1
|
Li D, Minkara MS. Comparative Assessment of Water Models in Protein-Glycan Interaction: Insights from Alchemical Free Energy Calculations and Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:9459-9473. [PMID: 39378441 DOI: 10.1021/acs.jcim.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Accurate computational simulations of protein-glycan dynamics are crucial for a comprehensive understanding of critical biological mechanisms, including host-pathogen interactions, immune system defenses, and intercellular communication. The accuracy of these simulations, including molecular dynamics (MD) simulation and alchemical free energy calculations, critically relies on the appropriate parameters, including the water model, because of the extensive hydrogen bonding with glycan hydroxyl groups. However, a systematic evaluation of water models' accuracy in simulating protein-glycan interaction at the molecular level is still lacking. In this study, we used full atomistic MD simulations and alchemical absolute binding free energy (ABFE) calculations to investigate the performance of five distinct water models in six protein-glycan complex systems. We evaluated water models' impact on structural dynamics and binding affinity through over 5.8 μs of simulation time per system. Our results reveal that most protein-glycan complexes are stable in the overall structural dynamics regardless of the water model used, while some show obvious fluctuations with specific water models. More importantly, we discover that the stability of the binding motif's conformation is dependent on the water model chosen when its residues form weak hydrogen bonds with the glycan. The water model also influences the conformational stability of the glycan in its bound state according to density functional theory (DFT) calculations. Using alchemical ABFE calculations, we find that the OPC water model exhibits exceptional consistency with experimental binding affinity data, whereas commonly used models such as TIP3P are less accurate. The findings demonstrate how different water models affect protein-glycan interactions and the accuracy of binding affinity calculations, which is crucial in developing therapeutic strategies targeting these interactions.
Collapse
Affiliation(s)
- Deng Li
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| | - Mona S Minkara
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| |
Collapse
|
2
|
Elucidating the enhanced binding affinity of a double mutant SP-D with trimannose on the influenza A virus using molecular dynamics. Comput Struct Biotechnol J 2022; 20:4984-5000. [PMID: 36097510 PMCID: PMC9452405 DOI: 10.1016/j.csbj.2022.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
The Asp325Ala mutation in SP-D promotes a trimannose conformational change to a more stable state. The Arg343Val mutation in SP-D reduces its interaction with Glu333 to increase the binding affinity with trimannose. The Arg343Val mutation contributes more to the increase of SP-D’s binding affinity with trimannose than Asp325Ala.
Surfactant protein D (SP-D) is an essential component of the human pulmonary surfactant system, which is crucial in the innate immune response against glycan-containing pathogens, including Influenza A viruses (IAV) and SARS-CoV-2. Previous studies have shown that wild-type (WT) SP-D can bind IAV but exhibits poor antiviral activities. However, a double mutant (DM) SP-D consisting of two point mutations (Asp325Ala and Arg343Val) inhibits IAV more potently. Presently, the structural mechanisms behind the point mutations’ effects on SP-D’s binding affinity with viral surface glycans are not fully understood. Here we use microsecond-scale, full-atomistic molecular dynamics (MD) simulations to understand the molecular mechanism of mutation-induced SP-D’s higher antiviral activity. We find that the Asp325Ala mutation promotes a trimannose conformational change to a more stable state. Arg343Val increases the binding with trimannose by increasing the hydrogen bonding interaction with Glu333. Free energy perturbation (FEP) binding free energy calculations indicate that the Arg343Val mutation contributes more to the increase of SP-D’s binding affinity with trimannose than Asp325Ala. This study provides a molecular-level exploration of how the two mutations increase SP-D binding affinity with trimannose, which is vital for further developing preventative strategies for related diseases.
Collapse
Key Words
- CRD, Carbohydrate Recognition Domain
- DM, Double mutant
- FEP, Free Energy Perturbation
- Free Energy Perturbation
- HA, Hemagglutinin
- IAV, Influenza A Viruses
- MD, Molecular Dynamics
- Molecular Dynamics Simulation
- PAP, Pulmonary Alveolar Proteinosis
- PME, Particle Mesh Ewald
- PS, Pulmonary Surfactant
- Protein-Glycan Complexes
- RMSD, Root Mean Square Deviation
- RMSF, Root Mean Square Fluctuation
- SP-A, Surfactant Protein A
- SP-B, Surfactant Protein B
- SP-C, Surfactant Protein C
- SP-D, Surfactant Protein D
- Surfactant Protein D
- WT, Wild-type
- λ-REMD, λ-Replica-Exchange Molecular Dynamics
Collapse
|
3
|
White MR, Nikolaidis NM, McCormack F, Crouch EC, Hartshorn KL. Viral Evasion of Innate Immune Defense: The Case of Resistance of Pandemic H1N1 Influenza A Virus to Human Mannose-Binding Proteins. Front Microbiol 2021; 12:774711. [PMID: 34956139 PMCID: PMC8692257 DOI: 10.3389/fmicb.2021.774711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Mannose-binding lectins effectively inhibit most seasonal strains of influenza A virus and contribute to the innate host defense vs. these viruses. In contrast, pandemic IAV strains are largely resistant to these lectins, likely contributing to increased spread and worse outcomes. In this paper, we evaluated the inhibition of IAV by mannose-binding lectins of human, bacterial, and fungal origin to understand and possibly increase activity vs. the pandemic IAV. A modified version of the human surfactant protein D (SP-D) neck and carbohydrate recognition domain (NCRD) with combinatorial substitutions at the 325 and 343 positions, previously shown to inhibit pandemic H3N2 IAV in vitro and in vivo, and to inhibit pandemic H1N1 in vitro, failed to protect mice from pandemic H1N1 in vivo in the current study. We attempted a variety of maneuvers to improve the activity of the mutant NCRDs vs. the 2009 pandemic H1N1, including the formation of full-length SP-D molecules containing the mutant NCRD, cross-linking of NCRDs through the use of antibodies, combining SP-D or NCRDs with alpha-2-macroglobulin, and introducing an additional mutation to the double mutant NCRD. None of these substantially increased the antiviral activity for the pandemic H1N1. We also tested the activity of bacterial and algal mannose-binding lectins, cyanovirin, and griffithsin, against IAV. These had strong activity against seasonal IAV, which was largely retained against pandemic H1N1. We propose mechanisms to account for differences in activity of SP-D constructs against pandemic H3N2 and H1N1, and for differences in activity of cyanovirin vs. SP-D constructs.
Collapse
Affiliation(s)
- Mitchell R. White
- Department of Medicine, Section of Hematology and Oncology, School of Medicine, Boston University, Boston, MA, United States
| | - Nikolaos M. Nikolaidis
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Francis McCormack
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Erika C. Crouch
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kevan L. Hartshorn
- Department of Medicine, Section of Hematology and Oncology, School of Medicine, Boston University, Boston, MA, United States,*Correspondence: Kevan L. Hartshorn,
| |
Collapse
|
4
|
Simulated Breathing: Application of Molecular Dynamics Simulations to Pulmonary Lung Surfactant. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this review, we delve into the topic of the pulmonary surfactant (PS) system, which is present in the respiratory system. The total composition of the PS has been presented and explored, from the types of cells involved in its synthesis and secretion, down to the specific building blocks used, such as the various lipid and protein components. The lipid and protein composition varies across species and between individuals, but ultimately produces a PS monolayer with the same role. As such, the composition has been investigated for the ways in which it imposes function and confers peculiar biophysical characteristics to the system as a whole. Moreover, a couple of theories/models that are associated with the functions of PS have been addressed. Finally, molecular dynamic (MD) simulations of pulmonary surfactant have been emphasized to not only showcase various group’s findings, but also to demonstrate the validity and importance that MD simulations can have in future research exploring the PS monolayer system.
Collapse
|
5
|
Hsieh IN, White M, Hoeksema M, Deluna X, Hartshorn K. Histone H4 potentiates neutrophil inflammatory responses to influenza A virus: Down-modulation by H4 binding to C-reactive protein and Surfactant protein D. PLoS One 2021; 16:e0247605. [PMID: 33635872 PMCID: PMC7909658 DOI: 10.1371/journal.pone.0247605] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
Neutrophils participate in the early phase of the innate response to uncomplicated influenza A virus (IAV) infection but also are a major component in later stages of severe IAV or COVID 19 infection where neutrophil extracellular traps (NETs) and associated cell free histones are highly pro-inflammatory. It is likely that IAV interacts with histones during infection. We show that histone H4 binds to IAV and aggregates viral particles. In addition, histone H4 markedly potentiates IAV induced neutrophil respiratory burst responses. Prior studies have shown reactive oxidants to be detrimental during severe IAV infection. C reactive protein (CRP) and surfactant protein D (SP-D) rise during IAV infection. We now show that both of these innate immune proteins bind to histone H4 and significantly down regulate respiratory burst and other responses to histone H4. Isolated constructs composed only of the neck and carbohydrate recognition domain of SP-D also bind to histone H4 and partially limit neutrophil responses to it. These studies indicate that complexes formed of histones and IAV are a potent neutrophil activating stimulus. This finding could account for excess inflammation during IAV or other severe viral infections. The ability of CRP and SP-D to bind to histone H4 may be part of a protective response against excessive inflammation in vivo.
Collapse
Affiliation(s)
- I-Ni Hsieh
- Department of Medicine, Section of Hematology Oncology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Mitchell White
- Department of Medicine, Section of Hematology Oncology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Xavier Deluna
- Department of Medicine, Section of Hematology Oncology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kevan Hartshorn
- Department of Medicine, Section of Hematology Oncology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zhang XL, Qu H. The Role of Glycosylation in Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:219-237. [PMID: 34495538 DOI: 10.1007/978-3-030-70115-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycosylation plays an important role in infectious diseases. Many important interactions between pathogens and hosts involve their carbohydrate structures (glycans). Glycan interactions can mediate adhesion, recognition, invasion, and immune evasion of pathogens. To date, changes in many protein N/O-linked glycosylation have been identified as biomarkers for the development of infectious diseases and cancers. In this review, we will discuss the principal findings and the roles of glycosylation of both pathogens and host cells in the context of human important infectious diseases. Understanding the role and mechanism of glycan-lectin interaction between pathogens and hosts may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication or functional cure of pathogens infection.
Collapse
Affiliation(s)
- Xiao-Lian Zhang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Haoran Qu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
7
|
Takamiya R, Takahashi M, Maeno T, Saito A, Kato M, Shibata T, Uchida K, Ariki S, Nakano M. Acrolein in cigarette smoke attenuates the innate immune responses mediated by surfactant protein D. Biochim Biophys Acta Gen Subj 2020; 1864:129699. [PMID: 32738274 DOI: 10.1016/j.bbagen.2020.129699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Surfactant proteins (SP) A and D belong to collectin family proteins, which play important roles in innate immune response in the lung. We previously demonstrated that cigarette smoke (CS) increases the acrolein modification of SP-A, thereby impairing the innate immune abilities of this protein. In this study, we focused on the effects of CS and its component, acrolein, on the innate immunity role of another collectin, SP-D. METHODS To determine whether aldehyde directly affects SP-D, we examined the lungs of mice exposed to CS for 1 week and detected aldehyde-modified SP-D using an aldehyde reactive probe. The structural changes in CS extract (CSE) or acrolein-exposed recombinant human (h)SP-D were determined by western blot, liquid chromatography-electrospray ionization tandem mass spectrometry, and blue native-polyacrylamide gel electrophoresis analyses. Innate immune functions of SP-D were determined by bacteria growth and macrophage phagocytosis. RESULTS Aldehyde-modified SP-D as well as SP-A was detected in the lungs of mice exposed to CS for 1 week. Exposure of hSP-D to CSE or acrolein induced an increased higher-molecular -weight of hSP-D and acrolein induced modification of five lysine residues in hSP-D. These modifications led to disruption of the multimer structure of SP-D and attenuated its ability to inhibit bacterial growth and activate macrophage phagocytosis. CONCLUSION CS induced acrolein modification in SP-D, which in turn induced structural and functional defects in SP-D. GENERAL SIGNIFICANCE These results suggest that CS-induced structural and functional defects in SP-D contribute to the dysfunction of innate immune responses in the lung following CS exposure.
Collapse
Affiliation(s)
- Rina Takamiya
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Hokkaido, Japan.
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | - Toshitaka Maeno
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Atsushi Saito
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Masaki Kato
- Data Knowledge Organization Unit, Head Office for Information Systems and Cybersecurity, RIKEN, Wako, Saitama, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Shigeru Ariki
- Department of Biochemistry, Sapporo Medical University, School of Medicine, Hokkaido, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| |
Collapse
|
8
|
Hartshorn KL. Innate Immunity and Influenza A Virus Pathogenesis: Lessons for COVID-19. Front Cell Infect Microbiol 2020; 10:563850. [PMID: 33194802 PMCID: PMC7642997 DOI: 10.3389/fcimb.2020.563850] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
There is abundant evidence that the innate immune response to influenza A virus (IAV) is highly complex and plays a key role in protection against IAV induced infection and illness. Unfortunately it also clear that aspects of innate immunity can lead to severe morbidity or mortality from IAV, including inflammatory lung injury, bacterial superinfection, and exacerbation of reactive airways disease. We review broadly the virus and host factors that result in adverse outcomes from IAV and show evidence that inflammatory responses can become damaging even apart from changes in viral replication per se, with special focus on the positive and adverse effects of neutrophils and monocytes. We then evaluate in detail the role of soluble innate inhibitors including surfactant protein D and antimicrobial peptides that have a potential dual capacity for down-regulating viral replication and also inhibiting excessive inflammatory responses and how these innate host factors could possibly be harnessed to treat IAV infection. Where appropriate we draw comparisons and contrasts the SARS-CoV viruses and IAV in an effort to point out where the extensive knowledge existing regarding severe IAV infection could help guide research into severe COVID 19 illness or vice versa.
Collapse
Affiliation(s)
- Kevan L Hartshorn
- Section of Hematology Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
9
|
Sinha AK, Farooqui SA, Sharma A, Mishra A, Verma V. Reactivity of allyl methyl sulphide, the in-vitro metabolite of garlic, with some amino acids and with phospholipid involved in viral infections. J Biomol Struct Dyn 2020; 40:565-571. [PMID: 32835626 DOI: 10.1080/07391102.2020.1811154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Garlic, as well as several natural food ingredients such as basil, ginger, turmeric, cinnamon, clove, pepper etc., has long been traditionally used as routine anti-viral and anti-bacterial remedy. Allyl methyl sulfide (AMS) is reportedly a persistent main active metabolite component of allicin after garlic ingestion accounting for at least 90% of the allicin consumed. Several studies have reported the presence of AMS in organs such as lung, kidney etc. and body fluids such as mucous, and blood-plasma. Glycoproteins of enveloped viruses are actively involved in viral pathogenesis. N-acetylneuraminic acid (sialic acid) and N-Acetylglucosamine, are some of the vital amino acids involved in several viral infections using glycoproteins via glycosylation. Simulations studies based on First-principles density functional theory show that these amino acids attach with AMS, and the reactions are thermodynamically spontaneous (ΔG and ΔS negative are at 310.15 K as well as lower and higher temperatures). Further, phospholipid phosphatidylethanolamine (a component of some viral envelops) also attaches readily with AMS and the reaction is spontaneous. AMS molecules attachment with viral phospholipids and amino-acids involved in viral infection would denature the virus and prevent its attachment to the host cell.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anil K Sinha
- CSIR-Indian Institute of Petroleum, Dehradun, India
| | | | | | - Ankit Mishra
- CSIR-Indian Institute of Petroleum, Dehradun, India
| | - Vikas Verma
- CSIR-Indian Institute of Petroleum, Dehradun, India
| |
Collapse
|
10
|
Thompson AJ, Cao L, Ma Y, Wang X, Diedrich JK, Kikuchi C, Willis S, Worth C, McBride R, Yates JR, Paulson JC. Human Influenza Virus Hemagglutinins Contain Conserved Oligomannose N-Linked Glycans Allowing Potent Neutralization by Lectins. Cell Host Microbe 2020; 27:725-735.e5. [PMID: 32298658 PMCID: PMC7158820 DOI: 10.1016/j.chom.2020.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
Hemagglutinins (HAs) from human influenza viruses adapt to bind α2-6-linked sialosides, overcoming a receptor-defined species barrier distinct from the α2-3 specificity of avian virus progenitors. Additionally, human-adapted HAs gain glycosylation sites over time, although their biological function is poorly defined. Using quantitative glycomic analysis, we show that HAs from human pandemic viruses exhibit significant proportions of high-mannose type N-linked glycans throughout the head domain. By contrast, poorly adapted avian-origin HAs contain predominately complex-type glycans, which have greater structural diversity. Although oligomannose levels vary, they are present in all tested recombinant HAs and whole viruses and can be specifically targeted for universal detection. The positions of high-mannose glycosites on the HA of human H1N1 and H3N2 strains are conserved. Additionally, high-mannose-binding lectins possess a broad capacity to neutralize and prevent infection with contemporary H3N2 strains. These findings reveal the biological significance of HA glycosylation and therapeutic potential of targeting these structures.
Collapse
Affiliation(s)
- Andrew J Thompson
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Liwei Cao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Yuanhui Ma
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Xiaoning Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Chika Kikuchi
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Shelby Willis
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Charli Worth
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Ryan McBride
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA; Department of Immunology & Microbiology, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Sant AJ, DiPiazza AT, Nayak JL, Rattan A, Richards KA. CD4 T cells in protection from influenza virus: Viral antigen specificity and functional potential. Immunol Rev 2019; 284:91-105. [PMID: 29944766 DOI: 10.1111/imr.12662] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD4 T cells convey a number of discrete functions to protective immunity to influenza, a complexity that distinguishes this arm of adaptive immunity from B cells and CD8 T cells. Although the most well recognized function of CD4 T cells is provision of help for antibody production, CD4 T cells are important in many aspects of protective immunity. Our studies have revealed that viral antigen specificity is a key determinant of CD4 T cell function, as illustrated both by mouse models of infection and human vaccine responses, a factor whose importance is due at least in part to events in viral antigen handling. We discuss research that has provided insight into the diverse viral epitope specificity of CD4 T cells elicited after infection, how this primary response is modified as CD4 T cells home to the lung, establish memory, and after challenge with a secondary and distinct influenza virus strain. Our studies in human subjects point out the challenges facing vaccine efforts to facilitate responses to novel and avian strains of influenza, as well as strategies that enhance the ability of CD4 T cells to promote protective antibody responses to both seasonal and potentially pandemic strains of influenza.
Collapse
Affiliation(s)
- Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony T DiPiazza
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer L Nayak
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.,Division of Infectious Diseases, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ajitanuj Rattan
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
12
|
Influenza virus N-linked glycosylation and innate immunity. Biosci Rep 2019; 39:BSR20171505. [PMID: 30552137 PMCID: PMC6328934 DOI: 10.1042/bsr20171505] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza viruses cause seasonal epidemics and sporadic pandemics in humans. The virus’s ability to change its antigenic nature through mutation and recombination, and the difficulty in developing highly effective universal vaccines against it, make it a serious global public health challenge. Influenza virus’s surface glycoproteins, hemagglutinin and neuraminidase, are all modified by the host cell’s N-linked glycosylation pathways. Host innate immune responses are the first line of defense against infection, and glycosylation of these major antigens plays an important role in the generation of host innate responses toward the virus. Here, we review the principal findings in the analytical techniques used to study influenza N-linked glycosylation, the evolutionary dynamics of N-linked glycosylation in seasonal versus pandemic and zoonotic strains, its role in host innate immune responses, and the prospects for lectin-based therapies. As the efficiency of innate immune responses is a critical determinant of disease severity and adaptive immunity, the study of influenza glycobiology is of clinical as well as research interest.
Collapse
|
13
|
Sialic acid as a target for the development of novel antiangiogenic strategies. Future Med Chem 2018; 10:2835-2854. [PMID: 30539670 DOI: 10.4155/fmc-2018-0298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sialic acid is associated with glycoproteins and gangliosides of eukaryotic cells. It regulates various molecular interactions, being implicated in inflammation and cancer, where its expression is regulated by sialyltransferases and sialidases. Angiogenesis, the formation of new capillaries, takes place during inflammation and cancer, and represents the outcome of several interactions occurring at the endothelial surface among angiogenic growth factors, inhibitors, receptors, gangliosides and cell-adhesion molecules. Here, we elaborate on the evidences that many structures involved in angiogenesis are sialylated and that their interactions depend on sialic acid with implications in angiogenesis itself, inflammation and cancer. We also discuss the possibility to exploit sialic acid as a target for the development of novel antiangiogenic drugs.
Collapse
|
14
|
Watson A, Phipps MJS, Clark HW, Skylaris CK, Madsen J. Surfactant Proteins A and D: Trimerized Innate Immunity Proteins with an Affinity for Viral Fusion Proteins. J Innate Immun 2018; 11:13-28. [PMID: 30293076 PMCID: PMC6738215 DOI: 10.1159/000492974] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
Innate recognition of viruses is an essential part of the immune response to viral pathogens. This is integral to the maintenance of healthy lungs, which are free from infection and efficient at gaseous exchange. An important component of innate immunity for identifying viruses is the family of C-type collagen-containing lectins, also known as collectins. These secreted, soluble proteins are pattern recognition receptors (PRRs) which recognise pathogen-associated molecular patterns (PAMPs), including viral glycoproteins. These innate immune proteins are composed of trimerized units which oligomerise into higher-order structures and facilitate the clearance of viral pathogens through multiple mechanisms. Similarly, many viral surface proteins form trimeric configurations, despite not showing primary protein sequence similarities across the virus classes and families to which they belong. In this review, we discuss the role of the lung collectins, i.e., surfactant proteins A and D (SP-A and SP-D) in viral recognition. We focus particularly on the structural similarity and complementarity of these trimeric collectins with the trimeric viral fusion proteins with which, we hypothesise, they have elegantly co-evolved. Recombinant versions of these innate immune proteins may have therapeutic potential in a range of infectious and inflammatory lung diseases including anti-viral therapeutics.
Collapse
Affiliation(s)
- Alastair Watson
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Maximillian J S Phipps
- Computational Chemistry, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Howard W Clark
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Chris-Kriton Skylaris
- Computational Chemistry, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Jens Madsen
- Child Health, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United .,Institute for Life Sciences, University of Southampton, Southampton, United .,National Institute for Health Research, Southampton Respiratory Biomedical Research Unit, Southampton Centre for Biomedical Research, University Hospital Southampton NHS Foundation Trust, Southampton, United
| |
Collapse
|
15
|
Hadden JA, Perilla JR. All-atom virus simulations. Curr Opin Virol 2018; 31:82-91. [PMID: 30181049 PMCID: PMC6456034 DOI: 10.1016/j.coviro.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The constant threat of viral disease can be combated by the development of novel vaccines and therapeutics designed to disrupt key features of virus structure or infection cycle processes. Such development relies on high-resolution characterization of viruses and their dynamical behaviors, which are often challenging to obtain solely by experiment. In response, all-atom molecular dynamics simulations are widely leveraged to study the structural components of viruses, leading to some of the largest simulation endeavors undertaken to date. The present work reviews exemplary all-atom simulation work on viruses, as well as progress toward simulating entire virions.
Collapse
Affiliation(s)
- Jodi A Hadden
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
16
|
Hsieh IN, De Luna X, White MR, Hartshorn KL. The Role and Molecular Mechanism of Action of Surfactant Protein D in Innate Host Defense Against Influenza A Virus. Front Immunol 2018; 9:1368. [PMID: 29951070 PMCID: PMC6008380 DOI: 10.3389/fimmu.2018.01368] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
Influenza A viruses (IAVs) continue to pose major risks of morbidity and mortality during yearly epidemics and periodic pandemics. The genomic instability of IAV allows it to evade adaptive immune responses developed during prior infection. Of particular concern are pandemics which result from wholesale incorporation of viral genome sections from animal sources. These pandemic strains are radically different from circulating human strains and pose great risk for the human population. For these reasons, innate immunity plays a strong role in the initial containment of IAV infection. Soluble inhibitors present in respiratory lining fluids and blood provide a level of early protection against IAV. In general, these inhibitors act by binding to the viral hemagglutinin (HA). Surfactant protein D (SP-D) and mannose-binding lectin (MBL) attach to mannosylated glycans on the HA in a calcium dependent manner. In contrast, surfactant protein A, ficolins, and other inhibitors present sialic acid rich ligands to which the HA can bind. Among these inhibitors, SP-D seems to be the most potent due to its specific mode of binding to viral carbohydrates and its ability to strongly aggregate viral particles. We have studied specific properties of the N-terminal and collagen domain of SP-D that enable formation of highly multimerized molecules and cooperative binding among the multiple trimeric lectin domains in the protein. In addition, we have studied in depth the lectin activity of SP-D through expression of isolated lectin domains and targeted mutations of the SP-D lectin binding site. Through modifying specific residues around the saccharide binding pocket, antiviral activity of isolated lectin domains of SP-D can be markedly increased for seasonal strains of IAV. Wild-type SP-D causes little inhibition of pandemic IAV, but mutated versions of SP-D were able to inhibit pandemic IAV through enhanced binding to the reduced number of mannosylated glycans present on the HA of these strains. Through collaborative studies involving crystallography of isolated lectin domains of SP-D, glycomics analysis of the HA, and molecular modeling, the mechanism of binding of wild type and mutant forms of SP-D have been determined. These studies could guide investigation of the interactions of SP-D with other pathogens.
Collapse
Affiliation(s)
- I-Ni Hsieh
- Boston University School of Medicine, Boston, MA, United States
| | - Xavier De Luna
- Boston University School of Medicine, Boston, MA, United States
| | | | | |
Collapse
|
17
|
van Eijk M, Rynkiewicz MJ, Khatri K, Leymarie N, Zaia J, White MR, Hartshorn KL, Cafarella TR, van Die I, Hessing M, Seaton BA, Haagsman HP. Lectin-mediated binding and sialoglycans of porcine surfactant protein D synergistically neutralize influenza A virus. J Biol Chem 2018; 293:10646-10662. [PMID: 29769321 DOI: 10.1074/jbc.ra117.001430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
Innate immunity is critical in the early containment of influenza A virus (IAV) infection, and surfactant protein D (SP-D) plays a crucial role in the pulmonary defense against IAV. In pigs, which are important intermediate hosts during the generation of pandemic IAVs, SP-D uses its unique carbohydrate recognition domain (CRD) to interact with IAV. An N-linked CRD glycosylation provides interactions with the sialic acid-binding site of IAV, and a tripeptide loop at the lectin-binding site facilitates enhanced interactions with IAV glycans. Here, to investigate both mechanisms of IAV neutralization in greater detail, we produced an N-glycosylated neck-CRD fragment of porcine SP-D (RpNCRD) in HEK293 cells. X-ray crystallography disclosed that the N-glycan did not alter the CRD backbone structure, including the lectin site conformation, but revealed a potential second nonlectin-binding site for glycans. IAV hemagglutination inhibition, IAV aggregation, and neutralization of IAV infection studies showed that RpNCRD, unlike the human analogue RhNCRD, exhibits potent neutralizing activity against pandemic A/Aichi/68 (H3N2), enabled by both porcine-specific structural features of its CRD. MS analysis revealed an N-glycan site-occupancy of >98% at Asn-303 of RpNCRD with complex-type, heterogeneously branched and predominantly α(2,3)-sialylated oligosaccharides. Glycan-binding array data characterized both RpNCRD and RhNCRD as mannose-type lectins. RpNCRD also bound LewisY structures, whereas RhNCRD bound polylactosamine-containing glycans. The presence of the N-glycan in the CRD increases the glycan-binding specificity of RpNCRD. These insights increase our understanding of porcine-specific innate defense against pandemic IAV and may inform the design of recombinant SP-D-based antiviral drugs.
Collapse
Affiliation(s)
- Martin van Eijk
- From the Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands,
| | | | - Kshitij Khatri
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Nancy Leymarie
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | | | | | | | - Irma van Die
- the Department of Molecular Cell Biology and Immunology, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands, and
| | - Martin Hessing
- the U-Protein Express B.V., Life Science Incubator, Utrecht Science Park, Yalelaan 62, 3584CM Utrecht, The Netherlands
| | | | - Henk P Haagsman
- From the Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| |
Collapse
|
18
|
|
19
|
Sorensen GL. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front Med (Lausanne) 2018; 5:18. [PMID: 29473039 PMCID: PMC5809447 DOI: 10.3389/fmed.2018.00018] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Surfactant protein D (SP-D) is a multimeric collectin that is involved in innate immune defense and expressed in pulmonary, as well as non-pulmonary, epithelia. SP-D exerts antimicrobial effects and dampens inflammation through direct microbial interactions and modulation of host cell responses via a series of cellular receptors. However, low protein concentrations, genetic variation, biochemical modification, and proteolytic breakdown can induce decomposition of multimeric SP-D into low-molecular weight forms, which may induce pro-inflammatory SP-D signaling. Multimeric SP-D can decompose into trimeric SP-D, and this process, and total SP-D levels, are partly determined by variation within the SP-D gene, SFTPD. SP-D has been implicated in the development of respiratory diseases including respiratory distress syndrome, bronchopulmonary dysplasia, allergic asthma, and chronic obstructive pulmonary disease. Disease-induced breakdown or modifications of SP-D facilitate its systemic leakage from the lung, and circulatory SP-D is a promising biomarker for lung injury. Moreover, studies in preclinical animal models have demonstrated that local pulmonary treatment with recombinant SP-D is beneficial in these diseases. In recent years, SP-D has been shown to exert antimicrobial and anti-inflammatory effects in various non-pulmonary organs and to have effects on lipid metabolism and pro-inflammatory effects in vessel walls, which enhance the risk of atherosclerosis. A common SFTPD polymorphism is associated with atherosclerosis and diabetes, and SP-D has been associated with metabolic disorders because of its effects in the endothelium and adipocytes and its obesity-dampening properties. This review summarizes and discusses the reported genetic associations of SP-D with disease and the clinical utility of circulating SP-D for respiratory disease prognosis. Moreover, basic research on the mechanistic links between SP-D and respiratory, cardiovascular, and metabolic diseases is summarized. Perspectives on the development of SP-D therapy are addressed.
Collapse
Affiliation(s)
- Grith L Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Lacetera A, Berbís MÁ, Nurisso A, Jiménez-Barbero J, Martín-Santamaría S. Computational Chemistry Tools in Glycobiology: Modelling of Carbohydrate–Protein Interactions. COMPUTATIONAL TOOLS FOR CHEMICAL BIOLOGY 2017. [DOI: 10.1039/9781788010139-00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular modelling provides a major impact in the field of glycosciences, helping in the characterisation of the molecular basis of the recognition between lectins from pathogens and human glycoconjugates, and in the design of glycocompounds with anti-infectious properties. The conformational properties of oligosaccharides are complex, and therefore, the simulation of these properties is a challenging task. Indeed, the development of suitable force fields is required for the proper simulation of important problems in glycobiology, such as the interatomic interactions responsible for oligosaccharide and glycoprotein dynamics, including O-linkages in oligo- and polysaccharides, and N- and O-linkages in glycoproteins. The computational description of representative examples is discussed, herein, related to biologically active oligosaccharides and their interaction with lectins and other proteins, and the new routes open for the design of glycocompounds with promising biological activities.
Collapse
Affiliation(s)
- Alessandra Lacetera
- Center for Biological Research CIB-CSIC. Ramiro de Maeztu, 9 28040-Madrid Spain
| | - M. Álvaro Berbís
- Center for Biological Research CIB-CSIC. Ramiro de Maeztu, 9 28040-Madrid Spain
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences University of Geneva, University of Lausanne, Rue Michel Servet 1 CH-1211 Geneva 4 Switzerland
| | | | | |
Collapse
|
21
|
White MR, Tripathi S, Verma A, Kingma P, Takahashi K, Jensenius J, Thiel S, Wang G, Crouch EC, Hartshorn KL. Collectins, H-ficolin and LL-37 reduce influence viral replication in human monocytes and modulate virus-induced cytokine production. Innate Immun 2016; 23:77-88. [PMID: 27856789 DOI: 10.1177/1753425916678470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Infiltrating activated monocytes are important mediators of damaging inflammation during influenza A virus (IAV) infection. We show that soluble respiratory proteins [collectins, surfactant proteins D (SP-D) and mannose binding lectin (MBL), H-ficolin and LL-37] inhibit replication of seasonal IAV in human monocytes. The collectins and H-ficolin also increased viral uptake by the cells, while LL-37 did not. H-ficolin was able to inhibit replication of the 2009 pandemic H1N1 strain (Cal09) in monocytes, but SP-D and LL-37 had significantly fewer inhibitory effects on this strain than on seasonal IAV. All of these proteins reduced IAV-induced TNF-α production, even in instances when viral replication was not reduced. We used modified recombinant versions of SP-D, MBL and ficolin to elucidate mechanisms through which these proteins alter monocyte interactions with IAV. We demonstrate the importance of the multimeric structure, and of binding properties of the lectin domain, in mediating antiviral and opsonic activity of the proteins. Hence, soluble inhibitors present in airway lining fluid may aid clearance of IAV by promoting monocyte uptake of the virus, while reducing viral replication and virus-induced TNF-α responses in these cells. However, SP-D and LL-37 have reduced ability to inhibit replication of pandemic IAV in monocytes.
Collapse
Affiliation(s)
- Mitchell R White
- 1 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Shweta Tripathi
- 1 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Anamika Verma
- 1 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Paul Kingma
- 2 University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Kazue Takahashi
- 3 Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jens Jensenius
- 4 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- 4 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Guangshun Wang
- 5 Department of Pathology and Microbiology, Nebraska Medical Center, Omaha, NE, USA
| | - Erika C Crouch
- 6 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevan L Hartshorn
- 1 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
22
|
Goh BC, Wu H, Rynkiewicz MJ, Schulten K, Seaton BA, McCormack FX. Elucidation of Lipid Binding Sites on Lung Surfactant Protein A Using X-ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations. Biochemistry 2016; 55:3692-701. [PMID: 27324153 PMCID: PMC5663190 DOI: 10.1021/acs.biochem.6b00048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Surfactant protein A (SP-A) is a collagenous C-type lectin (collectin) that is critical for pulmonary defense against inhaled microorganisms. Bifunctional avidity of SP-A for pathogen-associated molecular patterns (PAMPs) such as lipid A and for dipalmitoylphosphatidylcholine (DPPC), the major component of surfactant membranes lining the air-liquid interface of the lung, ensures that the protein is poised for first-line interactions with inhaled pathogens. To improve our understanding of the motifs that are required for interactions with microbes and surfactant structures, we explored the role of the tyrosine-rich binding surface on the carbohydrate recognition domain of SP-A in the interaction with DPPC and lipid A using crystallography, site-directed mutagenesis, and molecular dynamics simulations. Critical binding features for DPPC binding include a three-walled tyrosine cage that binds the choline headgroup through cation-π interactions and a positively charged cluster that binds the phosphoryl group. This basic cluster is also critical for binding of lipid A, a bacterial PAMP and target for SP-A. Molecular dynamics simulations further predict that SP-A binds lipid A more tightly than DPPC. These results suggest that the differential binding properties of SP-A favor transfer of the protein from surfactant DPPC to pathogen membranes containing appropriate lipid PAMPs to effect key host defense functions.
Collapse
Affiliation(s)
- Boon Chong Goh
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801
| | - Huixing Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The University of Cincinnati, Cincinnati, OH 45267
| | - Michael J. Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Klaus Schulten
- Beckman Institute and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801,To whom correspondence should be addressed: Dr. Francis X. McCormack, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, MSB 6165, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0564; Telephone: 513-484-5697, Fax: 513-558-4858, , and Dr. Klaus Schulten, Beckman Institute, University of Illinois, 405 N. Mathews, Urbana IL 61801; Telephone: 217-244-1604, Fax: 217-244-6078,
| | - Barbara A. Seaton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Francis X. McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The University of Cincinnati, Cincinnati, OH 45267,To whom correspondence should be addressed: Dr. Francis X. McCormack, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, MSB 6165, 231 Albert Sabin Way, University of Cincinnati, OH 45267-0564; Telephone: 513-484-5697, Fax: 513-558-4858, , and Dr. Klaus Schulten, Beckman Institute, University of Illinois, 405 N. Mathews, Urbana IL 61801; Telephone: 217-244-1604, Fax: 217-244-6078,
| |
Collapse
|
23
|
Khatri K, Klein JA, White MR, Grant OC, Leymarie N, Woods RJ, Hartshorn KL, Zaia J. Integrated Omics and Computational Glycobiology Reveal Structural Basis for Influenza A Virus Glycan Microheterogeneity and Host Interactions. Mol Cell Proteomics 2016; 15:1895-912. [PMID: 26984886 PMCID: PMC5083086 DOI: 10.1074/mcp.m116.058016] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/04/2016] [Indexed: 02/04/2023] Open
Abstract
Despite sustained biomedical research effort, influenza A virus remains an imminent threat to the world population and a major healthcare burden. The challenge in developing vaccines against influenza is the ability of the virus to mutate rapidly in response to selective immune pressure. Hemagglutinin is the predominant surface glycoprotein and the primary determinant of antigenicity, virulence and zoonotic potential. Mutations leading to changes in the number of HA glycosylation sites are often reported. Such genetic sequencing studies predict at best the disruption or creation of sequons for N-linked glycosylation; they do not reflect actual phenotypic changes in HA structure. Therefore, combined analysis of glycan micro and macro-heterogeneity and bioassays will better define the relationships among glycosylation, viral bioactivity and evolution. We present a study that integrates proteomics, glycomics and glycoproteomics of HA before and after adaptation to innate immune system pressure. We combined this information with glycan array and immune lectin binding data to correlate the phenotypic changes with biological activity. Underprocessed glycoforms predominated at the glycosylation sites found to be involved in viral evolution in response to selection pressures and interactions with innate immune-lectins. To understand the structural basis for site-specific glycan microheterogeneity at these sites, we performed structural modeling and molecular dynamics simulations. We observed that the presence of immature, high-mannose type glycans at a particular site correlated with reduced accessibility to glycan remodeling enzymes. Further, the high mannose glycans at sites implicated in immune lectin recognition were predicted to be capable of forming trimeric interactions with the immune-lectin surfactant protein-D.
Collapse
Affiliation(s)
- Kshitij Khatri
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Joshua A Klein
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118; §Bioinformatics Program, Boston University, Boston, Massachusetts 02215
| | - Mitchell R White
- ¶Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Oliver C Grant
- ‖Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Nancy Leymarie
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Robert J Woods
- ‖Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Kevan L Hartshorn
- ¶Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Joseph Zaia
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118; §Bioinformatics Program, Boston University, Boston, Massachusetts 02215;
| |
Collapse
|
24
|
Goh BC, Hadden JA, Bernardi RC, Singharoy A, McGreevy R, Rudack T, Cassidy CK, Schulten K. Computational Methodologies for Real-Space Structural Refinement of Large Macromolecular Complexes. Annu Rev Biophys 2016; 45:253-78. [PMID: 27145875 DOI: 10.1146/annurev-biophys-062215-011113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The rise of the computer as a powerful tool for model building and refinement has revolutionized the field of structure determination for large biomolecular systems. Despite the wide availability of robust experimental methods capable of resolving structural details across a range of spatiotemporal resolutions, computational hybrid methods have the unique ability to integrate the diverse data from multimodal techniques such as X-ray crystallography and electron microscopy into consistent, fully atomistic structures. Here, commonly employed strategies for computational real-space structural refinement are reviewed, and their specific applications are illustrated for several large macromolecular complexes: ribosome, virus capsids, chemosensory array, and photosynthetic chromatophore. The increasingly important role of computational methods in large-scale structural refinement, along with current and future challenges, is discussed.
Collapse
Affiliation(s)
- Boon Chong Goh
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jodi A Hadden
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rafael C Bernardi
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Abhishek Singharoy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Ryan McGreevy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Till Rudack
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - C Keith Cassidy
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Klaus Schulten
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801;
| |
Collapse
|
25
|
Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Comput Biol 2016; 12:e1004619. [PMID: 27124275 PMCID: PMC4849799 DOI: 10.1371/journal.pcbi.1004619] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Collapse
Affiliation(s)
- Tatiana Maximova
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Ryan Moffatt
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
- Department of Biongineering, George Mason University, Fairfax, Virginia, United States of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
26
|
Baoukina S, Tieleman DP. Computer simulations of lung surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2431-2440. [PMID: 26922885 DOI: 10.1016/j.bbamem.2016.02.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 01/26/2023]
Abstract
Lung surfactant lines the gas-exchange interface in the lungs and reduces the surface tension, which is necessary for breathing. Lung surfactant consists mainly of lipids with a small amount of proteins and forms a monolayer at the air-water interface connected to bilayer reservoirs. Lung surfactant function involves transfer of material between the monolayer and bilayers during the breathing cycle. Lipids and proteins are organized laterally in the monolayer; selected species are possibly preferentially transferred to bilayers. The complex 3D structure of lung surfactant and the exact roles of lipid organization and proteins remain important goals for research. We review recent simulation studies on the properties of lipid monolayers, monolayers with phase coexistence, monolayer-bilayer transformations, lipid-protein interactions, and effects of nanoparticles on lung surfactant. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Svetlana Baoukina
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
27
|
Nikolaidis NM, White MR, Allen K, Tripathi S, Qi L, McDonald B, Taubenberger J, Seaton BA, McCormack FX, Crouch EC, Hartshorn KL. Mutations flanking the carbohydrate binding site of surfactant protein D confer antiviral activity for pandemic influenza A viruses. Am J Physiol Lung Cell Mol Physiol 2014; 306:L1036-44. [PMID: 24705721 DOI: 10.1152/ajplung.00035.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We recently reported that a trimeric neck and carbohydrate recognition domain (NCRD) fragment of human surfactant protein D (SP-D), a host defense lectin, with combinatorial substitutions at the 325 and 343 positions (D325A+R343V) exhibits markedly increased antiviral activity for seasonal strains of influenza A virus (IAV). The NCRD binds to glycan-rich viral envelope proteins including hemagglutinin (HA). We now show that replacement of D325 with serine to create D325S+R343V provided equal or increased neutralizing activity compared with D325A+R343V. The activity of the double mutants was significantly greater than that of either single mutant (D325A/S or R343V). D325A+R343V and D325S+R343V also strongly inhibited HA activity, and markedly aggregated, the 1968 pandemic H3N2 strain, Aichi68. D325S+R343V significantly reduced viral loads and mortality of mice infected with Aichi68, whereas wild-type SP-D NCRD did not. The pandemic H1N1 strains of 1918 and 2009 have only one N-linked glycan side on the head region of the HA and are fully resistant to inhibition by native SP-D. Importantly, we now show that D325A+R343V and D325S+R343V inhibited Cal09 H1N1 and related strains, and reduced uptake of Cal09 by epithelial cells. Inhibition of Cal09 was mediated by the lectin activity of the NCRDs. All known human pandemic strains have at least one glycan attachment on the top or side of the HA head, and our results indicate that they may be susceptible to inhibition by modified host defense lectins.
Collapse
Affiliation(s)
- Nikolaos M Nikolaidis
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Mitchell R White
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Kimberly Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Shweta Tripathi
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Li Qi
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Barbara McDonald
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; and
| | | | - Barbara A Seaton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Francis X McCormack
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Erika C Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Kevan L Hartshorn
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts;
| |
Collapse
|
28
|
Tate MD, Job ER, Deng YM, Gunalan V, Maurer-Stroh S, Reading PC. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 2014; 6:1294-316. [PMID: 24638204 PMCID: PMC3970151 DOI: 10.3390/v6031294] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 12/22/2022] Open
Abstract
Seasonal influenza A viruses (IAV) originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA) glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity.
Collapse
Affiliation(s)
- Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, 3168, Australia.
| | - Emma R Job
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.
| | - Vithiagaran Gunalan
- Bioinformatics Institute, Agency for Science, Technology and Research, 138671, Singapore.
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research, 138671, Singapore.
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia.
| |
Collapse
|