1
|
Schmidt M, Lee N, Zhan C, Roberts JB, Nava AA, Keiser LS, Vilchez AA, Chen Y, Petzold CJ, Haushalter RW, Blank LM, Keasling JD. Maximizing Heterologous Expression of Engineered Type I Polyketide Synthases: Investigating Codon Optimization Strategies. ACS Synth Biol 2023; 12:3366-3380. [PMID: 37851920 PMCID: PMC10661030 DOI: 10.1021/acssynbio.3c00367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 10/20/2023]
Abstract
Type I polyketide synthases (T1PKSs) hold enormous potential as a rational production platform for the biosynthesis of specialty chemicals. However, despite great progress in this field, the heterologous expression of PKSs remains a major challenge. One of the first measures to improve heterologous gene expression can be codon optimization. Although controversial, choosing the wrong codon optimization strategy can have detrimental effects on the protein and product levels. In this study, we analyzed 11 different codon variants of an engineered T1PKS and investigated in a systematic approach their influence on heterologous expression in Corynebacterium glutamicum, Escherichia coli, and Pseudomonas putida. Our best performing codon variants exhibited a minimum 50-fold increase in PKS protein levels, which also enabled the production of an unnatural polyketide in each of these hosts. Furthermore, we developed a free online tool (https://basebuddy.lbl.gov) that offers transparent and highly customizable codon optimization with up-to-date codon usage tables. In this work, we not only highlight the significance of codon optimization but also establish the groundwork for the high-throughput assembly and characterization of PKS pathways in alternative hosts.
Collapse
Affiliation(s)
- Matthias Schmidt
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52062 Aachen, Germany
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Namil Lee
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Chunjun Zhan
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jacob B. Roberts
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint
Program in Bioengineering, University of
California, Berkeley, California 94720, United States
| | - Alberto A. Nava
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Leah S. Keiser
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Aaron A. Vilchez
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Yan Chen
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Petzold
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Robert W. Haushalter
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lars M. Blank
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52062 Aachen, Germany
| | - Jay D. Keasling
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint
Program in Bioengineering, University of
California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Center
for Synthetic Biochemistry, Institute for
Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen 518071, China
| |
Collapse
|
2
|
Tabassum R, Kousar S, Mustafa G, Jamil A, Attique SA. In Silico Method for the Screening of Phytochemicals against Methicillin-Resistant Staphylococcus Aureus. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5100400. [PMID: 37250750 PMCID: PMC10212682 DOI: 10.1155/2023/5100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved resistance even against the last resort β-lactam antibiotics. This is because of the acquisition of an additional penicillin-binding protein 2a (PBP2a) which is a resistance determinant in MRSA. Currently, available PBP2a inhibitors are ineffective against life-threatening and fatal infections caused by microorganisms. Therefore, there is an urgent need to screen natural compounds that could overpass the resistance issue alone or in combination with antibacterial drugs. We studied the interactions of different phytochemicals with PBP2a so that crosslinking of peptidoglycans could be inhibited. In structure-based drug designing, in silico approach plays a key role in determining phytochemical interactions with PBP2a. In this study, a total of 284 antimicrobial phytochemicals were screened using the molecular docking approach. The binding affinity of methicillin, -11.241 kcal/mol, was used as the threshold value. The phytochemicals having binding affinities with PBP2a stronger than methicillin were identified, and the drug-likeness properties and toxicities of the screened phytochemicals were calculated. Out of the multiple phytochemicals screened, nine were found as good inhibitors to be PBP2a, among which cyanidin, tetrandrine, cyclomorusin, lipomycin, and morusin showed strong binding potential with the receptor protein. These best-selected phytochemicals were also docked to the allosteric site of PBP2a, and most of the compounds revealed strong interactions with the allosteric site. These compounds were safe to be used as drugs because they did not show any toxicity and had good bioactivity scores. Cyanidin had the highest binding affinity (S-score of -16.061 kcal/mol) with PBP2a and with high gastrointestinal (GI) absorption. Our findings suggest that cyanidin can be used as a drug against MRSA infection either in purified form or that its structure can lead to the development of more potent anti-MRSA medicines. However, experimental studies are required to evaluate the inhibitory potential of these phytochemicals against MRSA.
Collapse
Affiliation(s)
- Riaz Tabassum
- Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sumaira Kousar
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Syed Awais Attique
- School of Interdisciplinary Engineering & Science (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
- Agency for Science, Technology and Research (ASTAR), Bioinformatics Institute, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| |
Collapse
|
3
|
Park J, Kim J, Hwang S, Oh D, Du YE, Nam SJ, Park HG, Lee MJ, Oh DC. Sadopeptins A and B, Sulfoxide- and Piperidone-Containing Cyclic Heptapeptides with Proteasome Inhibitory Activity from a Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:612-620. [PMID: 36921317 DOI: 10.1021/acs.jnatprod.2c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
New sulfur-bearing natural products, sadopeptins A and B (1 and 2), were discovered from Streptomyces sp. YNK18 based on a targeted search using the characteristic isotopic signature of sulfur in mass spectrometry analysis. Compounds 1 and 2 were determined to be new cyclic heptapeptides, bearing methionine sulfoxide [Met(O)] and 3-amino-6-hydroxy-2-piperidone (Ahp), based on 1D and 2D NMR spectroscopy along with IR, UV, and MS. The configurations of sadopeptins A and B (1 and 2) were established via the analysis of the ROESY NMR correlation, oxidation, Marfey's method, and circular dichroism (CD) spectroscopy. The bioinformatics analysis of the full Streptomyces sp. YNK18 genome identified a nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster (BGC), and a putative biosynthetic pathway is proposed. Sadopeptins A and B displayed proteasome-inhibitory activity without affecting cellular autophagic flux.
Collapse
Affiliation(s)
- Jiyoon Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiseong Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Daehyun Oh
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young Eun Du
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyeung-Geun Park
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Min Jae Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Zhang H, Zhang S, Zhang J, Qi H, Wang H, Zhang L, Huang J, Wang J. Acyltransferase Domain Swapping for the Production of Tenvermectin B Metabolites in Genetically Engineered Strain Streptomyces avermitilis HU02. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11994-12003. [PMID: 36121904 DOI: 10.1021/acs.jafc.2c04482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tenvermectins A and B (TVMs A and B) are hybrid natural compounds of avermectins and milbemycins with enhanced insecticidal activity. Aiming at obtaining a strain for the production of the higher activity metabolite-TVM-B as a major constituent, a recombinant strain Streptomyces avermitilis HU02 was constructed by a domain swapping strategy in which milA1-AT0 gene in S. avermitilis MHJ1011 was replaced by eryA1-AT0 gene from Saccharopolyspora erythraea ATCC 40137. Chemical investigation on the culture of S. avermitilis HU02 led to the isolation of a large amount of TVM-B and trace amounts of five new TVM-B analogues. The structures of new metabolites were elucidated by extensive spectroscopic analysis including 1D and 2D nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry data. The bioassay test indicated that five new TVM-B analogues exhibited potent insecticidal activity against Tetranychus cinnabarinus and Bursaphelenchus xylophilus. This study provided a feasible route to the low-cost production of TVM-B and enriched the structural diversity of TVM-B metabolites.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
- Institute of Natural Active Substances Research and Utilization, School of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou 318020, China
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Ji Zhang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Huan Qi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Han Wang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Jun Huang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
- Zhejiang Makohs Biotech Co., Ltd, Taizhou 318000, P.R. China
| | - Jidong Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|
5
|
Bansal R, Sethy SK, Khan Z, Shaikh N, Banerjee K, Mukherjee PK. Genetic Evidence in Favor of a Polyketide Origin of Acremeremophilanes, the Fungal "Sesquiterpene" Metabolites. Microbiol Spectr 2022; 10:e0179322. [PMID: 35938791 PMCID: PMC9430172 DOI: 10.1128/spectrum.01793-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Eremophilanes are a large group of "sesquiterpenes" produced by plants and fungi, with more than 180 compounds being known in fungi alone. Many of these compounds are phytotoxic, antimicrobial, anticancer and immunomodulators, and hence are of great economic values. Acremeremophilanes A to O have earlier been reported in a marine isolate of Acremonium sp. We report here the presence of Acremeremophilane I, G, K, N, and O, in a plant beneficial fungus Trichoderma virens, in a strain-specific manner. We also describe a novel, P strain-specific polyketide synthase (PKS) gene cluster in T. virens. This gene cluster, designated amm cluster, is absent in the genome of a Q strain of T. virens, and in other Trichoderma spp.; instead, a near identical cluster is present in the genome of the toxic mold Stachybotrys chartarum. Using gene knockout, we provide evidence that acremeremophilanes are biosynthesized via a polyketide route, and not via the mevalonate/terpene synthesis route as believed. We propose here that the 10-carbon skeleton is a product of polyketide synthase, to which a five-carbon isoprene unit is added by a prenyl transferase (PT), a gene for which is present next to the PKS gene in the genome. Based on this evidence, we propose that at least some of the eremophilanes classified in literature as sesquiterpenes (catalyzed by terpene cyclase) are actually meroterpenes (catalyzed by PKSs and PTs), and that the core moiety is not a sesquiterpene, but a hybrid polyketide/isoprene unit. IMPORTANCE The article contradicts the established fact that acremeremophilane metabolites produced by fungi are sesquiterpenes; instead, our findings suggest that at least some of these well-studied metabolites are of polyketide origin. Acremeremophilane metabolites are of medicinal significance, and the present findings have implications for the metabolic engineering of these metabolites and also their overproduction in microbial cell factories.
Collapse
Affiliation(s)
- Ravindra Bansal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Sunil Kumar Sethy
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Zareen Khan
- National Referral Laboratory, ICAR–National Research Centre for Grapes, Pune, Maharashtra, India
| | - Nasiruddin Shaikh
- National Referral Laboratory, ICAR–National Research Centre for Grapes, Pune, Maharashtra, India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR–National Research Centre for Grapes, Pune, Maharashtra, India
| | - Prasun K. Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Nitrogen Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Appl Environ Microbiol 2022; 88:e0243021. [PMID: 35285712 DOI: 10.1128/aem.02430-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 has long been studied for its diverse and robust metabolisms, yet many genes and proteins imparting these growth capacities remain uncharacterized. Using pooled mutant fitness assays, we identified genes and proteins involved in the assimilation of 52 different nitrogen containing compounds. To assay amino acid biosynthesis, 19 amino acid drop-out conditions were also tested. From these 71 conditions, significant fitness phenotypes were elicited in 672 different genes including 100 transcriptional regulators and 112 transport-related proteins. We divide these conditions into 6 classes, and propose assimilatory pathways for the compounds based on this wealth of genetic data. To complement these data, we characterize the substrate range of three promiscuous aminotransferases relevant to metabolic engineering efforts in vitro. Furthermore, we examine the specificity of five transcriptional regulators, explaining some fitness data results and exploring their potential to be developed into useful synthetic biology tools. In addition, we use manifold learning to create an interactive visualization tool for interpreting our BarSeq data, which will improve the accessibility and utility of this work to other researchers. IMPORTANCE Understanding the genetic basis of P. putida's diverse metabolism is imperative for us to reach its full potential as a host for metabolic engineering. Many target molecules of the bioeconomy and their precursors contain nitrogen. This study provides functional evidence linking hundreds of genes to their roles in the metabolism of nitrogenous compounds, and provides an interactive tool for visualizing these data. We further characterize several aminotransferases, lactamases, and regulators, which are of particular interest for metabolic engineering.
Collapse
|
7
|
Drufva EE, Hix EG, Bailey CB. Site directed mutagenesis as a precision tool to enable synthetic biology with engineered modular polyketide synthases. Synth Syst Biotechnol 2020; 5:62-80. [PMID: 32637664 PMCID: PMC7327777 DOI: 10.1016/j.synbio.2020.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Modular polyketide synthases (PKSs) are a multidomain megasynthase class of biosynthetic enzymes that have great promise for the development of new compounds, from new pharmaceuticals to high value commodity and specialty chemicals. Their colinear biosynthetic logic has been viewed as a promising platform for synthetic biology for decades. Due to this colinearity, domain swapping has long been used as a strategy to introduce molecular diversity. However, domain swapping often fails because it perturbs critical protein-protein interactions within the PKS. With our increased level of structural elucidation of PKSs, using judicious targeted mutations of individual residues is a more precise way to introduce molecular diversity with less potential for global disruption of the protein architecture. Here we review examples of targeted point mutagenesis to one or a few residues harbored within the PKS that alter domain specificity or selectivity, affect protein stability and interdomain communication, and promote more complex catalytic reactivity.
Collapse
Key Words
- ACP, acyl carrier protein
- AT, acyltransferase
- DEBS, 6-deoxyerthronolide B synthase
- DH, dehydratase
- EI, enoylisomerase
- ER, enoylreductase
- KR, ketoreductase
- KS, ketosynthase
- LM, loading module
- MT, methyltransferase
- Mod, module
- PKS, polyketide synthase
- PS, pyran synthase
- Polyketide synthase
- Protein engineering
- Rational design
- SNAC, N-acetyl cysteamine
- Saturation mutagenesis
- Site directed mutagenesis
- Synthetic biology
Collapse
Affiliation(s)
- Erin E. Drufva
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Elijah G. Hix
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Constance B. Bailey
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| |
Collapse
|
8
|
Zargar A, Lal R, Valencia L, Wang J, Backman TWH, Cruz-Morales P, Kothari A, Werts M, Wong AR, Bailey CB, Loubat A, Liu Y, Chen Y, Chang S, Benites VT, Hernández AC, Barajas JF, Thompson MG, Barcelos C, Anayah R, Martin HG, Mukhopadhyay A, Petzold CJ, Baidoo EEK, Katz L, Keasling JD. Chemoinformatic-Guided Engineering of Polyketide Synthases. J Am Chem Soc 2020; 142:9896-9901. [DOI: 10.1021/jacs.0c02549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amin Zargar
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- QB3 Institute, University of California−Berkeley, 5885 Hollis Street, Fourth Floor, Emeryville, California 94608, United States
| | - Ravi Lal
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Luis Valencia
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Jessica Wang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Tyler William H. Backman
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Pablo Cruz-Morales
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Ankita Kothari
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Miranda Werts
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Andrew R. Wong
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Constance B. Bailey
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- QB3 Institute, University of California−Berkeley, 5885 Hollis Street, Fourth Floor, Emeryville, California 94608, United States
| | - Arthur Loubat
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Yuzhong Liu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Samantha Chang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Veronica T. Benites
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- Department of Energy, Agile BioFoundry, Emeryville, California 94608, United States
| | - Amanda C. Hernández
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Jesus F. Barajas
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- Department of Energy, Agile BioFoundry, Emeryville, California 94608, United States
| | - Mitchell G. Thompson
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Carolina Barcelos
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Rasha Anayah
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Hector Garcia Martin
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- Department of Energy, Agile BioFoundry, Emeryville, California 94608, United States
- BCAM, Basque Center for Applied Mathematics, 48009 Bilbao, Spain
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- Department of Energy, Agile BioFoundry, Emeryville, California 94608, United States
| | - Edward E. K. Baidoo
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- Department of Energy, Agile BioFoundry, Emeryville, California 94608, United States
| | - Leonard Katz
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- QB3 Institute, University of California−Berkeley, 5885 Hollis Street, Fourth Floor, Emeryville, California 94608, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California 94608, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94710, United States
- QB3 Institute, University of California−Berkeley, 5885 Hollis Street, Fourth Floor, Emeryville, California 94608, United States
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Abstract
Reduced polyketides are a subclass of natural products that have a variety of medical, veterinary, and agricultural applications and are well known for their structural diversity. Although these compounds do not resemble each other, they are all made by a class of enzymes known as modular polyketide synthases (PKSs). The commonality of PKS domains/modules that compose PKSs and the understanding of the relationship between the sequence of the PKS and the structure of the compound it produces render modular PKSs as excellent targets for engineering to produce novel compounds with predicted structures. Here, we describe experimental protocols and considerations for modular PKS engineering and two case studies to produce commodity chemicals by engineered PKSs.
Collapse
|
10
|
Yuzawa S, Mirsiaghi M, Jocic R, Fujii T, Masson F, Benites VT, Baidoo EEK, Sundstrom E, Tanjore D, Pray TR, George A, Davis RW, Gladden JM, Simmons BA, Katz L, Keasling JD. Short-chain ketone production by engineered polyketide synthases in Streptomyces albus. Nat Commun 2018; 9:4569. [PMID: 30385744 PMCID: PMC6212451 DOI: 10.1038/s41467-018-07040-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023] Open
Abstract
Microbial production of fuels and commodity chemicals has been performed primarily using natural or slightly modified enzymes, which inherently limits the types of molecules that can be produced. Type I modular polyketide synthases (PKSs) are multi-domain enzymes that can produce unique and diverse molecular structures by combining particular types of catalytic domains in a specific order. This catalytic mechanism offers a wealth of engineering opportunities. Here we report engineered microbes that produce various short-chain (C5-C7) ketones using hybrid PKSs. Introduction of the genes into the chromosome of Streptomyces albus enables it to produce >1 g · l-1 of C6 and C7 ethyl ketones and several hundred mg · l-1 of C5 and C6 methyl ketones from plant biomass hydrolysates. Engine tests indicate these short-chain ketones can be added to gasoline as oxygenates to increase the octane of gasoline. Together, it demonstrates the efficient and renewable microbial production of biogasolines by hybrid enzymes.
Collapse
Affiliation(s)
- Satoshi Yuzawa
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States. .,Joint BioEnegy Institute, Emeryville, California, 94608, United States. .,Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Mona Mirsiaghi
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Renee Jocic
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Tatsuya Fujii
- Joint BioEnegy Institute, Emeryville, California, 94608, United States.,Research Institute for Sustainable Chemistry, Institute for Synthetic Biology, National Institute of Advanced Industrial Science and Technology, Higashi-hiroshima, Hiroshima, 739-0046, Japan
| | - Fabrice Masson
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Veronica T Benites
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Joint BioEnegy Institute, Emeryville, California, 94608, United States
| | - Edward E K Baidoo
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Joint BioEnegy Institute, Emeryville, California, 94608, United States
| | - Eric Sundstrom
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Deepti Tanjore
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Todd R Pray
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Advanced Biofuels & Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States
| | - Anthe George
- Joint BioEnegy Institute, Emeryville, California, 94608, United States.,Department of Biomass Science and Conversion Technologies, Sandia National Laboratory, Livermore, California, 94551, United States
| | - Ryan W Davis
- Department of Biomass Science and Conversion Technologies, Sandia National Laboratory, Livermore, California, 94551, United States
| | - John M Gladden
- Joint BioEnegy Institute, Emeryville, California, 94608, United States.,Department of Biomass Science and Conversion Technologies, Sandia National Laboratory, Livermore, California, 94551, United States
| | - Blake A Simmons
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States.,Joint BioEnegy Institute, Emeryville, California, 94608, United States
| | - Leonard Katz
- Joint BioEnegy Institute, Emeryville, California, 94608, United States.,QB3 Institute, University of California, Berkeley, California, 94720, United States
| | - Jay D Keasling
- Biogical Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, United States. .,Joint BioEnegy Institute, Emeryville, California, 94608, United States. .,QB3 Institute, University of California, Berkeley, California, 94720, United States. .,Department of Bioengineering, University of California, Berkeley, California, 94720, United States. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, 94720, United States. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kgs, Lyngby, Denmark. .,Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
11
|
Son S, Hong YS, Futamura Y, Jang M, Lee JK, Heo KT, Ko SK, Lee JS, Takahashi S, Osada H, Jang JH, Ahn JS. Catenulisporolides, Glycosylated Triene Macrolides from the Chemically Underexploited Actinomycete Catenulispora Species. Org Lett 2018; 20:7234-7238. [DOI: 10.1021/acs.orglett.8b03160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sangkeun Son
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Research Science, Saitama 351-0198, Japan
| | - Mina Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jae Kyoung Lee
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Kyung Taek Heo
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Sung-Kyun Ko
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jung Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea
| | - Shunji Takahashi
- RIKEN-KRIBB Joint Research Unit, RIKEN Center for Sustainable Research Science, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Research Science, Saitama 351-0198, Japan
| | - Jae-Hyuk Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
12
|
Synthetic biology of polyketide synthases. ACTA ACUST UNITED AC 2018; 45:621-633. [DOI: 10.1007/s10295-018-2021-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/03/2018] [Indexed: 12/31/2022]
Abstract
Abstract
Complex reduced polyketides represent the largest class of natural products that have applications in medicine, agriculture, and animal health. This structurally diverse class of compounds shares a common methodology of biosynthesis employing modular enzyme systems called polyketide synthases (PKSs). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we describe the chassis (hosts) that are used to assemble, express, and engineer the parts and devices to produce polyketides. We describe a recently developed software tool to design PKS system and provide an example of its use. Finally, we provide perspectives of what needs to be accomplished to fully realize the potential that synthetic biology approaches bring to this class of molecules.
Collapse
|
13
|
Krink-Koutsoubelis N, Loechner AC, Lechner A, Link H, Denby CM, Vögeli B, Erb TJ, Yuzawa S, Jakociunas T, Katz L, Jensen MK, Sourjik V, Keasling JD. Engineered Production of Short-Chain Acyl-Coenzyme A Esters in Saccharomyces cerevisiae. ACS Synth Biol 2018; 7:1105-1115. [PMID: 29498824 DOI: 10.1021/acssynbio.7b00466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Short-chain acyl-coenzyme A esters serve as intermediate compounds in fatty acid biosynthesis, and the production of polyketides, biopolymers and other value-added chemicals. S. cerevisiae is a model organism that has been utilized for the biosynthesis of such biologically and economically valuable compounds. However, its limited repertoire of short-chain acyl-CoAs effectively prevents its application as a production host for a plethora of natural products. Therefore, we introduced biosynthetic metabolic pathways to five different acyl-CoA esters into S. cerevisiae. Our engineered strains provide the following acyl-CoAs: propionyl-CoA, methylmalonyl-CoA, n-butyryl-CoA, isovaleryl-CoA and n-hexanoyl-CoA. We established a yeast-specific metabolite extraction protocol to determine the intracellular acyl-CoA concentrations in the engineered strains. Propionyl-CoA was produced at 4-9 μM; methylmalonyl-CoA at 0.5 μM; and isovaleryl-CoA, n-butyryl-CoA, and n-hexanoyl-CoA at 6 μM each. The acyl-CoAs produced in this study are common building blocks of secondary metabolites and will enable the engineered production of a variety of natural products in S. cerevisiae. By providing this toolbox of acyl-CoA producing strains, we have laid the foundation to explore S. cerevisiae as a heterologous production host for novel secondary metabolites.
Collapse
Affiliation(s)
- Nicolas Krink-Koutsoubelis
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Anne C. Loechner
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Anna Lechner
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Charles M. Denby
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological System & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bastian Vögeli
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Tobias J. Erb
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Satoshi Yuzawa
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological System & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tadas Jakociunas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Leonard Katz
- Synthetic Biology Engineering Research Center, Emeryville, California 94608, United States
| | - Michael K. Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Jay D. Keasling
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological System & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Synthetic Biology Engineering Research Center, Emeryville, California 94608, United States
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, California 94720, United States
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
14
|
Skiba MA, Maloney FP, Dan Q, Fraley AE, Aldrich CC, Smith JL, Brown WC. PKS-NRPS Enzymology and Structural Biology: Considerations in Protein Production. Methods Enzymol 2018; 604:45-88. [PMID: 29779664 PMCID: PMC5992914 DOI: 10.1016/bs.mie.2018.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structural diversity and complexity of marine natural products have made them a rich and productive source of new bioactive molecules for drug development. The identification of these new compounds has led to extensive study of the protein constituents of the biosynthetic pathways from the producing microbes. Essential processes in the dissection of biosynthesis have been the elucidation of catalytic functions and the determination of 3D structures for enzymes of the polyketide synthases and nonribosomal peptide synthetases that carry out individual reactions. The size and complexity of these proteins present numerous difficulties in the process of going from gene to structure. Here, we review the problems that may be encountered at the various steps of this process and discuss some of the solutions devised in our and other labs for the cloning, production, purification, and structure solution of complex proteins using Escherichia coli as a heterologous host.
Collapse
Affiliation(s)
| | | | - Qingyun Dan
- University of Michigan, Ann Arbor, MI, United States
| | - Amy E Fraley
- University of Michigan, Ann Arbor, MI, United States
| | | | - Janet L Smith
- University of Michigan, Ann Arbor, MI, United States.
| | - W Clay Brown
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
15
|
Yuzawa S, Bailey CB, Fujii T, Jocic R, Barajas JF, Benites VT, Baidoo EEK, Chen Y, Petzold CJ, Katz L, Keasling JD. Heterologous Gene Expression of N-Terminally Truncated Variants of LipPks1 Suggests a Functionally Critical Structural Motif in the N-terminus of Modular Polyketide Synthase. ACS Chem Biol 2017; 12:2725-2729. [PMID: 29028314 DOI: 10.1021/acschembio.7b00714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Streptomyces genomes have a high G + C content and typically use an ATG or GTG codon to initiate protein synthesis. Although gene-finding tools perform well in low GC genomes, it is known that the accuracy in predicting a translational start site (TSS) is much less for high GC genomes. LipPks1 is a Streptomyces-derived, well-characterized modular polyketide synthase (PKS). Using this enzyme as a model, we experimentally investigated the effects of alternative TSSs using a heterologous host, Streptomyces venezuelae. One of the TSSs employed boosted the protein level by 59-fold and the product yield by 23-fold compared to the originally annotated start codon. Interestingly, a structural model of the PKS indicated the presence of a structural motif in the N-terminus, which may explain the observed different protein levels together with a proline and arginine-rich sequence that may inhibit translational initiation. This structure was also found in six other modular PKSs that utilize noncarboxylated starter substrates, which may guide the selection of optimal TSSs in conjunction with start-codon prediction software.
Collapse
Affiliation(s)
- Satoshi Yuzawa
- Biogical
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnegy Institute, Emeryville, California 94608, United States
- Agile BioFoundary, Emeryville, California 94608, United States
| | - Constance B. Bailey
- Biogical
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tatsuya Fujii
- Research
Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, Higashi-hiroshima, Hiroshima, 739-0046, Japan
| | - Renee Jocic
- Biogical
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Agile BioFoundary, Emeryville, California 94608, United States
| | | | - Veronica T. Benites
- Biogical
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnegy Institute, Emeryville, California 94608, United States
- Agile BioFoundary, Emeryville, California 94608, United States
| | - Edward E. K. Baidoo
- Biogical
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnegy Institute, Emeryville, California 94608, United States
- Agile BioFoundary, Emeryville, California 94608, United States
| | - Yan Chen
- Biogical
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnegy Institute, Emeryville, California 94608, United States
| | - Christopher J. Petzold
- Biogical
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnegy Institute, Emeryville, California 94608, United States
- Agile BioFoundary, Emeryville, California 94608, United States
| | - Leonard Katz
- QB3
Institute, University of California, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Biogical
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint BioEnegy Institute, Emeryville, California 94608, United States
- QB3
Institute, University of California, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Blaisse MR, Dong H, Fu B, Chang MCY. Discovery and Engineering of Pathways for Production of α-Branched Organic Acids. J Am Chem Soc 2017; 139:14526-14532. [PMID: 28990776 DOI: 10.1021/jacs.7b07400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell-based synthesis offers many opportunities for preparing small molecules from simple renewable carbon sources by telescoping multiple reactions into a single fermentation step. One challenge in this area is the development of enzymatic carbon-carbon bond forming cycles that enable a modular disconnection of a target structure into cellular building blocks. In this regard, synthetic pathways based on thiolase enzymes to catalyze the initial carbon-carbon bond forming step between acyl coenzyme A (CoA) substrates offer a versatile route for biological synthesis, but the substrate diversity of such pathways is currently limited. In this report, we describe the identification and biochemical characterization of a thiolase-ketoreductase pair involved in production of branched acids in the roundworm, Ascaris suum, that demonstrates selectivity for forming products with an α-methyl branch using a propionyl-CoA extender unit. Engineering synthetic pathways for production of α-methyl acids in Escherichia coli using these enzymes allows the construction of microbial strains that produce either chiral 2-methyl-3-hydroxy acids (1.1 ± 0.2 g L-1) or branched enoic acids (1.12 ± 0.06 g L-1) in the presence of a dehydratase at 44% and 87% yield of fed propionate, respectively. In vitro characterization along with in vivo analysis indicates that the ketoreductase is the key driver for selectivity, forming predominantly α-branched products even when paired with a thiolase that highly prefers unbranched linear products. Our results expand the utility of thiolase-based pathways and provide biosynthetic access to α-branched compounds as precursors for polymers and other chemicals.
Collapse
Affiliation(s)
- Michael R Blaisse
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Hongjun Dong
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Beverly Fu
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Michelle C Y Chang
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States.,Department of Molecular and Cell Biology, University of California, Berkeley , Berkeley, California 94720-1460, United States
| |
Collapse
|
17
|
Cai W, Zhang W. Engineering modular polyketide synthases for production of biofuels and industrial chemicals. Curr Opin Biotechnol 2017; 50:32-38. [PMID: 28946011 DOI: 10.1016/j.copbio.2017.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Polyketide synthases (PKSs) are one of the most profound biosynthetic factories for producing polyketides with diverse structures and biological activities. These enzymes have been historically studied and engineered to make un-natural polyketides for drug discovery, and have also recently been explored for synthesizing biofuels and industrial chemicals due to their versatility and customizability. Here, we review recent advances in the mechanistic understanding and engineering of modular PKSs for producing polyketide-derived chemicals, and provide perspectives on this relatively new application of PKSs.
Collapse
Affiliation(s)
- Wenlong Cai
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA 94720, United States; Chan Zuckerberg Biohub, San Francisco, CA 94158, United States.
| |
Collapse
|
18
|
Barajas JF, Blake-Hedges JM, Bailey CB, Curran S, Keasling JD. Engineered polyketides: Synergy between protein and host level engineering. Synth Syst Biotechnol 2017; 2:147-166. [PMID: 29318196 PMCID: PMC5655351 DOI: 10.1016/j.synbio.2017.08.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/26/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic engineering efforts toward rewiring metabolism of cells to produce new compounds often require the utilization of non-native enzymatic machinery that is capable of producing a broad range of chemical functionalities. Polyketides encompass one of the largest classes of chemically diverse natural products. With thousands of known polyketides, modular polyketide synthases (PKSs) share a particularly attractive biosynthetic logic for generating chemical diversity. The engineering of modular PKSs could open access to the deliberate production of both existing and novel compounds. In this review, we discuss PKS engineering efforts applied at both the protein and cellular level for the generation of a diverse range of chemical structures, and we examine future applications of PKSs in the production of medicines, fuels and other industrially relevant chemicals.
Collapse
Key Words
- ACP, Acyl carrier protein
- AT, Acyltransferase
- CoL, CoA-Ligase
- Commodity chemical
- DE, Dimerization element
- DEBS, 6-deoxyerythronolide B synthase
- DH, Dehydratase
- ER, Enoylreductase
- FAS, Fatty acid synthases
- KR, Ketoreductase
- KS, Ketosynthase
- LM, Loading module
- LTTR, LysR-type transcriptional regulator
- Metabolic engineering
- Natural products
- PCC, Propionyl-CoA carboxylase
- PDB, Precursor directed biosynthesis
- PK, Polyketide
- PKS, Polyketide synthase
- Polyketide
- Polyketide synthase
- R, Reductase domain
- SARP, Streptomyces antibiotic regulatory protein
- SNAC, N-acetylcysteamine
- Synthetic biology
- TE, Thioesterase
- TKL, Triketide lactone
Collapse
Affiliation(s)
| | | | - Constance B. Bailey
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Samuel Curran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jay. D. Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- QB3 Institute, University of California, Berkeley, Emeryville, CA 94608, USA
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK2970 Horsholm, Denmark
| |
Collapse
|
19
|
Yuzawa S, Deng K, Wang G, Baidoo EEK, Northen TR, Adams PD, Katz L, Keasling JD. Comprehensive in Vitro Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production. ACS Synth Biol 2017; 6:139-147. [PMID: 27548700 DOI: 10.1021/acssynbio.6b00176] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type I modular polyketide synthases (PKSs) are polymerases that utilize acyl-CoAs as substrates. Each polyketide elongation reaction is catalyzed by a set of protein domains called a module. Each module usually contains an acyltransferase (AT) domain, which determines the specific acyl-CoA incorporated into each condensation reaction. Although a successful exchange of individual AT domains can lead to the biosynthesis of a large variety of novel compounds, hybrid PKS modules often show significantly decreased activities. Using monomodular PKSs as models, we have systematically analyzed the segments of AT domains and associated linkers in AT exchanges in vitro and have identified the boundaries within a module that can be used to exchange AT domains while maintaining protein stability and enzyme activity. Importantly, the optimized domain boundary is highly conserved, which facilitates AT domain replacements in most type I PKS modules. To further demonstrate the utility of the optimized AT domain boundary, we have constructed hybrid PKSs to produce industrially important short-chain ketones. Our in vitro and in vivo analysis demonstrated production of predicted ketones without significant loss of activities of the hybrid enzymes. These results greatly enhance the mechanistic understanding of PKS modules and prove the benefit of using engineered PKSs as a synthetic biology tool for chemical production.
Collapse
Affiliation(s)
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Sandia National Laboratories, Livermore, California 94551, United States
| | - George Wang
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | | | - Trent R. Northen
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Paul D. Adams
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Leonard Katz
- Synthetic Biology Research Center, Emeryville, California 94608, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Synthetic Biology Research Center, Emeryville, California 94608, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé, DK2970-Hørsholm, Denmark
| |
Collapse
|
20
|
Yuzawa S, Keasling JD, Katz L. Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges. J Antibiot (Tokyo) 2016; 70:378-385. [PMID: 27847387 DOI: 10.1038/ja.2016.136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 11/09/2022]
Abstract
Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. We have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.
Collapse
Affiliation(s)
- Satoshi Yuzawa
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,QB3 Institute, University of California, Berkeley, CA, USA.,Joint BioEnergy Institute, Emeryville, CA, USA.,Department of Bioengineering, University of California, Berkeley, CA, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Leonard Katz
- QB3 Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
21
|
Yuzawa S, Keasling JD, Katz L. Insights into polyketide biosynthesis gained from repurposing antibiotic-producing polyketide synthases to produce fuels and chemicals. J Antibiot (Tokyo) 2016; 69:494-9. [PMID: 27245558 DOI: 10.1038/ja.2016.64] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/17/2022]
Abstract
Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from enzyme complexes named type I polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides with enhanced or new properties. We have repurposed PKSs, employing up to three modules to produce a number of short-chain molecules that could have applications as fuels or industrial chemicals. Examining the enzymatic functions in vitro of these repurposed PKSs, we have uncovered a number of expanded substrate specificities and requirements of various PKS domains not previously reported and determined an unexpected difference in the order of enzymatic reactions within a module. In addition, we were able to efficiently change the stereochemistry of side chains in selected PKS products.
Collapse
Affiliation(s)
- Satoshi Yuzawa
- QB3 Institute, University of California, Berkeley, CA 94720, USA
| | - Jay D Keasling
- QB3 Institute, University of California, Berkeley, CA 94720, USA.,Joint BioEnergy Institute, Emeryville, CA 94608, USA.,Department of Bioengineering, University of California, Berkeley, CA 94720, USA.,Synthetic Biology Research Center, Emeryville, CA 94608, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Leonard Katz
- QB3 Institute, University of California, Berkeley, CA 94720, USA.,Synthetic Biology Research Center, Emeryville, CA 94608, USA
| |
Collapse
|
22
|
Eng CH, Yuzawa S, Wang G, Baidoo EEK, Katz L, Keasling JD. Alteration of Polyketide Stereochemistry from anti to syn by a Ketoreductase Domain Exchange in a Type I Modular Polyketide Synthase Subunit. Biochemistry 2016; 55:1677-80. [DOI: 10.1021/acs.biochem.6b00129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clara H. Eng
- Synthetic Biology Engineering Research Center, 5885 Hollis Street, Emeryville, California 94608, United States
| | | | - George Wang
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| | - Edward E. K. Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| | - Leonard Katz
- Synthetic Biology Engineering Research Center, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Jay D. Keasling
- Synthetic Biology Engineering Research Center, 5885 Hollis Street, Emeryville, California 94608, United States
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| |
Collapse
|
23
|
Weissman KJ. Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat Prod Rep 2016; 33:203-30. [DOI: 10.1039/c5np00109a] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This reviews covers on-going efforts at engineering the gigantic modular polyketide synthases (PKSs), highlighting both notable successes and failures.
Collapse
Affiliation(s)
- Kira J. Weissman
- UMR 7365
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA)
- CNRS-Université de Lorraine
- Biopôle de l'Université de Lorraine
- 54505 Vandœuvre-lès-Nancy Cedex
| |
Collapse
|
24
|
Chiu HT, Weng CP, Lin YC, Chen KH. Target-specific identification and characterization of the putative gene cluster for brasilinolide biosynthesis revealing the mechanistic insights and combinatorial synthetic utility of 2-deoxy-l-fucose biosynthetic enzymes. Org Biomol Chem 2016; 14:1988-2006. [DOI: 10.1039/c5ob02292d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
From Nocardia was cloned and functionally characterized a giant gene cluster for biosyntheses of brasilinolides as potent immunosuppressive and anticancer agents.
Collapse
Affiliation(s)
- Hsien-Tai Chiu
- Department of Chemistry
- National Cheng Kung University
- Tainan 701
- Taiwan
| | - Chien-Pao Weng
- Department of Chemistry
- National Cheng Kung University
- Tainan 701
- Taiwan
| | - Yu-Chin Lin
- Department of Chemistry
- National Cheng Kung University
- Tainan 701
- Taiwan
- Department of Biological Science and Technology
| | - Kuan-Hung Chen
- Department of Biological Science and Technology
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| |
Collapse
|
25
|
Wang F, Wang Y, Ji J, Zhou Z, Yu J, Zhu H, Su Z, Zhang L, Zheng J. Structural and functional analysis of the loading acyltransferase from avermectin modular polyketide synthase. ACS Chem Biol 2015; 10:1017-25. [PMID: 25581064 DOI: 10.1021/cb500873k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The loading acyltransferase (AT) domains of modular polyketide synthases (PKSs) control the choice of starter units incorporated into polyketides and are therefore attractive targets for the engineering of modular PKSs. Here, we report the structural and biochemical characterizations of the loading AT from avermectin modular PKS, which accepts more than 40 carboxylic acids as alternative starter units for the biosynthesis of a series of congeners. This first structural analysis of loading ATs from modular PKSs revealed the molecular basis for the relaxed substrate specificity. Residues important for substrate binding and discrimination were predicted by modeling a substrate into the active site. A mutant with altered specificity toward a panel of synthetic substrate mimics was generated by site-directed mutagenesis of the active site residues. The hydrolysis of the N-acetylcysteamine thioesters of racemic 2-methylbutyric acid confirmed the stereospecificity of the avermectin loading AT for an S configuration at the C-2 position of the substrate. Together, these results set the stage for region-specific modification of polyketides through active site engineering of loading AT domains of modular PKSs.
Collapse
Affiliation(s)
- Fen Wang
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yanjie Wang
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Junjie Ji
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Zhan Zhou
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jingkai Yu
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Hua Zhu
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Zhiguo Su
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Lixin Zhang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jianting Zheng
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| |
Collapse
|
26
|
Liu Q, Wu K, Cheng Y, Lu L, Xiao E, Zhang Y, Deng Z, Liu T. Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metab Eng 2014; 28:82-90. [PMID: 25536488 DOI: 10.1016/j.ymben.2014.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/07/2014] [Accepted: 12/12/2014] [Indexed: 11/28/2022]
Abstract
Alkanes and alkenes are ideal biofuels, due to their high energy content and ability to be safely transported. To date, fatty acid-derived pathways for alkane and alkene bioproduction have been thoroughly explored. In this study, we engineered the pathway of the iterative Type I polyketide synthase (PKS) SgcE with the cognate thioesterase (TE) SgcE10 in Escherichia coli, with the goal of overproducing pentadecaheptaene (PDH) followed by its hydrogenation to pentadecane (PD). Based on initial in vitro titration assays, we learned that PDH production is strongly dependent on the SgcE10:SgcE ratio. Thus, we engineered a high-yield E. coli strain by fine-tuning SgcE10 expression via synthetic promoters. We analyzed engineered E. coli strains using a modified multiple reactions monitoring mass spectrometry (MRM-MS)-based targeted proteomic approach, using a chimeric SgcE10 and SgcE fusion construct to gain insight into expression levels of the two proteins. Lastly, through fed-batch fermentation followed by flow chemical hydrogenation, we obtained a PD yield of nearly 140mg/L in single-alkane form. Thus, we not only employed a metabolic engineering approach to the iterative polyketide pathway, we highlighted the potential of PKS shunt products to play a role in the production of single-form and high-value chemicals.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Kaiyue Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; J1 Biotech, Co. Ltd., Wuhan 430075, China
| | - Yongbo Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Lei Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Erting Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Yuchen Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China.
| |
Collapse
|
27
|
Poust S, Hagen A, Katz L, Keasling JD. Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform. Curr Opin Biotechnol 2014; 30:32-9. [DOI: 10.1016/j.copbio.2014.04.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022]
|
28
|
Abstract
Natural products are important sources of pharmaceuticals, in part owing to their diverse biological activities. Enzymes from natural product biosynthetic pathways have become attractive candidates as biocatalysts for modifying the structures and bioactivities of these complex compounds. Numerous enzymes have been harvested to generate innovative scaffolds, large-scale synthesis of chiral building blocks, and semisynthesis of medicinally relevant natural product derivatives. This review discusses recent examples from three areas: (a) polyketide catalytic domain engineering geared toward synthesis of new polyketides, (b) engineering of tailoring enzymes (other than oxidative enzymes) as biocatalysts, and (c) in vitro total synthesis of natural products using purified enzyme components. With the availability of exponentially increasing genomic information and new genome mining tools, many new and powerful biocatalysts tailored for pharmaceutical synthesis will likely emerge from secondary metabolism.
Collapse
|
29
|
Hagen A, Poust S, de Rond T, Yuzawa S, Katz L, Adams PD, Petzold CJ, Keasling JD. In Vitro Analysis of Carboxyacyl Substrate Tolerance in the Loading and First Extension Modules of Borrelidin Polyketide Synthase. Biochemistry 2014; 53:5975-7. [DOI: 10.1021/bi500951c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew Hagen
- Synthetic Biology Engineering Research Center, 5885 Hollis Street, Emeryville, California 94608, United States
| | | | | | | | - Leonard Katz
- Synthetic Biology Engineering Research Center, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Paul D. Adams
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| | - Christopher J. Petzold
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Synthetic Biology Engineering Research Center, 5885 Hollis Street, Emeryville, California 94608, United States
- Physical
Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94270, United States
| |
Collapse
|
30
|
Enzyme analysis of the polyketide synthase leads to the discovery of a novel analog of the antibiotic α-lipomycin. J Antibiot (Tokyo) 2013; 67:199-201. [PMID: 24169801 DOI: 10.1038/ja.2013.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/26/2013] [Accepted: 10/03/2013] [Indexed: 11/08/2022]
|
31
|
Engineered short branched-chain acyl-CoA synthesis in E. coli and acylation of chloramphenicol to branched-chain derivatives. Appl Microbiol Biotechnol 2013; 97:10339-48. [PMID: 24100682 DOI: 10.1007/s00253-013-5262-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/11/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Short branched-chain acyl-CoAs are important building blocks for a wide variety of pharmaceutically valuable natural products. Escherichia coli has been used as a heterologous host for the production of a variety of natural compounds for many years. In the current study, we engineered synthesis of isobutyryl-CoA and isovaleryl-CoA from glucose in E. coli by integration of the branched-chain α-keto acid dehydrogenase complex from Streptomyces avermitilis. In the presence of the chloramphenicol acetyltransferase (cat) gene, chloramphenicol was converted to both chloramphenicol-3-isobutyrate and chloramphenicol-3-isovalerate by the recombinant E. coli strains, which suggested successful synthesis of isobutyryl-CoA and isovaleryl-CoA. Furthermore, we improved the α-keto acid precursor supply by overexpressing the alsS gene from Bacillus subtilis and the ilvC and ilvD genes from E. coli and thus enhanced the synthesis of short branched-chain acyl-CoAs. By feeding 25 mg/L chloramphenicol, 2.96 ± 0.06 mg/L chloramphenicol-3-isobutyrate and 3.94 ± 0.06 mg/L chloramphenicol-3-isovalerate were generated by the engineered E. coli strain, which indicated efficient biosynthesis of short branched-chain acyl-CoAs. HPLC analysis showed that the most efficient E. coli strain produced 80.77 ± 3.83 nmol/g wet weight isovaleryl-CoA. To our knowledge, this is the first report of production of short branched-chain acyl-CoAs in E. coli and opens a way to biosynthesize various valuable natural compounds based on these special building blocks from renewable carbon sources.
Collapse
|