citrulline. NO is a free radical gas with a short half-life in vivo (≈5s), therefore direct NO quantification is challenging. An indirect method - based on quantifying conversion of an l-Arg- to l-Cit-derivative by 1H NMR spectroscopy - is herein proposed. A small library of pyridyl containing l-Arg derivatives was designed and synthesised. In vitro tests showed that compounds 4a-j and 11a-c were better or equivalent substrates for the eNOS enzyme (NO2- production=19-46μM) than native l-Arg (NO2- production=25μM). Enzymatic conversion of l-Arg to l-Cit derivatives could be monitored by 1H NMR. The maximum hyperpolarization achieved by SABRE reached 870-fold NMR signal enhancement, which opens up exciting future perspectives of using these molecules as hyperpolarized MRI tracers in vivo.
Collapse
Affiliation(s)
- Fernando Fernandez Diaz-Rullo
- Centre for Therapeutics and School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, United Kingdom
| | - Francesco Zamberlan
- Centre for Therapeutics and School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, United Kingdom
| | - Ryan E. Mewis
- Centre for Hyperpolarisation in Magnetic Resonance, University of York, Heslington, York YO10 5NY, United Kingdom
| | - Marianna Fekete
- Centre for Hyperpolarisation in Magnetic Resonance, University of York, Heslington, York YO10 5NY, United Kingdom
| | - Lionel Broche
- Centre for Therapeutics and School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, United Kingdom
| | - Lesley A. Cheyne
- Centre for Therapeutics and School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, United Kingdom
| | - Sergio Dall'Angelo
- Centre for Therapeutics and School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, United Kingdom
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, University of York, Heslington, York YO10 5NY, United Kingdom
| | - Dana Dawson
- Centre for Therapeutics and School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, United Kingdom
| | - Matteo Zanda
- Centre for Therapeutics and School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB25 2ZD, United Kingdom
- C.N.R.- I.C.R.M., via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
7
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
8
|
Horn M, Nienhaus K, Nienhaus GU. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase. F1000Res 2014; 3:290. [PMID: 25653844 DOI: 10.12688/f1000research.5836.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2014] [Indexed: 03/23/2024] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO) from dioxygen and L-arginine (L-Arg) in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR) photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO) and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS) with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO) inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOS oxy-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOS oxy-NO, demonstrating the strong trans effect of the heme-bound NO.
Collapse
Affiliation(s)
- Michael Horn
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
| | - Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany ; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
9
|
Horn M, Nienhaus K, Nienhaus GU. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase. F1000Res 2014; 3:290. [PMID: 25653844 PMCID: PMC4304226 DOI: 10.12688/f1000research.5836.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2014] [Indexed: 11/20/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a homodimeric heme enzyme that catalyzes the formation of nitric oxide (NO) from dioxygen and L-arginine (L-Arg) in a two-step process. The produced NO can either diffuse out of the heme pocket into the surroundings or it can rebind to the heme iron and inhibit enzyme action. Here we have employed Fourier transform infrared (FTIR) photolysis difference spectroscopy at cryogenic temperatures, using the carbon monoxide (CO) and NO stretching bands as local probes of the active site of iNOS. Characteristic changes were observed in the spectra of the heme-bound ligands upon binding of the cofactors. Unlike photolyzed CO, which becomes trapped in well-defined orientations, as indicated by sharp photoproduct bands, photoproduct bands of NO photodissociated from the ferric heme iron were not visible, indicating that NO does not reside in the protein interior in a well-defined location or orientation. This may be favorable for NO release from the enzyme during catalysis because it reduces self-inhibition. Moreover, we used temperature derivative spectroscopy (TDS) with FTIR monitoring to explore the dynamics of NO and carbon monoxide (CO) inside iNOS after photodissociation at cryogenic temperatures. Only a single kinetic photoproduct state was revealed, but no secondary docking sites as in hemoglobins. Interestingly, we observed that intense illumination of six-coordinate ferrous iNOS oxy-NO ruptures the bond between the heme iron and the proximal thiolate to yield five-coordinate ferric iNOS oxy-NO, demonstrating the strong trans effect of the heme-bound NO.
Collapse
Affiliation(s)
- Michael Horn
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
| | - Karin Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology (KIT), Institute of Applied Physics, Karlsruhe, D-76131, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
10
|
Davydov R, Labby KJ, Chobot SE, Lukoyanov DA, Crane BR, Silverman RB, Hoffman BM. Enzymatic and cryoreduction EPR studies of the hydroxylation of methylated N(ω)-hydroxy-L-arginine analogues by nitric oxide synthase from Geobacillus stearothermophilus. Biochemistry 2014; 53:6511-9. [PMID: 25251261 PMCID: PMC4204881 DOI: 10.1021/bi500485z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Nitric
oxide synthase (NOS) catalyzes the conversion of l-arginine
to l-citrulline and NO in a two-step process involving the
intermediate Nω-hydroxy-l-arginine (NHA). It was shown that Cpd I is the oxygenating species
for l-arginine; the hydroperoxo ferric intermediate is the
reactive intermediate with NHA. Methylation of the Nω-OH and Nω-H of NHA significantly inhibits the conversion
of NHA into NO and l-citrulline by mammalian NOS. Kinetic
studies now show that Nω-methylation of NHA has a
qualitatively similar effect on H2O2-dependent
catalysis by bacterial gsNOS. To elucidate the effect of methylating
Nω-hydroxy l-arginine on the properties
and reactivity of the one-electron-reduced oxy-heme center of NOS,
we have applied cryoreduction/annealing/EPR/ENDOR techniques. Measurements
of solvent kinetic isotope effects during 160 K cryoannealing cryoreduced
oxy-gsNOS/NHA confirm the hydroperoxo ferric intermediate as the catalytically
active species of step two. Product analysis for cryoreduced samples
with methylated NHA’s, NHMA, NMOA, and NMMA, annealed to 273
K, show a correlation of yields of l-citrulline with the
intensity of the g 2.26 EPR signal of the peroxo ferric
species trapped at 77 K, which converts to the reactive hydroperoxo
ferric state. There is also a correlation between the yield of l-citrulline in these experiments and kobs for the H2O2-dependent conversion
of the substrates by gsNOS. Correspondingly, no detectable amount
of cyanoornithine, formed when Cpd I is the reactive species, was
found in the samples. Methylation of the NHA guanidinium Nω-OH and Nω-H inhibits the second NO-producing reaction
by favoring protonation of the ferric-peroxo to form unreactive conformers
of the ferric-hydroperoxo state. It is suggested that this is caused
by modification of the distal-pocket hydrogen-bonding network of oxy
gsNOS and introduction of an ordered water molecule that facilitates
delivery of the proton(s) to the one-electron-reduced oxy-heme moiety.
These results illustrate how variations in the properties of the substrate
can modulate the reactivity of a monooxygenase.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | | | | | | | | | | | |
Collapse
|