1
|
Vadivel K, Zaiss AK, Kumar Y, Fabian FM, Ismail AEA, Arbing MA, Buchholz WG, Velander WH, Bajaj SP. Enhanced Antifibrinolytic Efficacy of a Plasmin-Specific Kunitz-Inhibitor (60-Residue Y11T/L17R with C-Terminal IEK) of Human Tissue Factor Pathway Inhibitor Type-2 Domain1. J Clin Med 2020; 9:E3684. [PMID: 33212896 PMCID: PMC7698382 DOI: 10.3390/jcm9113684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Current antifibrinolytic agents reduce blood loss by inhibiting plasmin active sites (e.g., aprotinin) or by preventing plasminogen/tissue plasminogen activator (tPA) binding to fibrin clots (e.g., ε-aminocaproic acid and tranexamic acid); however, they have adverse side effects. Here, we expressed 60-residue (NH2NAE…IEKCOOH) Kunitz domain1 (KD1) mutants of human tissue factor pathway inhibitor type-2 that inhibit plasmin as well as plasminogen activation. A single (KD1-L17R-KCOOH) and a double mutant (KD1-Y11T/L17R- KCOOH) were expressed in Escherichia coli as His-tagged constructs, each with enterokinase cleavage sites. KD1-Y11T/L17R-KCOOH was also expressed in Pichia pastoris. KD1-Y11T/L17R-KCOOH inhibited plasmin comparably to aprotinin and bound to the kringle domains of plasminogen/plasmin and tPA with Kd of ~50 nM and ~35 nM, respectively. Importantly, compared to aprotinin, KD1-L17R-KCOOH and KD1-Y11T/L17R-KCOOH did not inhibit kallikrein. Moreover, the antifibrinolytic potential of KD1-Y11T/L17R-KCOOH was better than that of KD1-L17R-KCOOH and similar to that of aprotinin in plasma clot-lysis assays. In thromboelastography experiments, KD1-Y11T/L17R-KCOOH was shown to inhibit fibrinolysis in a dose dependent manner and was comparable to aprotinin at a higher concentration. Further, KD1-Y11T/L17R-KCOOH did not induce cytotoxicity in primary human endothelial cells or fibroblasts. We conclude that KD1-Y11T/L17R-KCOOH is comparable to aprotinin, the most potent known inhibitor of plasmin and can be produced in large amounts using Pichia.
Collapse
Affiliation(s)
- Kanagasabai Vadivel
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.V.); (A.K.Z.); (Y.K.)
| | - Anne K. Zaiss
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.V.); (A.K.Z.); (Y.K.)
| | - Yogesh Kumar
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.V.); (A.K.Z.); (Y.K.)
| | - Frank M. Fabian
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588, USA; (F.M.F.); (A.E.A.I.); (W.G.B.); (W.H.V.)
- Chemistry Department, Walla Walla University, College Place, WA 99324, USA
| | - Ayman E. A. Ismail
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588, USA; (F.M.F.); (A.E.A.I.); (W.G.B.); (W.H.V.)
| | - Mark A. Arbing
- Protein Expression Technology Center, UCLA-DOE Institute, University of California, Los Angeles, CA 90095, USA;
| | - Wallace G. Buchholz
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588, USA; (F.M.F.); (A.E.A.I.); (W.G.B.); (W.H.V.)
| | - William H. Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588, USA; (F.M.F.); (A.E.A.I.); (W.G.B.); (W.H.V.)
| | - S. Paul Bajaj
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (K.V.); (A.K.Z.); (Y.K.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Vadivel K, Kumar Y, Ogueli GI, Ponnuraj SM, Wongkongkathep P, Loo JA, Bajaj MS, Bajaj SP. S2'-subsite variations between human and mouse enzymes (plasmin, factor XIa, kallikrein) elucidate inhibition differences by tissue factor pathway inhibitor -2 domain1-wild-type, Leu17Arg-mutant and aprotinin. J Thromb Haemost 2016; 14:2509-2523. [PMID: 27797450 PMCID: PMC5504414 DOI: 10.1111/jth.13538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 12/20/2022]
Abstract
Essentials Current antifibrinolytics - aminocaproic acid and tranexamic acid-can cause seizures or renal injury. KD1L17R -KT , aprotinin and tranexamic acid were tested in a modified mouse tail-amputation model. S2'-subsite variations between human and mouse factor XIa result in vastly different inhibition profiles. KD1L17R -KT reduces blood loss and D-dimer levels in mouse with unobserved seizures or renal injury. SUMMARY Background Using tissue factor pathway inhibitor (TFPI)-2 Kunitz domain1 (KD1), we obtained a bifunctional antifibrinolytic molecule (KD1L17R -KT ) with C-terminal lysine (kringle domain binding) and P2'-residue arginine (improved specificity towards plasmin). KD1L17R -KT strongly inhibited human plasmin (hPm), with no inhibition of human kallikrein (hKLK) or factor XIa (hXIa). Furthermore, KD1L17R -KT reduced blood loss comparable to aprotinin in a mouse liver-laceration model of organ hemorrhage. However, effectiveness of these antifibrinolytic agents in a model of hemorrhage mimicking extremity trauma and their inhibition efficiencies for mouse enzymes (mPm, mKLK or mXIa) remain to be determined. Objective To determine potential differences in inhibition constants of various antifibrinolytic agents against mouse and human enzymes and test their effectiveness in a modified mouse tail-amputation hemorrhage model. Methods/Results Unexpectedly, mXIa was inhibited with ~ 17-fold increased affinity by aprotinin (Ki ~ 20 nm) and with measurable affinity for KD1L17R -KT (Ki ~ 3 μm); in contrast, KD1WT -VT inhibited hXIa or mXIa with similar affinity. Compared with hPm, mPm had ~ 3-fold reduced affinity, whereas species specificity for hKLK and mKLK was comparable for each inhibitor. S2'-subsite variations largely accounted for the observed differences. KD1L17R -KT and aprotinin were more effective than KD1WT -VT or tranexamic acid in inhibiting tPA-induced mouse plasma clot lysis. Further, KD1L17R -KT was more effective than KD1WT -VT and was comparable to aprotinin and tranexamic acid in reducing blood loss and D-dimer levels in the mouse tail-amputation model. Conclusions Inhibitor potencies differ between antifibrinolytic agents against human and mouse enzymes. KD1L17R -KT is effective in reducing blood loss in a tail-amputation model that mimics extremity injury.
Collapse
Affiliation(s)
- K Vadivel
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | - Y Kumar
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | - G I Ogueli
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | - S M Ponnuraj
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | - P Wongkongkathep
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - J A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - M S Bajaj
- Division of Pulmonology and Critical Care, Department of Medicine, University of California, Los Angeles, CA, USA
| | - S P Bajaj
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Vadivel K, Ponnuraj SM, Kumar Y, Zaiss AK, Bunce MW, Camire RM, Wu L, Evseenko D, Herschman HR, Bajaj MS, Bajaj SP. Platelets contain tissue factor pathway inhibitor-2 derived from megakaryocytes and inhibits fibrinolysis. J Biol Chem 2014; 289:31647-61. [PMID: 25262870 DOI: 10.1074/jbc.m114.569665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) is a homologue of TFPI-1 and contains three Kunitz-type domains and a basic C terminus region. The N-terminal domain of TFPI-2 is the only inhibitory domain, and it inhibits plasma kallikrein, factor XIa, and plasmin. However, plasma TFPI-2 levels are negligible (≤20 pM) in the context of influencing clotting or fibrinolysis. Here, we report that platelets contain significant amounts of TFPI-2 derived from megakaryocytes. We employed RT-PCR, Western blotting, immunohistochemistry, and confocal microscopy to determine that platelets, MEG-01 megakaryoblastic cells, and bone marrow megakaryocytes contain TFPI-2. ELISA data reveal that TFPI-2 binds factor V (FV) and partially B-domain-deleted FV (FV-1033) with K(d) ~9 nM and binds FVa with K(d) ~100 nM. Steady state analysis of surface plasmon resonance data reveal that TFPI-2 and TFPI-1 bind FV-1033 with K(d) ~36-48 nM and bind FVa with K(d) ~252-456 nM. Further, TFPI-1 (but not TFPI-1161) competes with TFPI-2 in binding to FV. These data indicate that the C-terminal basic region of TFPI-2 is similar to that of TFPI-1 and plays a role in binding to the FV B-domain acidic region. Using pull-down assays and Western blots, we show that TFPI-2 is associated with platelet FV/FVa. TFPI-2 (~7 nM) in plasma of women at the onset of labor is also, in part, associated with FV. Importantly, TFPI-2 in platelets and in plasma of pregnant women inhibits FXIa and tissue-type plasminogen activator-induced clot fibrinolysis. In conclusion, TFPI-2 in platelets from normal or pregnant subjects and in plasma from pregnant women binds FV/Va and regulates intrinsic coagulation and fibrinolysis.
Collapse
Affiliation(s)
| | | | - Yogesh Kumar
- From the UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery
| | - Anne K Zaiss
- the Department of Molecular and Medical Pharmacology
| | - Matthew W Bunce
- the Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rodney M Camire
- the Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ling Wu
- From the UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery
| | - Denis Evseenko
- From the UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery
| | - Harvey R Herschman
- the Department of Molecular and Medical Pharmacology, the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | - Madhu S Bajaj
- the Department of Medicine, Division of Pulmonology and Critical Care, and
| | - S Paul Bajaj
- From the UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| |
Collapse
|