1
|
Yang F, Sun X, Lu J, Zhang L, Du G, Li J, Xu R, Kang Z. Immobilized high-performance heparin lyase III for efficient preparation of low molecular weight heparin. Int J Biol Macromol 2024; 280:135833. [PMID: 39306163 DOI: 10.1016/j.ijbiomac.2024.135833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Heparin lyase III has garnered widespread attention due to its high specificity and minimal loss of anticoagulant activity during the preparation of low molecular weight heparin (LMWH), a crucial anticoagulant drug in clinical practice. However, low expression levels and complex preparation processes limit its practical application. To address these challenges, high-performance Bacteroides thetaiotaomicron heparin lyase III (Bhep III) variants were engineered and immobilized for LMWH preparation. First, we enhanced enzyme expression by adding a solubility-enhancing tag and optimizing the N-terminal coding sequence, which resulted in a Bhep III activity level of 2.9 × 103 U/L with 8-fold increase. After evolution guided the design of rational mutations, the variant Bhep III K85A/Q95F/S471T generated higher activity (5.4 × 104 U/L in 5-L fermenter), which is, to our knowledge, the highest reported to date in the literature, being 1.7-fold that of the wild type and demonstrating 2-fold increase of the thermal stability. By screening and optimizing the C-terminal self-assembling tag, we successfully immobilized Bhep III, further increasing its thermal stability by 12-fold, and allowing for the multi-batch preparation of LMWH with simple centrifugation. The immobilized heparin lyase III demonstrated sufficient reusability in enzymatic reactions, facilitating efficient industrial-scale production of LMWH.
Collapse
Affiliation(s)
- Fengling Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Xiaoyuan Sun
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jie Lu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Linpei Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| | - Zhen Kang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Wu X, Yun Z, Su N, Zhao L, Zhang H, Zhang M, Wu Q, Zhang C, Xing XH. Characterization of maltose-binding protein-fused heparinases with enhanced thermostability by application of rigid and flexible linkers. Biotechnol Appl Biochem 2024. [PMID: 39072851 DOI: 10.1002/bab.2642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Heparinases, including heparinases I-III (HepI, HepII, and HepIII, respectively), are important tools for producing low-molecular-weight heparin, an improved anticoagulant. The poor thermostability of heparinases significantly hinders their industrial and laboratory applications. To improve the thermostability of heparinases, we applied a rigid linker (EAAAK)5 (R) and a flexible linker (GGGGS)5 (F) to fuse maltose-binding protein (MBP) and HepI, HepII, and HepIII from Pedobacter heparinus, replacing the original linker from the plasmid pMAL-c2X. Compared with their parental fusion protein, MBP-fused HepIs, HepIIs, and HepIIIs with linkers (EAAAK)5 or (GGGGS)5 all displayed enhanced thermostability (half-lives at 30°C: 242%-464%). MBP-fused HepIs and HepIIs exhibited higher specific activity (127%-324%), whereas MBP-fused HepIIIs displayed activity similar to that of their parental fusion protein. Kinetics analysis revealed that MBP-fused HepIIs showed a significantly decreased affinity toward heparin with increased Km values (397%-480%) after the linker replacement, whereas the substrate affinity did not change significantly for MBP-fused HepIs and HepIIIs. Furthermore, it preliminarily appeared that the depolymerization mechanism of these fusion proteins may not change after linker replacement. These findings suggest the superior enzymatic properties of MBP-fused heparinases with suitable linker designs and their potential for the bioproduction of low-molecular-weight heparin.
Collapse
Affiliation(s)
- Xi Wu
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Zhenyu Yun
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Nan Su
- MOE Key Lab of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Lin Zhao
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Hui Zhang
- MOE Key Lab of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Mengyan Zhang
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Qi Wu
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing, China
| | - Chong Zhang
- MOE Key Lab of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Xin-Hui Xing
- MOE Key Lab of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Deng JQ, Li Y, Wang YJ, Cao YL, Xin SY, Li XY, Xi RM, Wang FS, Sheng JZ. Biosynthetic production of anticoagulant heparin polysaccharides through metabolic and sulfotransferases engineering strategies. Nat Commun 2024; 15:3755. [PMID: 38704385 PMCID: PMC11069525 DOI: 10.1038/s41467-024-48193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.
Collapse
Affiliation(s)
- Jian-Qun Deng
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yi Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yu-Jia Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ya-Lin Cao
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Si-Yu Xin
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xin-Yu Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Rui-Min Xi
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Feng-Shan Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Ju-Zheng Sheng
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
- National Glycoengineering Research Center, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Xi X, Zhang W, Hu L, Xu R, Wang Y, Du G, Chen J, Kang Z. Enzymatic construction of a library of even- and odd-numbered heparosan oligosaccharides and their N-sulfonated derivatives. Int J Biol Macromol 2024; 264:130501. [PMID: 38442831 DOI: 10.1016/j.ijbiomac.2024.130501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Low-molecular-weight heparins (LMWHs), especially the specific-sized heparin oligosaccharides, are attractive for the therapeutic applications, while their synthesis remains challenging. In the present study, unsaturated even-numbered heparosan oligosaccharides were firstly prepared by cleaving high-molecular-weight heparosan using recombinant heparinase III (HepIII). The conversion rates of the unsaturated disaccharides, tetrasaccharides, hexasaccharides, octasaccharides, and decasaccharides were 33.9 %, 47.9 %, 78.7 %, 71.8 %, and 53.4 %, respectively. After processing the aforementioned heparosan oligosaccharides with the Δ4,5 unsaturated glycuronidase, saturated odd-numbered heparosan trisaccharides, pentasaccharides, heptasaccharides, and nonasaccharides were produced. It was observed that among them, the pentasaccharides were the smallest units of saturated odd-numbered oligosaccharides recognized by HepIII. These oligosaccharides were further catalyzed with bifunctional heparan sulfate N-deacetylase/N-sulfotransferase (NDST) under optimized reaction conditions. It was found that the tetrasaccharide was defined as the smallest recognition unit for NDST, obtaining the N-sulfonated heparosan tetrasaccharides, pentasaccharides, and hexasaccharides with a single sulfonate group, as well as N-sulfonated heparosan heptasaccharides, octasaccharides, and nonasaccharides with multiple sulfonate groups. These results provide an easy pathway for constructing a library of specific-sized N-sulfonated heparosan oligosaccharides that can be used as the substrates for the enzymatic synthesis of LMWHs and heparin oligosaccharides, shedding new light on the substrate preference of NDST.
Collapse
Affiliation(s)
- Xintong Xi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Xu CL, Zhu CY, Li YN, Gao J, Zhang YW. Heparinase III with High Activity and Stability: Heterologous Expression, Biochemical Characterization, and Application in Depolymerization of Heparin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3045-3054. [PMID: 38307881 DOI: 10.1021/acs.jafc.3c07197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
A novel heparinase III from Pedobacter schmidteae (PsHep-III) with high activity and good stability was successfully cloned, expressed, and characterized. PsHep-III displayed the highest specific activity ever reported of 192.8 U mg-1 using heparin as the substrate. It was stable at 25 °C with a half-life of 323 h in an aqueous solution. PsHep-III was employed for the depolymerization of heparin, and the enzymatic hydrolyzed products were analyzed with gel permeation chromatography and high-performance liquid chromatography. PsHep-III can break glycosidic bonds in heparin like →4]GlcNAc/GlcNAc6S/GlcNS/GlcNS6S/GlcN/GlcN6S(1 → 4)ΔUA/ΔUA2S[1 → and efficiently digest heparin into seven disaccharides including N-acetylated, N-sulfated, and N-unsubstituted modification, with molecular masses of 503, 605, 563, 563, 665, 360, and 563 Da, respectively. These results indicated that PsHep-III with broad substrate specificity could be combined with heparinase I to overcome the low selectivity at the N-acetylated modification binding sites of heparinase I. This work will contribute to the application of PsHep-III for characterizing heparin and producing low-molecular-weight heparin effectively.
Collapse
Affiliation(s)
- Chen-Lu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Chen-Yuan Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yang-Nan Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jian Gao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212004, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
6
|
Lu D, Wang L, Ning Z, Li Z, Li M, Jia Y, Zhang Q. Identification and characterization of a novel heparinase PCHepII from marine bacterium Puteibacter caeruleilacunae. Sci Rep 2023; 13:20112. [PMID: 37978313 PMCID: PMC10656541 DOI: 10.1038/s41598-023-47493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Heparin (HP) and heparan sulfate (HS) are multifunctional polysaccharides widely used in clinical therapy. Heparinases (Hepases) are enzymes that specifically catalyse HP and HS degradation, and they are valuable tools for studying the structure and function of these polysaccharides and for preparing low molecular weight heparins. In this study, by searching the NCBI database, a novel enzyme named PCHepII was discovered in the genome of the marine bacterium Puteibacter caeruleilacuae. Heterologously expressed PCHepII in Escherichia coli (BL21) has high expression levels and good solubility, active in sodium phosphate buffer (pH 7.0) at 20°C. PCHepII exhibits an enzyme activity of 254 mU/mg towards HP and shows weak degradation capacity for HS. More importantly, PCHepII prefers to catalyse the high-sulfated regions of HP and HS rather than the low-sulfated regions. Although PCHepII functions primarily as an endolytic Hepase, it mainly generates disaccharide products during the degradation of HP substrates over time. Investigations reveal that PCHepII exhibits a preference for catalysing the degradation of small substrates, especially HP tetrasaccharides. The catalytic sites of PCHepII include the residues His199, Tyr254, and His403, which play crucial roles in the catalytic process. The study and characterization of PCHepII can potentially benefit research and applications involving HP/HS, making it a promising enzyme.
Collapse
Affiliation(s)
- Danrong Lu
- School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang, 261053, China
| | - Luping Wang
- School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang, 261053, China
| | - Zeting Ning
- School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang, 261053, China
| | - Zuhui Li
- School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang, 261053, China
| | - Meihua Li
- School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang, 261053, China
| | - Yan Jia
- School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang, 261053, China
| | - Qingdong Zhang
- School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang, 261053, China.
| |
Collapse
|
7
|
Production, characteristics and applications of microbial heparinases. Biochimie 2022; 198:109-140. [DOI: 10.1016/j.biochi.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
|
8
|
Nguyen VH, Khan F, Shipman BM, Neugent ML, Hulyalkar NV, Cha NY, Zimmern PE, De Nisco NJ. A Semi-Quantitative Assay to Measure Glycosaminoglycan Degradation by the Urinary Microbiota. Front Cell Infect Microbiol 2022; 11:803409. [PMID: 35047421 PMCID: PMC8762050 DOI: 10.3389/fcimb.2021.803409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides and are among the primary components of mucosal surfaces in mammalian systems. The GAG layer lining the mucosal surface of the urinary tract is thought to play a critical role in urinary tract homeostasis and provide a barrier against urinary tract infection (UTI). This key component of the host-microbe interface may serve as a scaffolding site or a nutrient source for the urinary microbiota or invading pathogens, but its exact role in UTI pathogenesis is unclear. Although members of the gut microbiota have been shown to degrade GAGs, the utilization and degradation of GAGs by the urinary microbiota or uropathogens had not been investigated. In this study, we developed an in vitro plate-based assay to measure GAG degradation and utilization and used this assay to screen a library of 37 urinary bacterial isolates representing both urinary microbiota and uropathogenic species. This novel assay is more rapid, inexpensive, and quantitative compared to previously developed assays, and can measure three of the major classes of human GAGs. Our findings demonstrate that this assay captures the well-characterized ability of Streptococcus agalactiae to degrade hyaluronic acid and partially degrade chondroitin sulfate. Additionally, we present the first known report of chondroitin sulfate degradation by Proteus mirabilis, an important uropathogen and a causative agent of acute, recurrent, and catheter-associated urinary tract infections (CAUTI). In contrast, we observed that uropathogenic Escherichia coli (UPEC) and members of the urinary microbiota, including lactobacilli, were unable to degrade GAGs.
Collapse
Affiliation(s)
- Vivian H Nguyen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Fatima Khan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Braden M Shipman
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Michael L Neugent
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Neha V Hulyalkar
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Natalie Y Cha
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Philippe E Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nicole J De Nisco
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
9
|
Mii Y, Nakazato K, Pack CG, Ikeda T, Sako Y, Mochizuki A, Taira M, Takada S. Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos. eLife 2021; 10:55108. [PMID: 33904408 PMCID: PMC8139832 DOI: 10.7554/elife.55108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
The mechanism of intercellular transport of Wnt ligands is still a matter of debate. To better understand this issue, we examined the distribution and dynamics of Wnt8 in Xenopus embryos. While Venus-tagged Wnt8 was found on the surfaces of cells close to Wnt-producing cells, we also detected its dispersal over distances of 15 cell diameters. A combination of fluorescence correlation spectroscopy and quantitative imaging suggested that only a small proportion of Wnt8 ligands diffuses freely, whereas most Wnt8 molecules are bound to cell surfaces. Fluorescence decay after photoconversion showed that Wnt8 ligands bound on cell surfaces decrease exponentially, suggesting a dynamic exchange of bound forms of Wnt ligands. Mathematical modeling based on this exchange recapitulates a graded distribution of bound, but not free, Wnt ligands. Based on these results, we propose that Wnt distribution in tissues is controlled by a dynamic exchange of its abundant bound and rare free populations.
Collapse
Affiliation(s)
- Yusuke Mii
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan.,Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | - Chan-Gi Pack
- Cellular Informatics Laboratory, RIKEN, Wako, Japan.,ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Takafumi Ikeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, Wako, Japan
| | - Atsushi Mochizuki
- Theoretical Biology Laboratory, RIKEN, Wako, Japan.,Laboratory of Mathematical Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Shinji Takada
- National Institute for Basic Biology and Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| |
Collapse
|
10
|
Zhang Q, Cao HY, Wei L, Lu D, Du M, Yuan M, Shi D, Chen X, Wang P, Chen XL, Chi L, Zhang YZ, Li F. Discovery of exolytic heparinases and their catalytic mechanism and potential application. Nat Commun 2021; 12:1263. [PMID: 33627653 PMCID: PMC7904915 DOI: 10.1038/s41467-021-21441-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Heparinases (Hepases) are critical tools for the studies of highly heterogeneous heparin (HP)/heparan sulfate (HS). However, exolytic heparinases urgently needed for the sequencing of HP/HS chains remain undiscovered. Herein, a type of exolytic heparinases (exoHepases) is identified from the genomes of different bacteria. These exoHepases share almost no homology with known Hepases and prefer to digest HP rather than HS chains by sequentially releasing unsaturated disaccharides from their reducing ends. The structural study of an exoHepase (BIexoHep) shows that an N-terminal conserved DUF4962 superfamily domain is essential to the enzyme activities of these exoHepases, which is involved in the formation of a unique L-shaped catalytic cavity controlling the sequential digestion of substrates through electrostatic interactions. Further, several HP octasaccharides have been preliminarily sequenced by using BIexoHep. Overall, this study fills the research gap of exoHepases and provides urgently needed tools for the structural and functional studies of HP/HS chains.
Collapse
Affiliation(s)
- Qingdong Zhang
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Hai-Yan Cao
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China ,grid.4422.00000 0001 2152 3263College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China ,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lin Wei
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Danrong Lu
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Min Du
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Min Yuan
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Deling Shi
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | | | - Peng Wang
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China ,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xiu-Lan Chen
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China ,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lianli Chi
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- grid.4422.00000 0001 2152 3263College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China ,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Fuchuan Li
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
11
|
Wang H, Zhang L, Wang Y, Li J, Du G, Kang Z. Engineering a thermostable chondroitinase for production of specifically distributed low-molecular-weight chondroitin sulfate. Biotechnol J 2021; 16:e2000321. [PMID: 33350041 DOI: 10.1002/biot.202000321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022]
Abstract
Chondroitinase ABC I (csABC I) has attracted intensive attention because of its great potential in heparin refining and the enzymatic preparation of low-molecular-weight chondroitin sulfate (LMW-CS). However, low thermal resistance (<30℃) restricts its applications. Herein, structure-guided and sequence-assisted combinatorial engineering approaches were applied to improve the thermal resistance of Proteus vulgaris csABC I. By integrating the deletion of the flexible fragment R166-L170 at the N-terminal domain and the mutation of E694P at the C-terminal domain, variant NΔ5/E694P exhibited 247-fold improvement of its half-life at 37℃ and a 2.3-fold increase in the specific activity. Through batch fermentation in a 3-L fermenter, the expression of variant NΔ5/E694P in an Escherichia coli host reached 1.7 g L-1 with the activity of 1.0 × 105 U L-1 . Finally, the enzymatic approach for the preparation of LMW-CS was established. By modulating enzyme concentration and controlling depolymerization time, specifically distributed LMW-CS (7000, 3400, and 1900 Da) with low polydispersity was produced, demonstrating the applicability of these processes for the industrial production of LMW-CS in a more environmentally friendly way.
Collapse
Affiliation(s)
- Hao Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Lin Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Wang H, Zhang L, Wang Y, Li J, Du G, Kang Z. Engineering the heparin-binding pocket to enhance the catalytic efficiency of a thermostable heparinase III from Bacteroides thetaiotaomicron. Enzyme Microb Technol 2020; 137:109549. [DOI: 10.1016/j.enzmictec.2020.109549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/26/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
|
13
|
Yu Y, Ye H, Wu D, Shi H, Zhou X. Chemoenzymatic quantification for monitoring unpurified polysaccharide in rich medium. Appl Microbiol Biotechnol 2019; 103:7635-7645. [PMID: 31372704 DOI: 10.1007/s00253-019-10042-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/16/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
The heparosan polysaccharide serves as the starting carbon backbone for the chemoenzymatic synthesis of heparin, a widely used clinical anticoagulant drug. The previous quantification methods for heparosan rely on time-consuming purification or expensive instruments not readily available for many labs. Here, a chemoenzymatic approach is developed to monitor the production of heparosan in rich medium without purification. After removing the interfering small molecules by ultrafiltration, heparosan was decomposed into oligosaccharides using heparin lyase III. The oligosaccharides were separated from large molecules by ultrafiltration and quantitatively determined by the anthrone-sulfuric acid assay using a spectrophotometer. Based on the different substrate specificity of heparin lyases, the study showed that the concentration of heparosan and heparin in a mixture was discriminatively determined by the two-step chemoenzymatic assay. Furthermore, the anthrone-sulfuric acid assay was observed to be more reliable than the phenol-sulfuric acid assay under these conditions. Besides heparosan and heparin, the chemoenzymatic assay may be adapted to quantify other types of polysaccharides if the specific lyases were available.
Collapse
Affiliation(s)
- Yanying Yu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hefei Ye
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dandan Wu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hui Shi
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xianxuan Zhou
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
14
|
Balasubramaniam K, Sharma K, Goyal A. Structure and dynamics analysis of a new member heparinase II/III of family 12 polysaccharide lyase from Pseudopedobacter saltans by computational modeling and small-angle X-ray scattering. J Biomol Struct Dyn 2019; 38:2007-2020. [DOI: 10.1080/07391102.2019.1622453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Karthika Balasubramaniam
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
15
|
Gu Y, Wu X, Liu H, Pan Q, Chen Y. Photoswitchable Heparinase III for Enzymatic Preparation of Low Molecular Weight Heparin. Org Lett 2017; 20:48-51. [DOI: 10.1021/acs.orglett.7b03340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yayun Gu
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Xuri Wu
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Huan Liu
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Qi Pan
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines
and Laboratory of Chemical Biology, China Pharmaceutical University, 24 Tongjia St., Nanjing, Jiangsu Province 210009, People’s Republic of China
| |
Collapse
|
16
|
Expression and characterization of an enhanced recombinant heparinase I with chitin binding domain. Int J Biol Macromol 2017; 105:1250-1258. [DOI: 10.1016/j.ijbiomac.2017.07.158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023]
|
17
|
Hu G, Shao M, Gao X, Wang F, Liu C. Probing cleavage promiscuity of heparinase III towards chemoenzymatically synthetic heparan sulfate oligosaccharides. Carbohydr Polym 2017; 173:276-285. [DOI: 10.1016/j.carbpol.2017.05.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 01/07/2023]
|
18
|
Lane RS, St. Ange K, Zolghadr B, Liu X, Schäffer C, Linhardt RJ, DeAngelis PL. Expanding glycosaminoglycan chemical space: towards the creation of sulfated analogs, novel polymers and chimeric constructs. Glycobiology 2017; 27:646-656. [PMID: 28334971 PMCID: PMC5458544 DOI: 10.1093/glycob/cwx021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/11/2017] [Accepted: 02/27/2017] [Indexed: 02/01/2023] Open
Abstract
Glycosaminoglycans (GAGs) have therapeutic potential in areas ranging from angiogenesis, inflammation, hemostasis and cancer. GAG bioactivity is conferred by intrinsic structural features, such as disaccharide composition, glycosidic linkages and sulfation pattern. Unfortunately, the in vitro enzymatic synthesis of defined GAGs is quite restricted by a limited understanding of current GAG synthases and modifying enzymes. Our work provides insights into GAG-active enzymes through the creation of sulfated oligosaccharides, a new polysaccharide and chimeric polymers. We show that a C6-sulfonated uridine diphospho (UDP)-glucose (Glc) derivative, sulfoquinovose, can be used as an uronic acid donor, but not as a hexosamine donor, to cap hyaluronan (HA) chains by the HA synthase from the microbe Pasteurella multocida. However, the two heparosan (HEP) synthases from the same species, PmHS1 and PmHS2, could not employ the UDP-sulfoquinovose under similar conditions. Serendipitously, we found that PmHS2 co-polymerized Glc with glucuronic acid (GlcA), creating a novel HEP-like polymer we named hepbiuronic acid [-4-GlcAβ1-4-Glcα1-]n. In addition, we created chimeric block polymers composed of both HA and HEP segments; in these reactions GlcA-, but not N-acetylglucosamine-(GlcNAc), terminated GAG acceptors were recognized by their noncognate synthase for further extension, likely due to the common β-linkage connecting GlcA to GlcNAc in both of these GAGs. Overall, these GAG constructs provide new tools for studying biology and offer potential for future sugar-based therapeutics.
Collapse
Affiliation(s)
- Rachel S Lane
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kalib St. Ange
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Behnam Zolghadr
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | | | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, A-1190 Vienna, Austria
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biology
- Department of Chemical and Biological Engineering
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Heparin depolymerization by immobilized heparinase: A review. Int J Biol Macromol 2017; 99:721-730. [DOI: 10.1016/j.ijbiomac.2017.03.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/19/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
|
20
|
Gu Y, Lu M, Wang Z, Wu X, Chen Y. Expanding the Catalytic Promiscuity of Heparinase III from Pedobacter heparinus. Chemistry 2017; 23:2548-2551. [DOI: 10.1002/chem.201605929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Yayun Gu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| | - Meiling Lu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| | - Zongqiang Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| | - Xuri Wu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology; China Pharmaceutical University; 24 Tongjia St. Nanjing Jiangsu Province 210009 P. R. China
| |
Collapse
|
21
|
Ulaganathan T, Shi R, Yao D, Gu RX, Garron ML, Cherney M, Tieleman DP, Sterner E, Li G, Li L, Linhardt RJ, Cygler M. Conformational flexibility of PL12 family heparinases: structure and substrate specificity of heparinase III from Bacteroides thetaiotaomicron (BT4657). Glycobiology 2016; 27:176-187. [PMID: 27621378 DOI: 10.1093/glycob/cww096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 01/19/2023] Open
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides comprised of disaccharide repeat units, a hexuronic acid, glucuronic acid or iduronic acid, linked to a hexosamine, N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine. GAGs undergo further modification such as epimerization and sulfation. These polysaccharides are abundant in the extracellular matrix and connective tissues. GAGs function in stabilization of the fibrillar extracellular matrix, control of hydration, regulation of tissue, organism development by controlling cell cycle, cell behavior and differentiation. Niche adapted bacteria express enzymes called polysaccharide lyases (PL), which degrade GAGs for their nutrient content. PL have been classified into 24 sequence-related families. Comparison of 3D structures of the prototypic members of these families allowed identification of distant evolutionary relationships between lyases that were unrecognized at the sequence level, and identified occurrences of convergent evolution. We have characterized structurally and enzymatically heparinase III from Bacteroides thetaiotaomicron (BtHepIII; gene BT4657), which is classified within the PL12 family. BtHepIII is a 72.5 kDa protein. We present the X-ray structures of two crystal forms of BtHepIII at resolution 1.8 and 2.4 Å. BtHepIII contains two domains, the N-terminal α-helical domain forming a toroid and the C-terminal β-sheet domain. Comparison with recently determined structures of two other heparinases from the same PL12 family allowed us to identify structural flexibility in the arrangement of the domains indicating open-close movement. Based on comparison with other GAG lyases, we identified Tyr301 as the main catalytic residue and confirmed this by site-directed mutagenesis. We have characterized substrate preference of BtHepIII toward sulfate-poor heparan sulfate substrate.
Collapse
Affiliation(s)
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec City, QC G1V 0A6, Canada
| | - Deqiang Yao
- National Center for Protein Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China and Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ruo-Xu Gu
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada H4P 2R2, Canada
| | - Marie-Line Garron
- the Architecture et Fonction des Macromolécules Biologiques, UMR7257 CNRS, Aix-Marseille University, F-13288 Marseille, France, the INRA, USC1408 Architecture et Fonction des Macromolécules Biologiques, F-13288 Marseille, France
| | - Maia Cherney
- Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada H4P 2R2, Canada
| | - Eric Sterner
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Guoyun Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, S7N 5E5 Saskatchewan, Canada
| |
Collapse
|
22
|
Garron ML, Cygler M. Uronic polysaccharide degrading enzymes. Curr Opin Struct Biol 2014; 28:87-95. [PMID: 25156747 DOI: 10.1016/j.sbi.2014.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/24/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022]
Abstract
In the past several years progress has been made in the field of structure and function of polysaccharide lyases (PLs). The number of classified polysaccharide lyase families has increased to 23 and more detailed analysis has allowed the identification of more closely related subfamilies, leading to stronger correlation between each subfamily and a unique substrate. The number of as yet unclassified polysaccharide lyases has also increased and we expect that sequencing projects will allow many of these unclassified sequences to emerge as new families. The progress in structural analysis of PLs has led to having at least one representative structure for each of the families and for two unclassified enzymes. The newly determined structures have folds observed previously in other PL families and their catalytic mechanisms follow either metal-assisted or Tyr/His mechanisms characteristic for other PL enzymes. Comparison of PLs with glycoside hydrolases (GHs) shows several folds common to both classes but only for the β-helix fold is there strong indication of divergent evolution from a common ancestor. Analysis of bacterial genomes identified gene clusters containing multiple polysaccharide cleaving enzymes, the Polysaccharides Utilization Loci (PULs), and their gene complement suggests that they are organized to process completely a specific polysaccharide.
Collapse
Affiliation(s)
- Marie-Line Garron
- Aix-Marseille University, AFMB UMR7257, 163 Avenue de Luminy, 13288 Marseille, France; CNRS, AFMB UMR7257, 163 Avenue de Luminy, 13288 Marseille, France
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|