1
|
Kumar V, Agrawal D, Bommareddy RR, Islam MA, Jacob S, Balan V, Singh V, Thakur VK, Navani NK, Scrutton NS. Arabinose as an overlooked sugar for microbial bioproduction of chemical building blocks. Crit Rev Biotechnol 2024; 44:1103-1120. [PMID: 37932016 DOI: 10.1080/07388551.2023.2270702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
The circular economy is anticipated to bring a disruptive transformation in manufacturing technologies. Robust and industrial scalable microbial strains that can simultaneously assimilate and valorize multiple carbon substrates are highly desirable, as waste bioresources contain substantial amounts of renewable and fermentable carbon, which is diverse. Lignocellulosic biomass (LCB) is identified as an inexhaustible and alternative resource to reduce global dependence on oil. Glucose, xylose, and arabinose are the major monomeric sugars in LCB. However, primary research has focused on the use of glucose. On the other hand, the valorization of pentose sugars, xylose, and arabinose, has been mainly overlooked, despite possible assimilation by vast microbial communities. The present review highlights the research efforts that have explicitly proven the suitability of arabinose as the starting feedstock for producing various chemical building blocks via biological routes. It begins by analyzing the availability of various arabinose-rich biorenewable sources that can serve as potential feedstocks for biorefineries. The subsequent section outlines the current understanding of arabinose metabolism, biochemical routes prevalent in prokaryotic and eukaryotic systems, and possible products that can be derived from this sugar. Further, currently, exemplar products from arabinose, including arabitol, 2,3-butanediol, 1,2,3-butanetriol, ethanol, lactic acid, and xylitol are discussed, which have been produced by native and non-native microbial strains using metabolic engineering and genome editing tools. The final section deals with the challenges and obstacles associated with arabinose-based production, followed by concluding remarks and prospects.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India
| | - Rajesh Reddy Bommareddy
- Department of Applied Sciences, Health and Life Sciences, Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, USA
| | - Vijai Singh
- Department of Biosciences, School of Sciences, Indrashil University, Rajpur, Mehsana, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Lu YA, Liu SJ, Hou SY, Ge YY, Xia BH, Xie MX. Metabolomics distinguishes different grades of Scrophularia ningpoensis hemsl: Towards a biomarker discovery and quality evaluation. Heliyon 2024; 10:e28458. [PMID: 38601543 PMCID: PMC11004711 DOI: 10.1016/j.heliyon.2024.e28458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
In managing unique complexities associated with Chinese medicinal quality assessment, metabolomics serves as an innovative tool. This study proposes an analytical approach to assess differing qualities of Scrophularia ningpoensis (S. ningpoensis)Hemsl by identifying potential biomarker metabolites and their activity with the corresponding secondary metabolites. The methodology includes four steps; first, a GC-MS based metabolomics exploration of the Scrophularia ningpoensis Hemsl. Second, a multivariate statistical analysis (PCA, PLS-DA, OPLS-DA) for quality assessment and biomarker identification. Third, the application of ROC analysis and pathway analysis based on identified biomarkers. Finally, validation of the associated active ingredients by HPLC. The analysis showed distinct metabolite profiles across varying grades of S. ningpoensis Hemsl, establishing a grading dependency relationship. Select biomarkers (gluconic Acid, d-xylulose, sucrose, etc.) demonstrated robust grading performances. Further, the Pentose Phosphate Pathway, deemed as most influential in grading, was tied to the synthesis of key constituents (iridoids, phenylpropanoids). HPLC validation tests affirm a decreasing trend in harpagoside and cinnamic acid levels between first and third-grade samples. In conclusion, this GC-MS based metabolomics combined HPLC method offers a sound approach to assess and distinguish quality variations in S. ningpoensis Hemsl samples.
Collapse
Affiliation(s)
- Yu-Ai Lu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Shi-Jun Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Shi-Yi Hou
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Yu-Ying Ge
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Bo-Hou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Ming-Xia Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, PR China
| |
Collapse
|
3
|
Adamczyk PA, Coradetti ST, Gladden JM. Non-canonical D-xylose and L-arabinose metabolism via D-arabitol in the oleaginous yeast Rhodosporidium toruloides. Microb Cell Fact 2023; 22:145. [PMID: 37537595 PMCID: PMC10398940 DOI: 10.1186/s12934-023-02126-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/17/2023] [Indexed: 08/05/2023] Open
Abstract
R. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R. toruloides grows on several pentose sugars and alcohols, further engineering of the native pathway is required for efficient conversion of biomass-derived sugars to higher value bioproducts. A previous high-throughput study inferred that R. toruloides possesses a non-canonical L-arabinose and D-xylose metabolism proceeding through D-arabitol and D-ribulose. In this study, we present a combination of genetic and metabolite data that refine and extend that model. Chiral separations definitively illustrate that D-arabitol is the enantiomer that accumulates under pentose metabolism. Deletion of putative D-arabitol-2-dehydrogenase (RTO4_9990) results in > 75% conversion of D-xylose to D-arabitol, and is growth-complemented on pentoses by heterologous xylulose kinase expression. Deletion of putative D-ribulose kinase (RTO4_14368) arrests all growth on any pentose tested. Analysis of several pentose dehydrogenase mutants elucidates a complex pathway with multiple enzymes mediating multiple different reactions in differing combinations, from which we also inferred a putative L-ribulose utilization pathway. Our results suggest that we have identified enzymes responsible for the majority of pathway flux, with additional unknown enzymes providing accessory activity at multiple steps. Further biochemical characterization of the enzymes described here will enable a more complete and quantitative understanding of R. toruloides pentose metabolism. These findings add to a growing understanding of the diversity and complexity of microbial pentose metabolism.
Collapse
Affiliation(s)
- Paul A Adamczyk
- Agile Biofoundry, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
| | - Samuel T Coradetti
- Agile Biofoundry, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
- United States Department of Agriculture, Agricultural Research Service, Ithaca, NY, USA
| | - John M Gladden
- Agile Biofoundry, Emeryville, CA, USA.
- Sandia National Laboratories, Livermore, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Sandia National Laboratories, DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
| |
Collapse
|
4
|
Kumar A, Li J, Kondaveeti S, Singh B, Shanmugam R, Kalia VC, Kim IW, Lee JK. Characterization of a xylitol dehydrogenase from Aspergillus flavus and its application in l-xylulose production. Front Bioeng Biotechnol 2022; 10:1001726. [PMID: 36172018 PMCID: PMC9512048 DOI: 10.3389/fbioe.2022.1001726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
An NAD+-dependent xylitol dehydrogenase from A. flavus (AfXDH) was cloned and successfully expressed in Escherichia coli. AfXDH gene sequence revealed an open reading frame of 1,110 bp, encoding a polypeptide of 369 amino acids with a calculated molecular mass of 38,893 Da. Among various polyols, sorbitol and xylitol were preferred substrates of AfXDH with Km values of 16.2 and 16.9 mM, respectively. AfXDH showed the highest activity in Tris-glycine-NaOH buffer (pH 9.5) at 50°C; it required Zn2+ or Mn2+ for enzyme activity. The half-life at 40°C and half denaturation temperature (T1/2) was 200 min and 45°C, respectively. Bioinformatic analyses along with biochemical properties confirmed that AfXDH belonged to the medium-chain dehydrogenase/reductase family. AfXDH exhibits higher thermostability and kcat values than those of other XDHs. The feasibility of using AfXDH in l-xylulose production was demonstrated. AfXDH, when coupled with Streptococcus pyogenes NADH oxidase, efficiently converted xylitol to l-xylulose with 97% yield, suggesting its usefulness for the industrial l-xylulose production from xylitol.
Collapse
|
5
|
Zhu H, Zhang J, Gao Q, Pang G, Sun T, Li R, Yu Z, Shen Q. A new atypical short-chain dehydrogenase is required for interfungal combat and conidiation in Trichoderma guizhouense. Environ Microbiol 2021; 23:5784-5801. [PMID: 33788384 DOI: 10.1111/1462-2920.15493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/27/2021] [Indexed: 12/15/2022]
Abstract
Hypocrealean Trichoderma are the most extensively studied facultative mycoparasites against phytopathogenic fungi. Aerial hyphae of Trichoderma guizhouense can rapidly proliferate over Fusarium oxysporum hyphae, cause sporadic cell death and arrest the growth of the host. The results of the present study demonstrated that a unique short-chain dehydrogenase/reductase (SDR), designated as TgSDR1, was expressed at a high level in T. guizhouense challenged by the hosts. Similar to other SDRs family members, the TgSDR1 protein contains a cofactor-binding motif and a catalytic site. The subcellular localization assay revealed that the TgSDR1::GFP fusion protein translocated to lipid droplets in mycelia and conidia. The data obtained using reverse genetic approach indicated that TgSDR1 is associated with antifungal ability, plays an important role in providing reducing equivalents in the form of NADPH and regulates the amino sugar and nucleotide sugar metabolism in T. guizhouense upon encountering a host. Moreover, the TgSDR1 deletion mutant was defective in conidiation. Thus, TgSDR1 functions as a key metabolic enzyme in T. guizhouense to regulate mycotrophic interactions, defence against other fungi, such as F. oxysporum, and conidiation.
Collapse
Affiliation(s)
- Hong Zhu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jian Zhang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qi Gao
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guan Pang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tingting Sun
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong Li
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhenzhong Yu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,National Engineering Research Center for Organic-Based Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Key Laboratory of Plant Immunity, Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
6
|
Chroumpi T, Mäkelä MR, de Vries RP. Engineering of primary carbon metabolism in filamentous fungi. Biotechnol Adv 2020; 43:107551. [DOI: 10.1016/j.biotechadv.2020.107551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
7
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|
8
|
Aguilar-Pontes MV, Brandl J, McDonnell E, Strasser K, Nguyen TTM, Riley R, Mondo S, Salamov A, Nybo JL, Vesth TC, Grigoriev IV, Andersen MR, Tsang A, de Vries RP. The gold-standard genome of Aspergillus niger NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi. Stud Mycol 2018; 91:61-78. [PMID: 30425417 PMCID: PMC6231085 DOI: 10.1016/j.simyco.2018.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The fungal kingdom is too large to be discovered exclusively by classical genetics. The access to omics data opens a new opportunity to study the diversity within the fungal kingdom and how adaptation to new environments shapes fungal metabolism. Genomes are the foundation of modern science but their quality is crucial when analysing omics data. In this study, we demonstrate how one gold-standard genome can improve functional prediction across closely related species to be able to identify key enzymes, reactions and pathways with the focus on primary carbon metabolism. Based on this approach we identified alternative genes encoding various steps of the different sugar catabolic pathways, and as such provided leads for functional studies into this topic. We also revealed significant diversity with respect to genome content, although this did not always correlate to the ability of the species to use the corresponding sugar as a carbon source.
Collapse
Affiliation(s)
- M V Aguilar-Pontes
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - J Brandl
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - E McDonnell
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - K Strasser
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - T T M Nguyen
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - R Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - S Mondo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - A Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - J L Nybo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - T C Vesth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - I V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - M R Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark
| | - A Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - R P de Vries
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
9
|
Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica. Appl Environ Microbiol 2018; 84:AEM.02146-17. [PMID: 29150499 DOI: 10.1128/aem.02146-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/02/2017] [Indexed: 01/08/2023] Open
Abstract
Pentoses, including xylose and arabinose, are the second most prevalent sugars in lignocellulosic biomass that can be harnessed for biological conversion. Although Yarrowia lipolytica has emerged as a promising industrial microorganism for production of high-value chemicals and biofuels, its native pentose metabolism is poorly understood. Our previous study demonstrated that Y. lipolytica (ATCC MYA-2613) has endogenous enzymes for d-xylose assimilation, but inefficient xylitol dehydrogenase causes Y. lipolytica to assimilate xylose poorly. In this study, we investigated the functional roles of native sugar-specific transporters for activating the dormant pentose metabolism in Y. lipolytica By screening a comprehensive set of 16 putative pentose-specific transporters, we identified two candidates, YALI0C04730p and YALI0B00396p, that enhanced xylose assimilation. The engineered mutants YlSR207 and YlSR223, overexpressing YALI0C04730p and YALI0B00396p, respectively, improved xylose assimilation approximately 23% and 50% in comparison to YlSR102, a parental engineered strain overexpressing solely the native xylitol dehydrogenase gene. Further, we activated and elucidated a widely unknown native l-arabinose assimilation pathway in Y. lipolytica through transcriptomic and metabolic analyses. We discovered that Y. lipolytica can coconsume xylose and arabinose, where arabinose utilization shares transporters and metabolic enzymes of some intermediate steps of the xylose assimilation pathway. Arabinose assimilation is synergistically enhanced in the presence of xylose, while xylose assimilation is competitively inhibited by arabinose. l-Arabitol dehydrogenase is the rate-limiting step responsible for poor arabinose utilization in Y. lipolytica Overall, this study sheds light on the cryptic pentose metabolism of Y. lipolytica and, further, helps guide strain engineering of Y. lipolytica for enhanced assimilation of pentose sugars.IMPORTANCE The oleaginous yeast Yarrowia lipolytica is a promising industrial-platform microorganism for production of high-value chemicals and fuels. For decades since its isolation, Y. lipolytica has been known to be incapable of assimilating pentose sugars, xylose and arabinose, that are dominantly present in lignocellulosic biomass. Through bioinformatic, transcriptomic, and enzymatic studies, we have uncovered the dormant pentose metabolism of Y. lipolytica Remarkably, unlike most yeast strains, which share the same transporters for importing hexose and pentose sugars, we discovered that Y. lipolytica possesses the native pentose-specific transporters. By overexpressing these transporters together with the rate-limiting d-xylitol and l-arabitol dehydrogenases, we activated the dormant pentose metabolism of Y. lipolytica Overall, this study provides a fundamental understanding of the dormant pentose metabolism of Y. lipolytica and guides future metabolic engineering of Y. lipolytica for enhanced conversion of pentose sugars to high-value chemicals and fuels.
Collapse
|
10
|
Yamasaki-Yashiki S, Komeda H, Hoshino K, Asano Y. Characterization and gene cloning of l-xylulose reductase involved in l-arabinose catabolism from the pentose-fermenting fungus Rhizomucor pusillus. Biosci Biotechnol Biochem 2017; 81:1612-1618. [PMID: 28471330 DOI: 10.1080/09168451.2017.1320518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
l-Xylulose reductase (LXR) catalyzes the reduction of l-xylulose to xylitol in the fungal l-arabinose catabolic pathway. LXR (RpLXR) was purified from the pentose-fermenting zygomycetous fungus Rhizomucor pusillus NBRC 4578. The native RpLXR is a homotetramer composed of 29 kDa subunits and preferred NADPH as a coenzyme. The Km values were 8.71 mM for l-xylulose and 3.89 mM for dihydroxyacetone. The lxr3 (Rplxr3) gene encoding RpLXR consists of 792 bp and encodes a putative 263 amino acid protein (Mr = 28,341). The amino acid sequence of RpLXR showed high similarity to 3-oxoacyl-(acyl-carrier-protein) reductase. The Rplxr3 gene was expressed in Escherichia coli and the recombinant RpLXR exhibited properties similar to those of native RpLXR. Transcription of the Rplxr3 gene in R. pusillus NBRC 4578 was induced in the presence of l-arabinose and inhibited in the presence of d-glucose, d-xylose, and d-mannitol, indicating that RpLXR is involved in the l-arabinose catabolic pathway.
Collapse
Affiliation(s)
- Shino Yamasaki-Yashiki
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu , Japan
| | - Hidenobu Komeda
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu , Japan
| | - Kazuhiro Hoshino
- b Graduate school of Science and Engineering , University of Toyama , Toyama , Japan
| | - Yasuhisa Asano
- a Biotechnology Research Center and Department of Biotechnology , Toyama Prefectural University , Imizu , Japan
| |
Collapse
|
11
|
Zhang Z, Su B, Wu M, Lin J, Yang L. Strategies for eliminating l-arabinitol in the bioconversion of xylitol. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Lee SM, Jellison T, Alper HS. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2015; 100:2487-98. [DOI: 10.1007/s00253-015-7211-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/05/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
13
|
Lee SM, Jellison T, Alper HS. Xylan catabolism is improved by blending bioprospecting and metabolic pathway engineering in Saccharomyces cerevisiae. Biotechnol J 2015; 10:575-83. [PMID: 25651533 DOI: 10.1002/biot.201400622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/09/2015] [Accepted: 02/03/2015] [Indexed: 11/09/2022]
Abstract
Complete utilization of all available carbon sources in lignocellulosic biomass still remains a challenge in engineering Saccharomyces cerevisiae. Even with efficient heterologous xylose catabolic pathways, S. cerevisiae is unable to utilize xylose in lignocellulosic biomass unless xylan is depolymerized to xylose. Here we demonstrate that a blended bioprospecting approach along with pathway engineering and evolutionary engineering can be used to improve xylan catabolism in S. cerevisiae. Specifically, we perform whole genome sequencing-based bioprospecting of a strain with remarkable pentose catabolic potential that we isolated and named Ustilago bevomyces. The heterologous expression of xylan catabolic genes enabled S. cerevisiae to grow on xylan as a single carbon source in minimal medium. A combination of bioprospecting and metabolic pathway evolution demonstrated that the xylan catabolic pathway could be further improved. Ultimately, engineering efforts were able to achieve xylan conversion into ethanol of up to 0.22 g/L on minimal medium compositions with xylan. This pathway provides a novel starting point for improving lignocellulosic conversion by yeast.
Collapse
Affiliation(s)
- Sun-Mi Lee
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas; Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | | | | |
Collapse
|
14
|
Khosravi C, Benocci T, Battaglia E, Benoit I, de Vries RP. Sugar catabolism in Aspergillus and other fungi related to the utilization of plant biomass. ADVANCES IN APPLIED MICROBIOLOGY 2015; 90:1-28. [PMID: 25596028 DOI: 10.1016/bs.aambs.2014.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fungi are found in all natural and artificial biotopes and can use highly diverse carbon sources. They play a major role in the global carbon cycle by decomposing plant biomass and this biomass is the main carbon source for many fungi. Plant biomass is composed of cell wall polysaccharides (cellulose, hemicellulose, pectin) and lignin. To degrade cell wall polysaccharides to different monosaccharides, fungi produce a broad range of enzymes with a large variety in activities. Through a series of enzymatic reactions, sugar-specific and central metabolic pathways convert these monosaccharides into energy or metabolic precursors needed for the biosynthesis of biomolecules. This chapter describes the carbon catabolic pathways that are required to efficiently use plant biomass as a carbon source. It will give an overview of the known metabolic pathways in fungi, their interconnections, and the differences between fungal species.
Collapse
|