1
|
Arora S, Ainavarapu SRK. Probing Aromatic Side Chains Reveals the Site-Specific Melting in the SUMO1 Molten Globule. Biochemistry 2024. [PMID: 39540835 DOI: 10.1021/acs.biochem.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The conventional idea that a well-defined protein structure governs its functions is being challenged by the evolving significance of conformational flexibility and disorder in influencing protein activity. Here, we focus on the Small Ubiquitin-like MOdifier 1 (SUMO1) protein, a post-translational modifier, which binds various target proteins during the process of SUMOylation. We present evidence supporting the presence of both folded and "ordered" molten globule (MG) states in SUMO1 under physiological conditions. We investigate the MG state using a combination of near-UV and far-UV circular dichroism (CD) experiments. Moreover, we dissect the information from the near-UV CD data to gain specific insights about the MG intermediate. This is achieved by mutating specific aromatic amino acids, particularly creating a single-tyrosine mutant S1Y51 (by introducing Y21F and Y91F mutations) and a tryptophan mutant S1F66W. Spectroscopic studies of the mutants as a function of temperature revealed multiple insights. The transition from the folded to the MG state involves a site-specific loss of tertiary packing near Y51 but the region surrounding F66 retained most of its tertiary contacts, suggesting an ordered MG structure. We further demonstrate the increased solvent exposure of Y51 in the MG state by using time-resolved fluorescence and steady-state quenching experiments. The observed conformational flexibility and solvent accessibility, particularly around Y51 that is known to be involved in binding the cognate ligands such as PIASX and its peptide analogues, have biological and functional implications in mediating protein-protein interactions during the SUMOylation process.
Collapse
Affiliation(s)
- Simran Arora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
2
|
Bora JR, Mahalakshmi R. Photoradical-Mediated Catalyst-Independent Protein Cross-Link with Unusual Fluorescence Properties. Chembiochem 2023; 24:e202300380. [PMID: 37232210 PMCID: PMC7615464 DOI: 10.1002/cbic.202300380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/27/2023]
Abstract
Photo-actively modified natural amino acids have served as lucrative probes for precise mapping of the dynamics, interaction networks, and turnover of cytosolic proteins both in vivo and ex vivo. In our attempts to extend the utility of photoreactive reporters to map the molecular characteristics of vital membrane proteins, we carried out site-selective incorporation of 7-fluoro-indole in the human mitochondrial outer membrane protein VDAC2 (voltage-dependent anion channel isoform 2), with the aim of generating Trp-Phe/Tyr cross-links. Prolonged irradiation at 282 nm provided us with a surprisingly unusual fluorophore that displayed sizably red-shifted excitation (λex-max =280 nm→360 nm) and emission (λem-max =330 nm→430 nm) spectra that was reversible with organic solvents. By measuring the kinetics of the photo-activated cross-linking with a library of hVDAC2 variants, we demonstrate that formation of this unusual fluorophore is kinetically retarded, independent of tryptophan, and is site-specific. Using other membrane (Tom40 and Sam50) and cytosolic (MscR and DNA Pol I) proteins, we additionally show that formation of this fluorophore is protein-independent. Our findings reveal the photoradical-mediated accumulation of reversible tyrosine cross-links, with unusual fluorescent properties. Our findings have immediate applications in protein biochemistry and UV-mediated protein aggregation and cellular damage, opening avenues for formulating therapeutics that prolong cell viability in humans.
Collapse
Affiliation(s)
- Jinam Ravindra Bora
- Molecular Biophysics Laboratory Department of Biological Sciences Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh (India)
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory Department of Biological Sciences Indian Institute of Science Education and Research Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh (India)
| |
Collapse
|
3
|
Abstract
Proteins have dynamic structures that undergo chain motions on time scales spanning from picoseconds to seconds. Resolving the resultant conformational heterogeneity is essential for gaining accurate insight into fundamental mechanistic aspects of the protein folding reaction. The use of high-resolution structural probes, sensitive to population distributions, has begun to enable the resolution of site-specific conformational heterogeneity at different stages of the folding reaction. Different states populated during protein folding, including the unfolded state, collapsed intermediate states, and even the native state, are found to possess significant conformational heterogeneity. Heterogeneity in protein folding and unfolding reactions originates from the reduced cooperativity of various kinds of physicochemical interactions between various structural elements of a protein, and between a protein and solvent. Heterogeneity may arise because of functional or evolutionary constraints. Conformational substates within the unfolded state and the collapsed intermediates that exchange at rates slower than the subsequent folding steps give rise to heterogeneity on the protein folding pathways. Multiple folding pathways are likely to represent distinct sequences of structure formation. Insight into the nature of the energy barriers separating different conformational states populated during (un)folding can also be obtained by resolving heterogeneity.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India.,Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
4
|
Bhattacharjee R, Udgaonkar JB. Structural Characterization of the Cooperativity of Unfolding of a Heterodimeric Protein using Hydrogen Exchange-Mass Spectrometry. J Mol Biol 2021; 433:167268. [PMID: 34563547 DOI: 10.1016/j.jmb.2021.167268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Little is known about how the sequence of structural changes in one chain of a heterodimeric protein is coupled to those in the other chain during protein folding and unfolding reactions, and whether individual secondary structural changes in the two chains occur in one or many coordinated steps. Here, the unfolding mechanism of a small heterodimeric protein, double chain monellin, has been characterized using hydrogen exchange-mass spectrometry. Transient structure opening, which enables HX, was found to be describable by a five state N ↔ I1 ↔ I2 ↔ I3 ↔ U mechanism. Structural changes occur gradually in the first three steps, and cooperatively in the last step. β strands 2, 4 and 5, as well as the α-helix undergo transient unfolding during all three non-cooperative steps, while β1 and the two loops on both sides of the helix undergo transient unfolding during the first two steps. In the absence of GdnHCl, only β3 in chain A of the protein unfolds during the last cooperative step, while in the presence of 1 M GdnHCl, not only β3, but also β2 in chain B unfolds cooperatively. Hence, the extent of cooperative structural change and size of the cooperative unfolding unit increase when the protein is destabilized by denaturant. The naturally evolved two-chain variant of monellin folds and unfolds in a more cooperative manner than does a single chain variant created artificially, suggesting that increasing folding cooperativity, even at the cost of decreasing stability, may be a driving force in the evolution of proteins.
Collapse
Affiliation(s)
- Rupam Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Indian Institute of Science Education and Research, Pune, India. https://twitter.com/Rupam_B01
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
5
|
Bhatia S, Krishnamoorthy G, Udgaonkar JB. Resolving Site-Specific Heterogeneity of the Unfolded State under Folding Conditions. J Phys Chem Lett 2021; 12:3295-3302. [PMID: 33764778 DOI: 10.1021/acs.jpclett.1c00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the properties of the unfolded state under folding conditions is of fundamental importance for gaining mechanistic insight into folding as well as misfolding reactions. Toward achieving this objective, the folding reaction of a small protein, monellin, has been resolved structurally and temporally, with the use of the multisite time-resolved FRET methodology. The present study establishes that the initial polypeptide chain collapse is not only heterogeneous but also structurally asymmetric and nonuniform. The population-averaged size for the segments spanning parts of the β-sheet decreases much more than that for the α-helix. Multisite measurements enabled specific and nonspecific components of the initial chain collapse to be discerned. The expanded and compact intermediate subensembles have the properties of a nonspecifically collapsed (hence, random-coil-like) and specifically collapsed (hence, globular) polymer, respectively. During subsequent folding, both the subensembles underwent contraction to varying extents at the four monitored segments, which was close to gradual in nature. The expanded intermediate subensemble exhibited an additional very slow contraction, suggestive of the presence of non-native interactions that result in a higher effective viscosity slowing down intrachain motions under folding conditions.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560 065, India
- Indian Institute of Science Education and Research, Pune 411 008, India
| | | | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560 065, India
- Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|
6
|
Bhatia S, Krishnamoorthy G, Udgaonkar JB. Mapping Distinct Sequences of Structure Formation Differentiating Multiple Folding Pathways of a Small Protein. J Am Chem Soc 2021; 143:1447-1457. [PMID: 33430589 DOI: 10.1021/jacs.0c11097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To determine experimentally how the multiple folding pathways of a protein differ, in the order in which the structural parts are assembled, has been a long-standing challenge. To resolve whether structure formation during folding can progress in multiple ways, the complex folding landscape of monellin has been characterized, structurally and temporally, using the multisite time-resolved FRET methodology. After an initial heterogeneous polypeptide chain collapse, structure formation proceeds on parallel pathways. Kinetic analysis of the population evolution data across various protein segments provides a clear structural distinction between the parallel pathways. The analysis leads to a phenomenological model that describes how and when discrete segments acquire structure independently of each other in different subensembles of protein molecules. When averaged over all molecules, structure formation is seen to progress as α-helix formation, followed by core consolidation, then β-sheet formation, and last end-to-end distance compaction. Parts of the protein that are closer in the primary sequence acquire structure before parts separated by longer sequence.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560 065, India.,Indian Institute of Science Education and Research, Pune 411 008, India
| | | | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560 065, India.,Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|
7
|
Kaushik V, Prasad S, Goel M. Biophysical and biochemical characterization of a thermostable archaeal cyclophilin from Methanobrevibacter ruminantium. Int J Biol Macromol 2019; 139:139-152. [DOI: 10.1016/j.ijbiomac.2019.07.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023]
|
8
|
Jethva PN, Udgaonkar JB. The Osmolyte TMAO Modulates Protein Folding Cooperativity by Altering Global Protein Stability. Biochemistry 2018; 57:5851-5863. [DOI: 10.1021/acs.biochem.8b00698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Prashant N. Jethva
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
- Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
9
|
Krishnamoorthy G. Intramolecular Distance Distribution Reveals Mechanisms in Protein Folding and Dynamics. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2018. [DOI: 10.1007/s40010-018-0525-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Bhatia S, Krishnamoorthy G, Udgaonkar JB. Site-specific time-resolved FRET reveals local variations in the unfolding mechanism in an apparently two-state protein unfolding transition. Phys Chem Chem Phys 2018; 20:3216-3232. [DOI: 10.1039/c7cp06214a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Using multi-site time-resolved FRET, it is shown that equilibrium unfolding of monellin is not only heterogeneous, but that the degree of non-cooperativity differs between the sole α-helix and different parts of the β-sheet.
Collapse
Affiliation(s)
- Sandhya Bhatia
- National Centre for Biological Sciences
- Tata Institute of Fundamental Research
- Bengaluru 560065
- India
| | | | - Jayant B. Udgaonkar
- National Centre for Biological Sciences
- Tata Institute of Fundamental Research
- Bengaluru 560065
- India
| |
Collapse
|
11
|
Fluorescence Lifetime Distribution Brings Out Mechanisms Involving Biomolecules While Quantifying Population Heterogeneity. REVIEWS IN FLUORESCENCE 2017 2018. [DOI: 10.1007/978-3-030-01569-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Jethva PN, Udgaonkar JB. Modulation of the Extent of Cooperative Structural Change During Protein Folding by Chemical Denaturant. J Phys Chem B 2017; 121:8263-8275. [DOI: 10.1021/acs.jpcb.7b04473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Prashant N. Jethva
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B. Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
13
|
Otosu T, Ishii K, Oikawa H, Arai M, Takahashi S, Tahara T. Highly Heterogeneous Nature of the Native and Unfolded States of the B Domain of Protein A Revealed by Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. J Phys Chem B 2017; 121:5463-5473. [DOI: 10.1021/acs.jpcb.7b00546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Kunihiko Ishii
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Oikawa
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1
Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Munehito Arai
- Department
of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Takahashi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1
Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Tahei Tahara
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
14
|
Malhotra P, Udgaonkar JB. How cooperative are protein folding and unfolding transitions? Protein Sci 2016; 25:1924-1941. [PMID: 27522064 PMCID: PMC5079258 DOI: 10.1002/pro.3015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022]
Abstract
A thermodynamically and kinetically simple picture of protein folding envisages only two states, native (N) and unfolded (U), separated by a single activation free energy barrier, and interconverting by cooperative two-state transitions. The folding/unfolding transitions of many proteins occur, however, in multiple discrete steps associated with the formation of intermediates, which is indicative of reduced cooperativity. Furthermore, much advancement in experimental and computational approaches has demonstrated entirely non-cooperative (gradual) transitions via a continuum of states and a multitude of small energetic barriers between the N and U states of some proteins. These findings have been instrumental towards providing a structural rationale for cooperative versus noncooperative transitions, based on the coupling between interaction networks in proteins. The cooperativity inherent in a folding/unfolding reaction appears to be context dependent, and can be tuned via experimental conditions which change the stabilities of N and U. The evolution of cooperativity in protein folding transitions is linked closely to the evolution of function as well as the aggregation propensity of the protein. A large activation energy barrier in a fully cooperative transition can provide the kinetic control required to prevent the accumulation of partially unfolded forms, which may promote aggregation. Nevertheless, increasing evidence for barrier-less "downhill" folding, as well as for continuous "uphill" unfolding transitions, indicate that gradual non-cooperative processes may be ubiquitous features on the free energy landscape of protein folding.
Collapse
Affiliation(s)
- Pooja Malhotra
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.
| |
Collapse
|
15
|
Limited cooperativity in protein folding. Curr Opin Struct Biol 2016; 36:58-66. [DOI: 10.1016/j.sbi.2015.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/09/2015] [Indexed: 01/07/2023]
|
16
|
Orevi T, Rahamim G, Amir D, Kathuria S, Bilsel O, Matthews CR, Haas E. Sequential Closure of Loop Structures Forms the Folding Nucleus during the Refolding Transition of the Escherichia coli Adenylate Kinase Molecule. Biochemistry 2015; 55:79-91. [DOI: 10.1021/acs.biochem.5b00849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tomer Orevi
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Gil Rahamim
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Dan Amir
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| | - Sagar Kathuria
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Osman Bilsel
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - C. Robert Matthews
- Department
of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Elisha Haas
- The
Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel 52900
| |
Collapse
|
17
|
Where the complex things are: single molecule and ensemble spectroscopic investigations of protein folding dynamics. Curr Opin Struct Biol 2015; 36:1-9. [PMID: 26687767 DOI: 10.1016/j.sbi.2015.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/10/2015] [Indexed: 01/11/2023]
Abstract
Progress in our understanding of the simple folding dynamics of small proteins and the complex dynamics of large proteins is reviewed. Recent characterizations of the folding transition path of small proteins revealed a simple dynamics explainable by the native centric model. In contrast, the accumulated data showed the substates containing residual structures in the unfolded state and partially populated intermediates, causing complexity in the early folding dynamics of small proteins. The size of the unfolded proteins in the absence of denaturants is likely expanded but still controversial. The steady progress in the observation of folding of large proteins has clarified the rapid formation of long-range contacts that seem inconsistent with the native centric model, suggesting that the folding strategy of large proteins is distinct from that of small proteins.
Collapse
|
18
|
Zhu D, Li W, Wen HM, Yu S, Miao ZY, Kang A, Zhang A. Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF(165) based on Mn-doped ZnS quantum dots. Biosens Bioelectron 2015; 74:1053-60. [PMID: 26276542 DOI: 10.1016/j.bios.2015.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 01/31/2023]
Abstract
A silver nanoparticles (AgNPs)-enhanced time-resolved fluorescence (TR-FL) sensor based on long-lived fluorescent Mn-doped ZnS quantum dots (QDs) is developed for the sensitive detection of vascular endothelial growth factor-165 (VEGF165), a predominant cancer biomarker in cancer angiogenesis. The aptamers bond with the Mn-doped ZnS QDs and the BHQ-2 quencher-labelling strands hybridized in duplex are coupled with streptavidin (SA)-functionalized AgNPs to form the AgNPs-enhanced TR-FL sensor, showing lower fluorescence intensity in the duplex state due to the fluorescence resonance energy transfer (FRET) between the Mn-doped ZnS QDs and quenchers. Upon the addition of VEGF165, the BHQ-2 quencher-labelling strands of the duplex are displaced, leading to the disruption of the FRET. As a result, the fluorescence of the Mn-doped QDs within the proximity of the AgNPs is recovered. The FL signal can be measured free of the interference of short-lived background by setting appropriate delay time and gate time, which offers a signal with high signal-to-noise ratio in photoluminescent biodetection. Compared with the bare TR-FL sensor, the AgNPs-based TR-FL sensor showed a huge improvement in fluorescence based on metal-enhanced fluorescence (MEF) effect, and the sensitivity increased 11-fold with the detection limit of 0.08 nM. In addition, the sensor provided a wide range of linear detection from 0.1 nM to 16 nM.
Collapse
Affiliation(s)
- Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Hong-Mei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Sheng Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhao-Yi Miao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - An Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Aihua Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| |
Collapse
|
19
|
Sequence, structure, and cooperativity in folding of elementary protein structural motifs. Proc Natl Acad Sci U S A 2015. [PMID: 26216963 DOI: 10.1073/pnas.1506309112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Residue-level unfolding of two helix-turn-helix proteins--one naturally occurring and one de novo designed--is reconstructed from multiple sets of site-specific (13)C isotopically edited infrared (IR) and circular dichroism (CD) data using Ising-like statistical-mechanical models. Several model variants are parameterized to test the importance of sequence-specific interactions (approximated by Miyazawa-Jernigan statistical potentials), local structural flexibility (derived from the ensemble of NMR structures), interhelical hydrogen bonds, and native contacts separated by intervening disordered regions (through the Wako-Saitô-Muñoz-Eaton scheme, which disallows such configurations). The models are optimized by directly simulating experimental observables: CD ellipticity at 222 nm for model proteins and their fragments and (13)C-amide I' bands for multiple isotopologues of each protein. We find that data can be quantitatively reproduced by the model that allows two interacting segments flanking a disordered loop (double sequence approximation) and incorporates flexibility in the native contact maps, but neither sequence-specific interactions nor hydrogen bonds are required. The near-identical free energy profiles as a function of the global order parameter are consistent with expected similar folding kinetics for nearly identical structures. However, the predicted folding mechanism for the two motifs is different, reflecting the order of local stability. We introduce free energy profiles for "experimental" reaction coordinates--namely, the degree of local folding as sensed by site-specific (13)C-edited IR, which highlight folding heterogeneity and contrast its overall, average description with the detailed, local picture.
Collapse
|
20
|
Oikawa H, Kamagata K, Arai M, Takahashi S. Complexity of the folding transition of the B domain of protein A revealed by the high-speed tracking of single-molecule fluorescence time series. J Phys Chem B 2015; 119:6081-91. [PMID: 25938341 DOI: 10.1021/acs.jpcb.5b00414] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The equilibrium unfolding transition of the B domain of protein A (BdpA) was investigated by using single-molecule fluorescence spectroscopy based on line-confocal detection of fast-flowing samples. The method achieved the time resolution of 120 μs and the observation time of a few milliseconds in the single-molecule time-series measurements of fluorescence resonance energy transfer (FRET). Two samples of BdpA doubly labeled with donor and acceptor fluorophores, the first possessing fluorophores at residues 22 and 55 (sample 1) and the second at residues 5 and 55 (sample 2), were prepared. The equilibrium unfolding transition induced by guanidium chloride (GdmCl) was monitored by bulk measurements and demonstrated that the both samples obey the apparent two-state unfolding. In the absence of GdmCl, the single-molecule FRET measurements for the both samples showed a single peak assignable to the native state (N). The FRET efficiency for N shifts to lower values as the increase of GdmCl concentration, suggesting the swelling of the native state structure. At the higher concentration of GdmCl, the both samples convert to the unfolded state (U). Near the unfolding midpoint for sample 1, the kinetic exchange between N and U causes the averaging of the two states and the higher values of the relative fluctuation. The time series for different molecules in U showed slightly different FRET efficiencies, suggesting the apparent heterogeneity. Thus, the high-speed tracking of fluorescence signals from single molecules revealed a complexity and heterogeneity hidden in the apparent two-state behavior of protein folding.
Collapse
Affiliation(s)
- Hiroyuki Oikawa
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Kiyoto Kamagata
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Munehito Arai
- ‡Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.,§PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi Takahashi
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
21
|
Naganathan AN, Muñoz V. Thermodynamics of Downhill Folding: Multi-Probe Analysis of PDD, a Protein that Folds Over a Marginal Free Energy Barrier. J Phys Chem B 2014; 118:8982-94. [DOI: 10.1021/jp504261g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Athi N. Naganathan
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Victor Muñoz
- Department
of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- Centro Nacional
de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| |
Collapse
|
22
|
Kubelka GS, Kubelka J. Site-Specific Thermodynamic Stability and Unfolding of a de Novo Designed Protein Structural Motif Mapped by 13C Isotopically Edited IR Spectroscopy. J Am Chem Soc 2014; 136:6037-48. [DOI: 10.1021/ja500918k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ginka S. Kubelka
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jan Kubelka
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|