1
|
Shchulkin AV, Abalenikhina YV, Sudakova EA, Mylnikov PY, Yakusheva EN. Mechanisms of Regulation of the P-Glycoprotein Transporter Protein Functioning under the Action of Nitric Oxide. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:366-379. [PMID: 35527375 DOI: 10.1134/s000629792204006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Mechanisms of regulation of the P-glycoprotein (Pgp) transporter under the action of nitric oxide (NO) were studied in Caco-2 cells. S-Nitrosoglutathione (GSNO) was used as a NO donor, which was added to the cells at concentrations 1, 10, 50, 100, and 500 µM and incubated for 3, 24, or 72 h. The amount of Pgp was analyzed using Western blotting, activity was determined by monitoring transport of its substrate, fexofenadine. The study showed that a short-term exposure to GSNO for 3 h at 500 µM concentration caused increase in the concentration of peroxynitrite in Caco-2 cells, which reduced the activity, but not the amount of Pgp. Increase in the duration of exposure to 24 h increased the amount and activity of Pgp at GSNO concentrations of 10 and 50 µM, increased the amount without increasing activity at 100 µM concentration, and decreased the amount of the transporter protein at 500 µM. Duration of exposure to GSNO of 72 h at concentration of 10 µM resulted in the increase of the amount and activity of Pgp, while at concentration of 100 and 500 µM it decreased the amount of the transport protein. At the same time, it was shown using specific inhibitors that the increase in the amount of Pgp under the influence of low concentrations of GSNO was realized through the NO-cGMP signaling pathway, and the effect of the higher concentration of GSNO and the respective development of nitrosative stress was realized through Nrf2 and the constitutive androstane receptor.
Collapse
|
2
|
Liang B, Lusvarghi S, Ambudkar SV, Huang HC. Mechanistic Insights into Photodynamic Regulation of Adenosine 5'-Triphosphate-Binding Cassette Drug Transporters. ACS Pharmacol Transl Sci 2021; 4:1578-1587. [PMID: 36118950 PMCID: PMC9476936 DOI: 10.1021/acsptsci.1c00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Efforts to overcome cancer multidrug resistance through inhibition of the adenosine triphosphate-binding cassette (ABC) drug transporters ABCB1 and ABCG2 have largely failed in the clinic. The challenges faced during the development of non-toxic modulators suggest a need for a conceptual shift to new strategies for the inhibition of ABC drug transporters. Here, we reveal the fundamental mechanisms by which photodynamic therapy (PDT) can be exploited to manipulate the function and integrity of ABC drug transporters. PDT is a clinically relevant, photochemistry-based tool that involves the light activation of photosensitizers to generate reactive oxygen species. ATPase activity and in silico molecular docking analyses show that the photosensitizer benzoporphyrin derivative (BPD) binds to ABCB1 and ABCG2 with micromolar half-maximal inhibitory concentrations in the absence of light. Light activation of BPD generates singlet oxygen to further reduce the ATPase activity of ABCB1 and ABCG2 by up to 12-fold in an optical dose-dependent manner. Gel electrophoresis and Western blotting revealed that light-activated BPD induces the aggregation of these transporters by covalent cross-linking. We provide a proof of principle that PDT affects the function of ABCB1 and ABCG2 by modulating the ATPase activity and protein integrity of these transporters. Insights gained from this study concerning the photodynamic manipulation of ABC drug transporters could aid in the development and application of new optical tools to overcome the multidrug resistance that often develops after cancer chemotherapy.
Collapse
Affiliation(s)
- Barry
J. Liang
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sabrina Lusvarghi
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Suresh V. Ambudkar
- Laboratory
of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Huang-Chiao Huang
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
- Marlene
and Stewart Greenebaum Cancer Center, University
of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
3
|
Xing J, Huang S, Heng Y, Mei H, Pan X. Computational Insights into Allosteric Conformational Modulation of P-Glycoprotein by Substrate and Inhibitor Binding. Molecules 2020; 25:molecules25246006. [PMID: 33353070 PMCID: PMC7766389 DOI: 10.3390/molecules25246006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter P-glycoprotein (P-gp) is a physiologically essential membrane protein that protects many tissues against xenobiotic molecules, but limits the access of chemotherapeutics into tumor cells, thus contributing to multidrug resistance. The atomic-level mechanism of how substrates and inhibitors differentially affect the ATP hydrolysis by P-gp remains to be elucidated. In this work, atomistic molecular dynamics simulations in an explicit membrane/water environment were performed to explore the effects of substrate and inhibitor binding on the conformational dynamics of P-gp. Distinct differences in conformational changes that mainly occurred in the nucleotide-binding domains (NBDs) were observed from the substrate- and inhibitor-bound simulations. The binding of rhodamine-123 can increase the probability of the formation of an intermediate conformation, in which the NBDs were closer and better aligned, suggesting that substrate binding may prime the transporter for ATP hydrolysis. By contrast, the inhibitor QZ-Leu stabilized NBDs in a much more separated and misaligned conformation, which may result in the deficiency of ATP hydrolysis. The significant differences in conformational modulation of P-gp by substrate and inhibitor binding provided a molecular explanation of how these small molecules exert opposite effects on the ATPase activity. A further structural analysis suggested that the allosteric communication between transmembrane domains (TMDs) and NBDs was primarily mediated by two intracellular coupling helices. Our computational simulations provide not only valuable insights into the transport mechanism of P-gp substrates, but also for the molecular design of P-gp inhibitors.
Collapse
Affiliation(s)
- Juan Xing
- College of Basic Medical Science and College of Pharmacy, Southwest Medical University, Luzhou 646000, China;
| | - Shuheng Huang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China; (S.H.); (Y.H.); (H.M.)
| | - Yu Heng
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China; (S.H.); (Y.H.); (H.M.)
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, Chongqing 400045, China; (S.H.); (Y.H.); (H.M.)
| | - Xianchao Pan
- College of Basic Medical Science and College of Pharmacy, Southwest Medical University, Luzhou 646000, China;
- Correspondence: ; Tel.: +86-830-3162291
| |
Collapse
|
4
|
Ferreira RJ, Bonito CA, Ferreira MJU, dos Santos DJ. About P-glycoprotein: a new drugable domain is emerging from structural data. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Cátia A. Bonito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| | - Maria José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Daniel J.V.A. dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| |
Collapse
|
5
|
Frank GA, Shukla S, Rao P, Borgnia MJ, Bartesaghi A, Merk A, Mobin A, Esser L, Earl LA, Gottesman MM, Xia D, Ambudkar SV, Subramaniam S. Cryo-EM Analysis of the Conformational Landscape of Human P-glycoprotein (ABCB1) During its Catalytic Cycle. Mol Pharmacol 2016; 90:35-41. [PMID: 27190212 PMCID: PMC4931865 DOI: 10.1124/mol.116.104190] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/05/2016] [Indexed: 11/22/2022] Open
Abstract
The multidrug transporter P-glycoprotein (P-gp, ABCB1) is an ATP-dependent pump that mediates the efflux of structurally diverse drugs and xenobiotics across cell membranes, affecting drug pharmacokinetics and contributing to the development of multidrug resistance. Structural information about the conformational changes in human P-gp during the ATP hydrolysis cycle has not been directly demonstrated, although mechanistic information has been inferred from biochemical and biophysical studies conducted with P-gp and its orthologs, or from structures of other ATP-binding cassette transporters. Using single-particle cryo-electron microscopy, we report the surprising discovery that, in the absence of the transport substrate and nucleotides, human P-gp can exist in both open [nucleotide binding domains (NBDs) apart; inward-facing] and closed (NBDs close; outward-facing) conformations. We also probe conformational states of human P-gp during the catalytic cycle, and demonstrate that, following ATP hydrolysis, P-gp transitions through a complete closed conformation to a complete open conformation in the presence of ADP.
Collapse
Affiliation(s)
- Gabriel A Frank
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Prashant Rao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mario J Borgnia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alan Merk
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Aerfa Mobin
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lothar Esser
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
Jones PM, George AM. The Nucleotide-Free State of the Multidrug Resistance ABC Transporter LmrA: Sulfhydryl Cross-Linking Supports a Constant Contact, Head-to-Tail Configuration of the Nucleotide-Binding Domains. PLoS One 2015; 10:e0131505. [PMID: 26120849 PMCID: PMC4485892 DOI: 10.1371/journal.pone.0131505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs), which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR) transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration ‘sandwich’ dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD ‘Switch’ mechanism in which the NBD monomers separate in between ATP hydrolysis cycles.
Collapse
Affiliation(s)
- Peter M Jones
- School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Anthony M George
- School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
7
|
Chufan EE, Sim HM, Ambudkar SV. Molecular basis of the polyspecificity of P-glycoprotein (ABCB1): recent biochemical and structural studies. Adv Cancer Res 2015; 125:71-96. [PMID: 25640267 DOI: 10.1016/bs.acr.2014.10.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ABCB1 (P-glycoprotein/P-gp) is an ATP-binding cassette transporter well known for its association with multidrug resistance in cancer cells. Powered by the hydrolysis of ATP, it effluxes structurally diverse compounds. In this chapter, we discuss current views on the molecular basis of the substrate polyspecificity of P-gp. One of the features that accounts for this property is the structural flexibility observed in P-gp. Several X-ray crystal structures of mouse P-gp have been published recently in the absence of nucleotide, with and without bound inhibitors. All the structures are in an inward-facing conformation exhibiting different degrees of domain separation, thus revealing a highly flexible protein. Biochemical and biophysical studies also demonstrate this flexibility in mouse as well as human P-gp. Site-directed mutagenesis has revealed the existence of multiple transport-active binding sites in P-gp for a single substrate. Thus, drugs can bind at either primary or secondary sites. Biochemical, molecular modeling, and structure-activity relationship studies suggest a large, common drug-binding pocket with overlapping sites for different substrates. We propose that in addition to the structural flexibility, the molecular or chemical flexibility also contributes to the binding of substrates to multiple sites forming the basis of polyspecificity.
Collapse
Affiliation(s)
- Eduardo E Chufan
- Center for Cancer Research, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hong-May Sim
- Center for Cancer Research, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Suresh V Ambudkar
- Center for Cancer Research, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|