1
|
Kitainda V, Jez JM. Kinetic and catalytic mechanisms of the methionine-derived glucosinolate biosynthesis enzyme methylthioalkylmalate synthase. J Biol Chem 2024; 300:107814. [PMID: 39322014 PMCID: PMC11532901 DOI: 10.1016/j.jbc.2024.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
In Brassica plants, methionine-derived aliphatic glucosinolates are chemically diverse natural products that serve as plant defense compounds, as well as molecules with dietary health-promoting effects. During their biosynthesis, methylthioalkylmalate synthase (MAMS) catalyzes the elongation reaction of the aliphatic chain. The MAMS-catalyzed condensation of 4-methylthio-2-oxobutanoic acid and acetyl-CoA generates a 2-malate derivative that either enters the pathway for the synthesis of C3-glucosinolates or undergoes additional extension reactions, which lead to C4- to C9-glucosinolates. Recent determination of the x-ray crystal structure of MAMS from Brassica juncea (Indian mustard) provided insight on the molecular evolution of MAMS, especially substrate specificity changes, from the leucine biosynthesis enzyme α-isopropylmalate synthase but left details of the reaction mechanism unanswered. Here we use the B. juncea MAMS2A (BjMAMS2A) isoform to analyze the kinetic and catalytic mechanisms of this enzyme. Initial velocity studies indicate that MAMS follows an ordered bi bi kinetic mechanism, which based on the x-ray crystal structure, involves binding of 4-methylthio-2-oxobutanoic acid followed by acetyl-CoA. Examination of the pH-dependence of kcat and kcat/Km are consistent with acid/base catalysis. Site-directed mutagenesis of three residues originally proposed to function in the reaction mechanism-Arg89 (R89A, R89K, R89Q), Glu227 (E227A, E227D, E227Q), and His388 (H388A, H388N, H388Q, H388D, and H388E)-showed that only two mutants (E227Q and H388N) retained activity. Based on available structural and biochemical data, a revised reaction mechanism for MAMS-catalyzed elongation of methionine-derived aliphatic glucosinolates is proposed, which is likely also conserved in α-isopropylmalate synthase from leucine biosynthesis in plants and microbes.
Collapse
Affiliation(s)
- Vivian Kitainda
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
2
|
Stewart LE, Owens SL, Ahmed SR, Lang Harman RM, Mori S. Characterization of HphA: The First Enzyme in the Homologation Pathway of l-Phenylalanine and l-Tyrosine. Chembiochem 2024; 25:e202400369. [PMID: 38896437 PMCID: PMC11382533 DOI: 10.1002/cbic.202400369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Homologation of amino acids is the insertion or deletion of a methylene group to their side chain, which is a relatively uncommon chemical transformation observed in peptide natural product (NP) structure. Homologated amino acids can potentially make the NP more stable in a biological system, but its biosynthesis is yet to be understood. This study biochemically characterized the first of three unexplored enzymes in the homologation pathway of l-phenylalanine and l-tyrosine. Previously proposed reactions catalyzed by HphA were confirmed by reversed-phase high-performance liquid chromatography and tandem mass spectrometry analysis. The substrate profile and kinetic parameters showed high selectivity for the natural substrates and their close analogs. The comparability of HphA to homologous enzymes in primary metabolic pathways, 2-isopropylmate synthase and homocitrate synthase which are involved in l-leucine and l-lysine biosynthesis, respectively, was validated by bioinformatical and site-directed mutagenesis studies. The knowledge obtained from this study has deepened the understanding of the homologation of amino acids, which can lead to future combinatorial biosynthesis and metabolic engineering studies.
Collapse
Affiliation(s)
- Laura E Stewart
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Skyler L Owens
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Shopno R Ahmed
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Rebecca M Lang Harman
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Shogo Mori
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Naz S, Liu P, Farooq U, Ma H. Insight into de-regulation of amino acid feedback inhibition: a focus on structure analysis method. Microb Cell Fact 2023; 22:161. [PMID: 37612753 PMCID: PMC10464499 DOI: 10.1186/s12934-023-02178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Regulation of amino acid's biosynthetic pathway is of significant importance to maintain homeostasis and cell functions. Amino acids regulate their biosynthetic pathway by end-product feedback inhibition of enzymes catalyzing committed steps of a pathway. Discovery of new feedback resistant enzyme variants to enhance industrial production of amino acids is a key objective in industrial biotechnology. Deregulation of feedback inhibition has been achieved for various enzymes using in vitro and in silico mutagenesis techniques. As enzyme's function, its substrate binding capacity, catalysis activity, regulation and stability are dependent on its structural characteristics, here, we provide detailed structural analysis of all feedback sensitive enzyme targets in amino acid biosynthetic pathways. Current review summarizes information regarding structural characteristics of various enzyme targets and effect of mutations on their structures and functions especially in terms of deregulation of feedback inhibition. Furthermore, applicability of various experimental as well as computational mutagenesis techniques to accomplish feedback resistance has also been discussed in detail to have an insight into various aspects of research work reported in this particular field of study.
Collapse
Affiliation(s)
- Sadia Naz
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad, 22060, Pakistan
| | - Hongwu Ma
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
4
|
Sonnabend R, Seiler L, Gressler M. Regulation of the Leucine Metabolism in Mortierella alpina. J Fungi (Basel) 2022; 8:196. [PMID: 35205950 PMCID: PMC8880518 DOI: 10.3390/jof8020196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
The oleaginous fungus Mortierella alpina is a safe source of polyunsaturated fatty acids (PUFA) in industrial food and feed production. Besides PUFA production, pharmaceutically relevant surface-active and antimicrobial oligopeptides were isolated from this basal fungus. Both production of fatty acids and oligopeptides rely on the biosynthesis and high turnover of branched-chain-amino acids (BCAA), especially l-leucine. However, the regulation of BCAA biosynthesis in basal fungi is largely unknown. Here, we report on the regulation of the leucine, isoleucine, and valine metabolism in M. alpina. In contrast to higher fungi, the biosynthetic genes for BCAA are hardly transcriptionally regulated, as shown by qRT-PCR analysis, which suggests a constant production of BCAAs. However, the enzymes of the leucine metabolism are tightly metabolically regulated. Three enzymes of the leucine metabolism were heterologously produced in Escherichia coli, one of which is inhibited by allosteric feedback loops: The key regulator is the α-isopropylmalate synthase LeuA1, which is strongly disabled by l-leucine, α-ketoisocaproate, and propionyl-CoA, the precursor of the odd-chain fatty acid catabolism. Its gene is not related to homologs from higher fungi, but it has been inherited from a phototrophic ancestor by horizontal gene transfer.
Collapse
Affiliation(s)
| | | | - Markus Gressler
- Pharmaceutical Microbiology, Friedrich-Schiller-University Jena, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745 Jena, Germany; (R.S.); (L.S.)
| |
Collapse
|
5
|
Biochemical characterization of 2-phosphinomethylmalate synthase from Streptomyces hygroscopicus: A member of the DRE-TIM metallolyase superfamily. Arch Biochem Biophys 2020; 691:108489. [PMID: 32697946 DOI: 10.1016/j.abb.2020.108489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022]
Abstract
2-Phosphinomethylmalate synthase (PMMS) from Streptomyces hygroscopicus catalyzes the first step in the biosynthesis of the herbicide bialophos using 3-phosphinopyruvic acid and acetyl coenzyme A as substrates to form 2-phosphinomethylmalic acid and coenzyme A. PMMS belongs to the Claisen condensation-like (CC-like) subgroup of the DRE-TIM metallolyase superfamily, which uses conserved active site architecture to catalyze a functionally-diverse set of reactions. Analysis of a sequence similarity network for the CC-like subgroup identified PMMS and the related R-citrate synthase in an early-diverging cluster suggesting that this group of sequences are more distinct in relation to other Claisen-condensation subgroup members. To better understand the structure/function landscape of the CC-like subgroup PMMS was recombinantly expressed in Escherichia coli, purified, and characterized with respect to its enzymatic properties. Using oxaloacetate as a substrate analog, the recombinantly-produced enzyme exhibited improved Michaelis constants relative to the previously reported natively-produced enzyme. Results from pH rate profiles and kinetic isotope effects were consistent with results from other members of the CC-like subgroup supporting acid-base chemistry and hydrolysis of the direct Claisen-condensation product as the rate-determining step. Results of site-directed mutagenesis experiments indicate that PMMS uses an active-site architecture similar to homocitrate synthase to select for a dicarboxylic acid substrate.
Collapse
|
6
|
Changing substrate specificity and iteration of amino acid chain elongation in glucosinolate biosynthesis through targeted mutagenesis of Arabidopsis methylthioalkylmalate synthase 1. Biosci Rep 2019; 39:BSR20190446. [PMID: 31175145 PMCID: PMC6603273 DOI: 10.1042/bsr20190446] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Methylthioalkylmalate synthases catalyse the committing step of amino acid chain elongation in glucosinolate biosynthesis. As such, this group of enzymes plays an important role in determining the glucosinolate composition of Brassicaceae species, including Arabidopsis thaliana. Based on protein structure modelling of MAM1 from A. thaliana and analysis of 57 MAM sequences from Brassicaceae species, we identified four polymorphic residues likely to interact with the 2-oxo acid substrate. Through site-directed mutagenesis, the natural variation in these residues and the effect on product composition were investigated. Fifteen MAM1 variants as well as the native MAM1 and MAM3 from A. thaliana were characterised by heterologous expression of the glucosinolate chain elongation pathway in Escherichia coli. Detected products derived from leucine, methionine or phenylalanine were elongated with up to six methylene groups. Product profile and accumulation were changed in 14 of the variants, demonstrating the relevance of the identified residues. The majority of the single amino acid substitutions decreased the length of methionine-derived products, while approximately half of the substitutions increased the phenylalanine-derived products. Combining two substitutions enabled the MAM1 variant to increase the number of elongation rounds of methionine from three to four. Notably, characterisation of the native MAMs indicated that MAM1 and not MAM3 is responsible for homophenylalanine production. This hypothesis was confirmed by glucosinolate analysis in mam1 and mam3 mutants of A. thaliana.
Collapse
|
7
|
Distinct mechanisms of substrate selectivity in the DRE-TIM metallolyase superfamily: A role for the LeuA dimer regulatory domain. Arch Biochem Biophys 2019; 664:1-8. [DOI: 10.1016/j.abb.2019.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/20/2022]
|
8
|
Noda-Garcia L, Liebermeister W, Tawfik DS. Metabolite–Enzyme Coevolution: From Single Enzymes to Metabolic Pathways and Networks. Annu Rev Biochem 2018; 87:187-216. [DOI: 10.1146/annurev-biochem-062917-012023] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How individual enzymes evolved is relatively well understood. However, individual enzymes rarely confer a physiological advantage on their own. Judging by its current state, the emergence of metabolism seemingly demanded the simultaneous emergence of many enzymes. Indeed, how multicomponent interlocked systems, like metabolic pathways, evolved is largely an open question. This complexity can be unlocked if we assume that survival of the fittest applies not only to genes and enzymes but also to the metabolites they produce. This review develops our current knowledge of enzyme evolution into a wider hypothesis of pathway and network evolution. We describe the current models for pathway evolution and offer an integrative metabolite–enzyme coevolution hypothesis. Our hypothesis addresses the origins of new metabolites and of new enzymes and the order of their recruitment. We aim to not only survey established knowledge but also present open questions and potential ways of addressing them.
Collapse
Affiliation(s)
- Lianet Noda-Garcia
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;,
| | - Wolfram Liebermeister
- INRA, Unité MaIAGE, 78352 Jouy en Josas, France
- Institute of Biochemistry, Charité Universitätsmedizin, Berlin, 10117 Berlin, Germany
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel;,
| |
Collapse
|
9
|
Mackenzie HW, Hansen DF. A 13C-detected 15N double-quantum NMR experiment to probe arginine side-chain guanidinium 15N η chemical shifts. JOURNAL OF BIOMOLECULAR NMR 2017; 69:123-132. [PMID: 29127559 PMCID: PMC5711973 DOI: 10.1007/s10858-017-0137-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/25/2017] [Indexed: 05/25/2023]
Abstract
Arginine side-chains are often key for enzyme catalysis, protein-ligand and protein-protein interactions. The importance of arginine stems from the ability of the terminal guanidinium group to form many key interactions, such as hydrogen bonds and salt bridges, as well as its perpetual positive charge. We present here an arginine 13Cζ-detected NMR experiment in which a double-quantum coherence involving the two 15Nη nuclei is evolved during the indirect chemical shift evolution period. As the precession frequency of the double-quantum coherence is insensitive to exchange of the two 15Nη; this new approach is shown to eliminate the previously deleterious line broadenings of 15Nη resonances caused by the partially restricted rotation about the Cζ-Nε bond. Consequently, sharp and well-resolved 15Nη resonances can be observed. The utility of the presented method is demonstrated on the L99A mutant of the 19 kDa protein T4 lysozyme, where the measurement of small chemical shift perturbations, such as one-bond deuterium isotope shifts, of the arginine amine 15Nη nuclei becomes possible using the double-quantum experiment.
Collapse
Affiliation(s)
- Harold W Mackenzie
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Yevglevskis M, Lee GL, Nathubhai A, Petrova YD, James TD, Threadgill MD, Woodman TJ, Lloyd MD. A novel colorimetric assay for α-methylacyl-CoA racemase 1A (AMACR; P504S) utilizing the elimination of 2,4-dinitrophenolate. Chem Commun (Camb) 2017; 53:5087-5090. [DOI: 10.1039/c7cc00476a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A versatile continuous colorimetric assay for AMACR is reported.
Collapse
Affiliation(s)
- Maksims Yevglevskis
- Drug & Target Development
- Department of Pharmacy & Pharmacology
- University of Bath
- Bath BA2 7AY
- UK
| | - Guat L. Lee
- Drug & Target Development
- Department of Pharmacy & Pharmacology
- University of Bath
- Bath BA2 7AY
- UK
| | - Amit Nathubhai
- Drug & Target Development
- Department of Pharmacy & Pharmacology
- University of Bath
- Bath BA2 7AY
- UK
| | - Yoana D. Petrova
- Drug & Target Development
- Department of Pharmacy & Pharmacology
- University of Bath
- Bath BA2 7AY
- UK
| | - Tony D. James
- Department of Chemistry
- University of Bath
- Bath BA2 7AY
- UK
| | - Michael D. Threadgill
- Drug & Target Development
- Department of Pharmacy & Pharmacology
- University of Bath
- Bath BA2 7AY
- UK
| | - Timothy J. Woodman
- Drug & Target Development
- Department of Pharmacy & Pharmacology
- University of Bath
- Bath BA2 7AY
- UK
| | - Matthew D. Lloyd
- Drug & Target Development
- Department of Pharmacy & Pharmacology
- University of Bath
- Bath BA2 7AY
- UK
| |
Collapse
|
11
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
12
|
Kumar G, Johnson JL, Frantom PA. Improving Functional Annotation in the DRE-TIM Metallolyase Superfamily through Identification of Active Site Fingerprints. Biochemistry 2016; 55:1863-72. [PMID: 26935545 DOI: 10.1021/acs.biochem.5b01193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Within the DRE-TIM metallolyase superfamily, members of the Claisen-like condensation (CC-like) subgroup catalyze C-C bond-forming reactions between various α-ketoacids and acetyl-coenzyme A. These reactions are important in the metabolic pathways of many bacterial pathogens and serve as engineering scaffolds for the production of long-chain alcohol biofuels. To improve functional annotation and identify sequences that might use novel substrates in the CC-like subgroup, a combination of structural modeling and multiple-sequence alignments identified active site residues on the third, fourth, and fifth β-strands of the TIM-barrel catalytic domain that are differentially conserved within the substrate-diverse enzyme families. Using α-isopropylmalate synthase and citramalate synthase from Methanococcus jannaschii (MjIPMS and MjCMS), site-directed mutagenesis was used to test the role of each identified position in substrate selectivity. Kinetic data suggest that residues at the β3-5 and β4-7 positions play a significant role in the selection of α-ketoisovalerate over pyruvate in MjIPMS. However, complementary substitutions in MjCMS fail to alter substrate specificity, suggesting residues in these positions do not contribute to substrate selectivity in this enzyme. Analysis of the kinetic data with respect to a protein similarity network for the CC-like subgroup suggests that evolutionarily distinct forms of IPMS utilize residues at the β3-5 and β4-7 positions to affect substrate selectivity while the different versions of CMS use unique architectures. Importantly, mapping the identities of residues at the β3-5 and β4-7 positions onto the protein similarity network allows for rapid annotation of probable IPMS enzymes as well as several outlier sequences that may represent novel functions in the subgroup.
Collapse
Affiliation(s)
- Garima Kumar
- Department of Chemistry, The University of Alabama , 250 Hackberry Lane, Tuscaloosa, Alabama 35487, United States
| | - Jordyn L Johnson
- Department of Chemistry, The University of Alabama , 250 Hackberry Lane, Tuscaloosa, Alabama 35487, United States
| | - Patrick A Frantom
- Department of Chemistry, The University of Alabama , 250 Hackberry Lane, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
13
|
Das S, Dawson NL, Orengo CA. Diversity in protein domain superfamilies. Curr Opin Genet Dev 2015; 35:40-9. [PMID: 26451979 PMCID: PMC4686048 DOI: 10.1016/j.gde.2015.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 01/25/2023]
Abstract
Whilst ∼93% of domain superfamilies appear to be relatively structurally and functionally conserved based on the available data from the CATH-Gene3D domain classification resource, the remainder are much more diverse. In this review, we consider how domains in some of the most ubiquitous and promiscuous superfamilies have evolved, in particular the plasticity in their functional sites and surfaces which expands the repertoire of molecules they interact with and actions performed on them. To what extent can we identify a core function for these superfamilies which would allow us to develop a ‘domain grammar of function’ whereby a protein's biological role can be proposed from its constituent domains? Clearly the first step is to understand the extent to which these components vary and how changes in their molecular make-up modifies function.
Collapse
Affiliation(s)
- Sayoni Das
- Institute of Structural and Molecular Biology, UCL, 627 Darwin Building, Gower Street, WC1E 6BT, UK
| | - Natalie L Dawson
- Institute of Structural and Molecular Biology, UCL, 627 Darwin Building, Gower Street, WC1E 6BT, UK
| | - Christine A Orengo
- Institute of Structural and Molecular Biology, UCL, 627 Darwin Building, Gower Street, WC1E 6BT, UK.
| |
Collapse
|
14
|
Frantom PA, Birman Y, Hays BN, Casey AK. An evolutionarily conserved alternate metal ligand is important for activity in α-isopropylmalate synthase from Mycobacterium tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1784-9. [PMID: 25064783 DOI: 10.1016/j.bbapap.2014.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 11/29/2022]
Abstract
Members of the DRE-TIM metallolyase superfamily rely on an active-site divalent cation to catalyze various reactions involving the making and breaking of carbon-carbon bonds. While the identity of the metal varies, the binding site is well-conserved at the superfamily level with an aspartic acid and two histidine residues acting as ligands to the metal. Previous structural and bioinformatics results indicate that the metal can adopt an alternate architecture through the addition of an asparagine residue as a fourth ligand. This asparagine residue is strictly conserved in all members of the DRE-TIM metallolyase superfamily except fungal homocitrate synthase (HCS-lys) where it is replaced with isoleucine. The role of this additional metal ligand in α-isopropylmalate synthase from Mycobacterium tuberculosis (MtIPMS) has been investigated using site-directed mutagenesis. Substitution of the asparagine ligand with alanine or isoleucine results in inactive enzymes with respect to α-isopropylmalate formation. Control experiments suggest that the substitutions have not drastically affected the enzyme's structure indicating that the asparagine residue is essential for catalysis. Interestingly, all enzyme variants retained acetyl CoA hydrolysis activity in the absence of α-ketoisovalerate, similar to the wild-type enzyme. In contrast to the requirement of magnesium for α-isopropylmalate formation, hydrolytic activity could be inhibited by the addition of magnesium chloride in wild-type, D81E, and N321A MtIPMS, but not in the other variants studied. Attempts to rescue loss of activity in N321I MtIPMS by mimicking the fungal HCS active site through the D81E/N321I double variant were unsuccessful. This suggests epistatic constraints in evolution of function in IPMS and HCS-lys enzymes.
Collapse
Affiliation(s)
- Patrick A Frantom
- Department of Chemistry, The University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35406, USA.
| | - Yuliya Birman
- Department of Chemistry, The University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35406, USA
| | - Brittani N Hays
- Department of Chemistry, The University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35406, USA
| | - Ashley K Casey
- Department of Chemistry, The University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35406, USA
| |
Collapse
|
15
|
Kumar G, Frantom PA. Evolutionarily Distinct Versions of the Multidomain Enzyme α-Isopropylmalate Synthase Share Discrete Mechanisms of V-Type Allosteric Regulation. Biochemistry 2014; 53:4847-56. [DOI: 10.1021/bi500702u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Garima Kumar
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Patrick A. Frantom
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|