1
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
2
|
Calis S, Gevaert K. The role of Nα-terminal acetylation in protein conformation. FEBS J 2024. [PMID: 38923676 DOI: 10.1111/febs.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.
Collapse
Affiliation(s)
- Sam Calis
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| |
Collapse
|
3
|
Blacher C, Abramov-Harpaz K, Miller Y. Primary Nucleation of Polymorphic α-Synuclein Dimers Depends on Copper Concentrations and Definite Copper-Binding Site. Biomolecules 2024; 14:627. [PMID: 38927031 PMCID: PMC11201572 DOI: 10.3390/biom14060627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The primary nucleation process of α-synuclein (AS) that forms toxic oligomeric species is the early stage of the pathological cause of Parkinson's disease. It is well-known that copper influences this primary nucleation process. While significant efforts have been made to solve the structures of polymorphic AS fibrils, the structures of AS oligomers and the copper-bound AS oligomers at the molecular level and the effect of copper concentrations on the primary nucleation are elusive. Here, we propose and demonstrate new molecular mechanism pathways of primary nucleation of AS that are tuned by distinct copper concentrations and by a specific copper-binding site. We present the polymorphic AS dimers bound to different copper-binding sites at the atomic resolution in high- and low-copper concentrations, using extensive molecular dynamics simulations. Our results show the complexity of the primary nucleation pathways that rely on the copper concentrations and the copper binding site. From a broader perspective, our study proposes a new strategy to control the primary nucleation of other toxic amyloid oligomers in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmia Blacher
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
| | - Karina Abramov-Harpaz
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beér-Sheva 8410501, Israel
| |
Collapse
|
4
|
Walke G, Kumar R, Wittung‐Stafshede P. Copper ion incorporation in α-synuclein amyloids. Protein Sci 2024; 33:e4956. [PMID: 38511511 PMCID: PMC10955613 DOI: 10.1002/pro.4956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024]
Abstract
Copper ion dys-homeostasis is linked to neurodegenerative diseases involving amyloid formation. Even if many amyloidogenic proteins can bind copper ions as monomers, little is known about copper interactions with the resulting amyloid fibers. Here, we investigate copper interactions with α-synuclein, the amyloid-forming protein in Parkinson's disease. Copper (Cu(II)) binds tightly to monomeric α-synuclein in vitro involving the N-terminal amine and the side chain of His50. Using purified protein and biophysical methods in vitro, we reveal that copper ions are readily incorporated into the formed amyloid fibers when present at the start of aggregation reactions, and the metal ions also bind if added to pre-formed amyloids. Efficient incorporation is observed for α-synuclein variants with perturbation of either one of the high-affinity monomer copper-binding residues (i.e., N-terminus or His50) whereas a variant with both N-terminal acetylation and His50 substituted with Ala does not incorporate any copper into the amyloids. Both the morphology of the resulting α-synuclein amyloids (amyloid fiber pitch, secondary structure, proteinase sensitivity) and the copper chemical properties (redox activity, chemical potential) are altered when copper is incorporated into amyloids. We speculate that copper chelation by α-synuclein amyloids contributes to the observed copper dys-homeostasis (e.g., reduced bioavailable levels) in Parkinson's disease patients. At the same time, amyloid-copper interactions may be protective to neuronal cells as they will shield aberrantly free copper ions from promotion of toxic reactive oxygen species.
Collapse
Affiliation(s)
- Gulshan Walke
- Department of Life SciencesChalmers University of TechnologyGothenburgSweden
| | - Ranjeet Kumar
- Department of Life SciencesChalmers University of TechnologyGothenburgSweden
| | | |
Collapse
|
5
|
Uceda AB, Ramis R, Pauwels K, Adrover M, Mariño L, Frau J, Vilanova B. Understanding the effect of the membrane-mimetic micelles on the interplay between α-synuclein and Cu(II)/Cu(I) cations. J Inorg Biochem 2023; 247:112344. [PMID: 37542850 DOI: 10.1016/j.jinorgbio.2023.112344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
α-Synuclein (αS) is a presynaptic protein whose aggregates are considered as a hallmark of Parkinson's disease (PD). Although its physiological function is still under debate, it is widely accepted that its functions are always mediated by its interaction with membranes. The association of αS with phospholipid membranes occurs concomitant to its folding from its monomeric, unfolded state towards an antiparallel amphipathic α-helix. Besides this, copper ions can also bind αS and modify its aggregation propensity. The effect of Cu(II) and Cu(I) on the lipid-αS affinity and on the structure of the membrane-bound αS have not yet been studied. This knowledge is relevant to understand the molecular pathogenesis of PD. Therefore, we have here studied the affinities between Cu(II) and Cu(I) and the micelle-bound αS, as well as the effect of these cations on the structure of micelle-bound αS. Cu(II) or Cu(I) did not affect the α-helical structure of the micelle-bound αS. However, while Cu(I) binds at the same sites of αS in the presence or in the absence of micelles, the micelle-bound αS displays different Cu(II) binding sites than unbound αS. In any case, sodium docecyl sulphate -micelles reduce the stability of the αS complexes with both Cu(II) and Cu(I). Finally, we have observed that the micelle-bound αS is still able to prevent the Cu(II)-catalysed oxidation of neuronal metabolites (e.g. ascorbic acid) and the formation of reactive oxygen species, thus this binding does not impair its biological function as part of the antioxidant machinery.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Rafael Ramis
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain; Departamento de Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
| | - Kris Pauwels
- Vrije Universiteit Brussels, Pleinlaan 2, 1050 Brussels, Belgium
| | - Miquel Adrover
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Juan Frau
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Bartolomé Vilanova
- Departament de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdIsBa), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122 Palma, Spain.
| |
Collapse
|
6
|
Copper Binding and Redox Activity of α-Synuclein in Membrane-Like Environment. Biomolecules 2023; 13:biom13020287. [PMID: 36830656 PMCID: PMC9953312 DOI: 10.3390/biom13020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
α-Synuclein (αSyn) constitutes the main protein component of Lewy bodies, which are the pathologic hallmark in Parkinson's disease. αSyn is unstructured in solution but the interaction of αSyn with lipid membrane modulates its conformation by inducing an α-helical structure of the N-terminal region. In addition, the interaction with metal ions can trigger αSyn conformation upon binding and/or through the metal-promoted generation of reactive oxygen species which lead to a cascade of structural alterations. For these reasons, the ternary interaction between αSyn, copper, and membranes needs to be elucidated in detail. Here, we investigated the structural properties of copper-αSyn binding through NMR, EPR, and XAS analyses, with particular emphasis on copper(I) coordination since the reduced state is particularly relevant for oxygen activation chemistry. The analysis was performed in different membrane model systems, such as micellar sodium dodecyl sulfate (SDS) and unilamellar vesicles, comparing the binding of full-length αSyn and N-terminal peptide fragments. The presence of membrane-like environments induced the formation of a copper:αSyn = 1:2 complex where Cu+ was bound to the Met1 and Met5 residues of two helical peptide chains. In this coordination, Cu+ is stabilized and is unreactive in the presence of O2 in catechol substrate oxidation.
Collapse
|
7
|
Savva L, Platts JA. How Cu(II) binding affects structure and dynamics of α-synuclein revealed by molecular dynamics simulations. J Inorg Biochem 2023; 239:112068. [PMID: 36403437 DOI: 10.1016/j.jinorgbio.2022.112068] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
We report accelerated molecular dynamics simulations of α-Synuclein and its complex with two Cu(II) ions bound to experimentally determined binding sites. Adding two Cu(II) ions, one bound to the N-terminal region and one to the C-terminus, decreases size and flexibility of the peptide while introducing significant new contacts within and between N-terminus and non-Aβ component (NAC). Cu(II) ions also alter the pattern of secondary structure within the peptide, inducing more and longer-lasting elements of secondary structure such as β-strands and hairpins. Free energy surfaces, obtained from reweighting the accelerated molecular dynamics boost potential, further demonstrate the restriction on size and flexibility that results from binding of copper ions.
Collapse
Affiliation(s)
- Loizos Savva
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK..
| |
Collapse
|
8
|
Cao K, Zhu Y, Hou Z, Liu M, Yang Y, Hu H, Dai Y, Wang Y, Yuan S, Huang G, Mei J, Sadler PJ, Liu Y. α-Synuclein as a Target for Metallo-Anti-Neurodegenerative Agents. Angew Chem Int Ed Engl 2023; 62:e202215360. [PMID: 36345707 DOI: 10.1002/anie.202215360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 11/11/2022]
Abstract
The unique thermodynamic and kinetic coordination chemistry of ruthenium allows it to modulate key adverse aggregation and membrane interactions of α-synuclein (α-syn) associated with Parkinson's disease. We show that the low-toxic RuIII complex trans-[ImH][RuCl4 (Me2 SO)(Im)] (NAMI-A) has dual inhibitory effects on both aggregation and membrane interactions of α-syn with submicromolar affinity, and disassembles pre-formed fibrils. NAMI-A abolishes the cytotoxicity of α-syn towards neuronal cells and mitigates neurodegeneration and motor impairments in a rat model of Parkinson's. Multinuclear NMR and MS analyses show that NAMI-A binds to residues involved in protein aggregation and membrane binding. NMR studies reveal the key steps in pro-drug activation and the effect of activated NAMI-A species on protein folding. Our findings provide a new basis for designing ruthenium complexes which could mitigate α-syn-induced Parkinson's pathology differently from organic agents.
Collapse
Affiliation(s)
- Kaiming Cao
- Department of Pharmacy, Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Zhu
- Department of Pharmacy, Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zhuanghao Hou
- Department of Pharmacy, Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Manman Liu
- Department of Pharmacy, Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yanyan Yang
- Department of Pharmacy, Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hongze Hu
- Department of Pharmacy, Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Dai
- Department of Pharmacy, Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Wang
- Department of Pharmacy, Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Siming Yuan
- Department of Pharmacy, Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guangming Huang
- Department of Pharmacy, Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jiaming Mei
- Department of Pharmacy, Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Yangzhong Liu
- Department of Pharmacy, Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Pancoe SX, Wang YJ, Shimogawa M, Perez RM, Giannakoulias S, Petersson EJ. Effects of Mutations and Post-Translational Modifications on α-Synuclein In Vitro Aggregation. J Mol Biol 2022; 434:167859. [PMID: 36270580 PMCID: PMC9922159 DOI: 10.1016/j.jmb.2022.167859] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Fibrillar aggregates of the α-synuclein (αS) protein are the hallmark of Parkinson's Disease and related neurodegenerative disorders. Characterization of the effects of mutations and post-translational modifications (PTMs) on the αS aggregation rate can provide insight into the mechanism of fibril formation, which remains elusive in spite of intense study. A comprehensive collection (375 examples) of mutant and PTM aggregation rate data measured using the fluorescent probe thioflavin T is presented, as well as a summary of the effects of fluorescent labeling on αS aggregation (20 examples). A curated set of 131 single mutant de novo aggregation experiments are normalized to wild type controls and analyzed in terms of structural data for the monomer and fibrillar forms of αS. These tabulated data serve as a resource to the community to help in interpretation of aggregation experiments and to potentially be used as inputs for computational models of aggregation.
Collapse
Affiliation(s)
- Samantha X Pancoe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Yanxin J Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Ryann M Perez
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Crossroads between copper ions and amyloid formation in Parkinson's disease. Essays Biochem 2022; 66:977-986. [PMID: 35757906 PMCID: PMC9760422 DOI: 10.1042/ebc20220043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022]
Abstract
Copper (Cu) ion dys-homeostasis and α-synclein amyloid deposits are two hallmarks of Parkinson's disease (PD). Here, I will discuss the connections between these features, with a major focus on the role of Cu in the α-synuclein (aS) amyloid formation process. The structurally disordered aS monomer can bind to both redox states of Cu (i.e., oxidized Cu(II) and reduced Cu(I)) with high affinity in vitro. Notably, the presence of Cu(II) (in absence of aS N-terminal acetylation) and Cu(I) (when in complex with the copper chaperone Atox1) modulate aS assembly into β-structured amyloids in opposite directions in vitro. Albeit the link to biological relevance is not fully unraveled, existing observations clearly emphasize the need for more knowledge on this interplay and its consequences to eventually combat destructive reactions that promote PD.
Collapse
|
11
|
Bacchella C, Dell'Acqua S, Nicolis S, Monzani E, Casella L. The reactivity of copper complexes with neuronal peptides promoted by catecholamines and its impact on neurodegeneration. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Im J, Lee J, Lee JH. Surface Accessibility of an Intrinsically Disordered Protein Probed by 2D Time-Resolved Laser-Assisted NMR Spectroscopy. J Am Chem Soc 2022; 144:17010-17021. [PMID: 36083135 DOI: 10.1021/jacs.2c06309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Probing the protein surface accessibility of different residues is a powerful way of characterizing the overall conformation of intrinsically disordered proteins (IDPs). We present a two-dimensional (2D) time-resolved photo-CIDNP (TR-CIDNP) experiment suitable for IDP analysis. Pulse stretching of high-power laser pulses, band-selective decoupling of 13Cα, and simultaneous application of radiofrequency and laser pulses were implemented to quantitatively analyze the IDP surface at ultrahigh resolution. Comparative analysis with other methods that measure protein surface accessibility validated the newly developed method and emphasized the importance of dye charge in photo-CIDNP. Using the neutral riboflavin dye, surface accessibilities were measured to be nearly identical for the four Tyr residues of α-synuclein (α-Syn), whose 1Hα-13Cα correlations were well-resolved in the 2D TR-CIDNP spectrum. Having confirmed the similarity between the time-resolved and steady-state photo-CIDNP results for α-Syn, we used the more sensitive latter method to show that divalent cations induce compaction of the C-terminal region and release of the N-terminal region of α-Syn. The photo-CIDNP method presented herein can be used as an orthogonal and independent method for investigating important biological processes associated with changes in the overall IDP conformation.
Collapse
Affiliation(s)
- Jonghyuk Im
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jongchan Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea.,Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229, Korea
| |
Collapse
|
13
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
14
|
Li S, Raja A, Noroozifar M, Kerman K. Understanding the Inhibitory and Antioxidant Effects of Pyrroloquinoline Quinone (PQQ) on Copper(II)-Induced α-Synuclein-119 Aggregation. ACS Chem Neurosci 2022; 13:1178-1186. [PMID: 35413176 DOI: 10.1021/acschemneuro.1c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Parkinson's disease (PD) is associated with the aggregation and misfolding of a-synuclein (a-syn) protein in dopaminergic neurons. The misfolding process is heavily linked to copper dysregulation in PD. Experimental evidence supports the hypothesis that the co-presence of Cu(II) and α-syn facilitates the aggregation of α-syn, affecting the pathological development of PD. Recent literature has shown that pyrroloquinoline quinone (PQQ) contains strong neuroprotective activity by reducing the reactive oxygen species (ROS) production by α-syn. Despite these known facts, minimal studies have been done on the antioxidant effect of PQQ against ROS formation in the presence of Cu(II) and α-syn-119. Thus, it is of great significance to study the interaction between all three components, PQQ, Cu(II), and α-syn-119. In this proof-of-concept study, a variety of chemical techniques were employed to examine the antioxidant effect of PQQ on ROS that α-syn-119 produced in the presence of Cu(II). Our results showed that PQQ effectively prevented ROS formation in SH-SY5Y human differentiated neuronal cells. Thioflavin T (ThT) fluorescence assay, circular dichroism (CD) spectroscopy, and transmission electron microscopy (TEM) were applied, where PQQ was able to actively prevent fibrillation of α-syn-119 in the presence of Cu(II). This finding was further confirmed using electrochemical impedance spectroscopy (EIS), where the binding of PQQ to the α-syn-119 suppressed the aggregation process on the electrode surface. With these encouraging results, we envisage that PQQ and its derivatives can be a promising candidate for further studies as a multitarget therapeutic agent toward PD therapy.
Collapse
Affiliation(s)
- ShaoPei Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Aruna Raja
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
15
|
Devi S, Chaturvedi M, Fatima S, Priya S. Environmental factors modulating protein conformations and their role in protein aggregation diseases. Toxicology 2022; 465:153049. [PMID: 34818560 DOI: 10.1016/j.tox.2021.153049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
The adverse physiological conditions have been long known to impact protein synthesis, folding and functionality. Major physiological factors such as the effect of pH, temperature, salt and pressure are extensively studied for their impact on protein structure and homeostasis. However, in the current scenario, the environmental risk factors (pollutants) have gained impetus in research because of their increasing concentrations in the environment and strong epidemiologic link with protein aggregation disorders. Here, we review the physiological and environmental risk factors for their impact on protein conformational changes, misfolding, aggregation, and associated pathological conditions, especially environmental risk factors associated pathologies.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Siraj Fatima
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow-226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Lorentzon E, Horvath I, Kumar R, Rodrigues JI, Tamás MJ, Wittung-Stafshede P. Effects of the Toxic Metals Arsenite and Cadmium on α-Synuclein Aggregation In Vitro and in Cells. Int J Mol Sci 2021; 22:ijms222111455. [PMID: 34768886 PMCID: PMC8584132 DOI: 10.3390/ijms222111455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022] Open
Abstract
Exposure to heavy metals, including arsenic and cadmium, is associated with neurodegenerative disorders such as Parkinson’s disease. However, the mechanistic details of how these metals contribute to pathogenesis are not well understood. To search for underlying mechanisms involving α-synuclein, the protein that forms amyloids in Parkinson’s disease, we here assessed the effects of arsenic and cadmium on α-synuclein amyloid formation in vitro and in Saccharomyces cerevisiae (budding yeast) cells. Atomic force microscopy experiments with acetylated human α-synuclein demonstrated that amyloid fibers formed in the presence of the metals have a different fiber pitch compared to those formed without metals. Both metal ions become incorporated into the amyloid fibers, and cadmium also accelerated the nucleation step in the amyloid formation process, likely via binding to intermediate species. Fluorescence microscopy analyses of yeast cells expressing fluorescently tagged α-synuclein demonstrated that arsenic and cadmium affected the distribution of α-synuclein aggregates within the cells, reduced aggregate clearance, and aggravated α-synuclein toxicity. Taken together, our in vitro data demonstrate that interactions between these two metals and α-synuclein modulate the resulting amyloid fiber structures, which, in turn, might relate to the observed effects in the yeast cells. Whilst our study advances our understanding of how these metals affect α-synuclein biophysics, further in vitro characterization as well as human cell studies are desired to fully appreciate their role in the progression of Parkinson’s disease.
Collapse
Affiliation(s)
- Emma Lorentzon
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (E.L.); (J.I.R.)
| | - Istvan Horvath
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (I.H.); (R.K.)
| | - Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (I.H.); (R.K.)
| | - Joana Isabel Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (E.L.); (J.I.R.)
| | - Markus J. Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (E.L.); (J.I.R.)
- Correspondence: (M.J.T.); (P.W.-S.)
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (I.H.); (R.K.)
- Correspondence: (M.J.T.); (P.W.-S.)
| |
Collapse
|
17
|
Teng X, Sheveleva A, Tuna F, Willison KR, Ying L. Acetylation Rather than H50Q Mutation Impacts the Kinetics of Cu(II) Binding to α-Synuclein. Chemphyschem 2021; 22:2413-2419. [PMID: 34617653 PMCID: PMC9293329 DOI: 10.1002/cphc.202100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/02/2021] [Indexed: 11/10/2022]
Abstract
The interaction between α‐synuclein (αSyn) and Cu2+ has been suggested to be closely linked to brain copper homeostasis. Disruption of copper levels could induce misfolding and aggregation of αSyn, and thus contribute to the progression of Parkinson's disease (PD). Understanding the molecular mechanism of αSyn‐Cu2+ interaction is important and controversies in Cu2+ coordination geometry with αSyn still exists. Herein, we find that the pathological H50Q mutation has no impact on the kinetics of Cu2+ binding to the high‐affinity site of wild type αSyn (WT‐αSyn), indicating the non‐involvement of His50 in high‐affinity Cu2+ binding to WT‐αSyn. In contrast, the physiological N‐terminally acetylated αSyn (NAc‐αSyn) displays several orders of magnitude weaker Cu2+ binding affinity than WT‐αSyn. Cu2+ coordination mode to NAc‐αSyn has also been proposed based on EPR spectrum. In addition, we find that Cu2+ coordinated WT‐αSyn is reduction‐active in the presence of GSH, but essentially inactive towards ascorbate. Our work provides new insights into αSyn‐Cu2+ interaction, which may help understand the multifaceted normal functions of αSyn as well as pathological consequences of αSyn aggregation.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Alena Sheveleva
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Floriana Tuna
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Keith R Willison
- Department of Chemistry, Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Liming Ying
- National Heart and Lung Institute, Imperial College London, White City Campus, London, W12 0BZ, UK
| |
Collapse
|
18
|
Electrochemical approach for the aptamer-like conformational changes of α-synuclein peptides in the presence of copper(II). Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
NMR unveils an N-terminal interaction interface on acetylated-α-synuclein monomers for recruitment to fibrils. Proc Natl Acad Sci U S A 2021; 118:2017452118. [PMID: 33903234 DOI: 10.1073/pnas.2017452118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyloid fibril formation of α-synuclein (αS) is associated with multiple neurodegenerative diseases, including Parkinson's disease (PD). Growing evidence suggests that progression of PD is linked to cell-to-cell propagation of αS fibrils, which leads to seeding of endogenous intrinsically disordered monomer via templated elongation and secondary nucleation. A molecular understanding of the seeding mechanism and driving interactions is crucial to inhibit progression of amyloid formation. Here, using relaxation-based solution NMR experiments designed to probe large complexes, we probe weak interactions of intrinsically disordered acetylated-αS (Ac-αS) monomers with seeding-competent Ac-αS fibrils and seeding-incompetent off-pathway oligomers to identify Ac-αS monomer residues at the binding interface. Under conditions that favor fibril elongation, we determine that the first 11 N-terminal residues on the monomer form a common binding site for both fibrils and off-pathway oligomers. Additionally, the presence of off-pathway oligomers within a fibril seeding environment suppresses seeded amyloid formation, as observed through thioflavin-T fluorescence experiments. This highlights that off-pathway αS oligomers can act as an auto-inhibitor against αS fibril elongation. Based on these data taken together with previous results, we propose a model in which Ac-αS monomer recruitment to the fibril is driven by interactions between the intrinsically disordered monomer N terminus and the intrinsically disordered flanking regions (IDR) on the fibril surface. We suggest that this monomer recruitment may play a role in the elongation of amyloid fibrils and highlight the potential of the IDRs of the fibril as important therapeutic targets against seeded amyloid formation.
Collapse
|
20
|
Li S, Kerman K. Electrochemical biosensors for biometal-protein interactions in neurodegenerative diseases. Biosens Bioelectron 2021; 179:113035. [PMID: 33578115 DOI: 10.1016/j.bios.2021.113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Electrochemical biosensors have been adopted into a wide range of applications in the study of biometal-protein interactions in neurodegenerative diseases. Transition metals such as zinc, copper, and iron that are significant to biological functions have been shown to have strong implications in the progressive neural degeneration in Alzheimer's disease (AD), Parkinson's disease (PD), and prion protein diseases. This review presents a summative examination of the progress made in the design, fabrication, and applications of electrochemical biosensors in recent literature at understanding the metal-protein interactions in neurodegenerative diseases. The focus will be drawn on disease-causing biomarkers such as amyloid-β (Aβ) and tau proteins for AD, α-synuclein (α-syn) for PD, and prion proteins (PrP). Topics such as the use of electrochemical biosensing in monitoring biometal-induced conformational changes, elucidation of complexation motifs, production of reactive oxygen species (ROS) as well as the influence on downstream biomolecular interactions will be discussed. Major results and important concepts presented in these studies will be summarized in the hope to spark inspiration for the next generation of electrochemical sensors.
Collapse
Affiliation(s)
- Shaopei Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
21
|
Ramis R, Ortega-Castro J, Vilanova B, Adrover M, Frau J. Cu 2+, Ca 2+, and methionine oxidation expose the hydrophobic α-synuclein NAC domain. Int J Biol Macromol 2020; 169:251-263. [PMID: 33345970 DOI: 10.1016/j.ijbiomac.2020.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022]
Abstract
α-Synuclein is an intrinsically disordered protein whose aggregation is related to Parkinson's disease and other neurodegenerative disorders. Metal cations are one of the main factors affecting the propensity of α-synuclein to aggregate, either by directly binding to it or by catalyzing the production of reactive oxygen species that oxidize it. His50, Asp121 and several additional C-terminal α-synuclein residues are binding sites for numerous metal cations, while methionine sulfoxidation occurs readily on this protein under oxidative stress conditions. Molecular dynamics simulations are an excellent tool to obtain a microscopic picture of how metal binding or methionine sulfoxidation alter the conformational preferences of α-synuclein and, hence, its aggregation propensity. In this work, we report the first coarse-grained molecular dynamics study comparing the conformational ensembles of the native protein, the protein bound to either Cu2+ or Ca2+ at its main binding sites, and the methionine-sulfoxidized protein. Our results suggest that these events alter the transient α-synuclein intramolecular contacts, inducing a greater solvent exposure of its hydrophobic, aggregation-prone NAC domain, in full agreement with a recent experimental study on Ca2+ binding. Moreover, metal-binding residues directly participate in the long-range contacts that shield this domain and regulate α-synuclein aggregation. These results provide a molecular-level rationalization of the enhanced fibrillation experimentally observed in the presence of Cu2+ or Ca2+ and the oligomerization induced by methionine sulfoxidation.
Collapse
Affiliation(s)
- Rafael Ramis
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain.
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d'Investigació en Cièencies de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| |
Collapse
|
22
|
Gou DH, Huang TT, Li W, Gao XD, Haikal C, Wang XH, Song DY, Liang X, Zhu L, Tang Y, Ding C, Li JY. Inhibition of copper transporter 1 prevents α-synuclein pathology and alleviates nigrostriatal degeneration in AAV-based mouse model of Parkinson's disease. Redox Biol 2020; 38:101795. [PMID: 33232911 PMCID: PMC7691620 DOI: 10.1016/j.redox.2020.101795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The formation of α-synuclein aggregates is a major pathological hallmark of Parkinson's disease. Copper promotes α-synuclein aggregation and toxicity in vitro. The level of copper and copper transporter 1, which is the only known high-affinity copper importer in the brain, decreases in the substantia nigra of Parkinson's disease patients. However, the relationship between copper, copper transporter 1 and α-synuclein pathology remains elusive. Here, we aim to decipher the molecular mechanisms of copper and copper transporter 1 underlying Parkinson's disease pathology. We employed yeast and mammalian cell models expressing human α-synuclein, where exogenous copper accelerated intracellular α-synuclein inclusions and silencing copper transporter 1 reduced α-synuclein aggregates in vitro, suggesting that copper transporter 1 might inhibit α-synuclein pathology. To study our hypothesis in vivo, we generated a new transgenic mouse model with copper transporter 1 conditional knocked-out specifically in dopaminergic neuron. Meanwhile, we unilaterally injected adeno-associated viral human-α-synuclein into the substantia nigra of these mice. Importantly, we found that copper transporter 1 deficiency significantly reduced S129-phosphorylation of α-synuclein, prevented dopaminergic neuronal loss, and alleviated motor dysfunction caused by α-synuclein overexpression in vivo. Overall, our data indicated that inhibition of copper transporter 1 alleviated α-synuclein mediated pathologies and provided a novel therapeutic strategy for Parkinson's disease and other synucleinopathies. Ctr1 deficiency reduces α-synuclein aggregates in vitro. Ctr1 deficiency inhibits the level of pathological α-synuclein in vivo. Ctr1 deficiency prevents nigrostriatal neurodegeneration in vivo. Ctr1 deficiency alleviates motor dysfunction caused by α-synuclein in vivo.
Collapse
Affiliation(s)
- De-Hai Gou
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Ting-Ting Huang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Wen Li
- Institute of Health Sciences, China Medical University, Shenyang, 110122, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden
| | - Xin-Di Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden
| | - Xin-He Wang
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Dong-Yan Song
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xin Liang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Zhu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, 400016, China; Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Chen Ding
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China; Institute of Health Sciences, China Medical University, Shenyang, 110122, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 22184, Lund, Sweden.
| |
Collapse
|
23
|
Calvo JS, Mulpuri NV, Dao A, Qazi NK, Meloni G. Membrane insertion exacerbates the α-Synuclein-Cu(II) dopamine oxidase activity: Metallothionein-3 targets and silences all α-synuclein-Cu(II) complexes. Free Radic Biol Med 2020; 158:149-161. [PMID: 32712192 PMCID: PMC7484060 DOI: 10.1016/j.freeradbiomed.2020.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
Copper binding to α-synuclein (α-Syn), the major component of intracellular Lewy body inclusions in substantia nigra dopaminergic neurons, potentiate its toxic redox-reactivity and plays a detrimental role in the etiology of Parkinson disease (PD). Soluble α-synuclein-Cu(II) complexes possess dopamine oxidase activity and catalyze ROS production in the presence of biological reducing agents via Cu(II)/Cu(I) redox cycling. These metal-centered redox reactivities harmfully promote the oxidation and oligomerization of α-Syn. While this chemistry has been investigated on recombinantly expressed soluble α-Syn, in vivo, α-Syn is acetylated at its N-terminus and is present in equilibrium between soluble and membrane-bound forms. This post-translational modification and membrane-binding alter the Cu(II) coordination environment and binding modes and are expected to affect the α-Syn-Cu(II) reactivity. In this work, we first investigated the reactivity of acetylated and membrane-bound complexes, and subsequently addressed whether the brain metalloprotein Zn7-metallothionein-3 (Zn7MT-3) possesses a multifaceted-role in targeting these aberrant copper interactions and consequent reactivity. Through biochemical characterization of the reactivity of the non-acetylated/N-terminally acetylated soluble or membrane-bound α-Syn-Cu(II) complexes towards dopamine, oxygen, and ascorbate, we reveal that membrane insertion dramatically exacerbates the catechol oxidase-like reactivity of α-Syn-Cu(II) as a result of a change in the Cu(II) coordination environment, thereby potentiating its toxicity. Moreover, we show that Zn7MT-3 can efficiently target all α-Syn-Cu(II) complexes through Cu(II) removal, preventing their deleterious redox activities. We demonstrate that the Cu(II) reduction by the thiolate ligands of Zn7MT-3 and the formation of Cu(I)4Zn4MT-3 featuring an unusual redox-inert Cu(I)4-thiolate cluster is the molecular mechanism responsible for the protective effect exerted by MT-3 towards α-Syn-Cu(II). This work provides the molecular basis for new therapeutic interventions to control the deleterious bioinorganic chemistry of α-Syn-Cu(II).
Collapse
Affiliation(s)
- Jenifer S Calvo
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Neha V Mulpuri
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Alex Dao
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Nabeeha K Qazi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
24
|
Lorentzon E, Kumar R, Horvath I, Wittung-Stafshede P. Differential effects of Cu 2+ and Fe 3+ ions on in vitro amyloid formation of biologically-relevant α-synuclein variants. Biometals 2020; 33:97-106. [PMID: 32170541 PMCID: PMC7295844 DOI: 10.1007/s10534-020-00234-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 01/26/2023]
Abstract
Alterations in metal ion homeostasis appear coupled to neurodegenerative disorders but mechanisms are unknown. Amyloid formation of the protein α-synuclein in brain cells is a hallmark of Parkinson's disease. α-Synuclein can bind several metal ions in vitro and such interactions may affect the assembly process. Here we used biophysical methods to study the effects of micromolar concentrations of Cu2+ and Fe3+ ions on amyloid formation of selected α-synuclein variants (wild-type and A53T α-synuclein, in normal and N-terminally acetylated forms). As shown previously, Cu2+ speeds up aggregation of normal wild-type α-synuclein, but not the acetylated form. However, Cu2+ has a minimal effect on (the faster) aggregation of normal A53T α-synuclein, despite that Cu2+ binds to this variant. Like Cu2+, Fe3+ speeds up aggregation of non-acetylated wild-type α-synuclein, but with acetylation, Fe3+ instead slows down aggregation. In contrast, for A53T α-synuclein, regardless of acetylation, Fe3+ slows down aggregation with the effect being most dramatic for acetylated A53T α-synuclein. The results presented here suggest a correlation between metal-ion modulation effect and intrinsic aggregation speed of the various α-synuclein variants.
Collapse
Affiliation(s)
- Emma Lorentzon
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Istvan Horvath
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
25
|
The N-terminal Acetylation of α-Synuclein Changes the Affinity for Lipid Membranes but not the Structural Properties of the Bound State. Sci Rep 2020; 10:204. [PMID: 31937832 PMCID: PMC6959233 DOI: 10.1038/s41598-019-57023-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022] Open
Abstract
The aggregation of α-synuclein (αS), a protein abundant at presynaptic terminals, is associated with a range of highly debilitating neurodegenerative conditions, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Emerging evidence indicates that the interaction of αS with lipid membranes defines both its physiological function and pathological effects. The characterisation of the modes of membrane binding by αS is therefore crucial to clarify the balance between normal and aberrant behaviour of this protein. Here we used solid-state nuclear magnetic resonance (ssNMR) spectroscopy to probe the nature of the N-terminally acetylated form of αS (NTAc-αS) bound to synaptic-like lipid vesicles. This post-translational modification is prevalent for the physiological form of αS and modulates the binding to lipid bilayers. By probing the structure, dynamics and membrane topology of NTAc-αS, we found that N-terminal acetylation does not alter significantly the conformational and topological properties of the membrane-bound state of αS, despite increasing its propensity for binding. Taken together, our data and previous characterisations of the cytosolic state of NTAc-αS clarify that the role of the N-terminal acetylation is to regulate the binding affinity of αS for synaptic vesicles without altering the structural properties of the bound state.
Collapse
|
26
|
Poulson BG, Szczepski K, Lachowicz JI, Jaremko L, Emwas AH, Jaremko M. Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Adv 2019; 10:215-227. [PMID: 35492549 PMCID: PMC9047971 DOI: 10.1039/c9ra09350h] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/14/2019] [Indexed: 01/03/2023] Open
Abstract
The process of aggregation of proteins and peptides is dependent on the concentration of proteins, and the rate of aggregation can be altered by the presence of metal ions, but this dependence is not always a straightforward relationship. In general, aggregation does not occur under normal physiological conditions, yet it can be induced in the presence of certain metal ions. However, the extent of the influence of metal ion interactions on protein aggregation has not yet been fully comprehended. A consensus has thus been difficult to reach because the acceleration/inhibition of the aggregation of proteins in the presence of metal ions depends on several factors such as pH and the concentration of the aggregated proteins involved as well as metal concentration level of metal ions. Metal ions, like Cu2+, Zn2+, Pb2+ etc. may either accelerate or inhibit aggregation simply because the experimental conditions affect the behavior of biomolecules. It is clear that understanding the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications. This review focuses on the dependence of the aggregation of selected important biomolecules (peptides and proteins) on metal ion concentrations. We review proteins that are prone to aggregation, the result of which can cause serious neurodegenerative disorders. Furthering our understanding of the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications, such as finding therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria 09042 Monserrato Italy
| | - Lukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
27
|
Horvath I, Blockhuys S, Šulskis D, Holgersson S, Kumar R, Burmann BM, Wittung-Stafshede P. Interaction between Copper Chaperone Atox1 and Parkinson's Disease Protein α-Synuclein Includes Metal-Binding Sites and Occurs in Living Cells. ACS Chem Neurosci 2019; 10:4659-4668. [PMID: 31600047 DOI: 10.1021/acschemneuro.9b00476] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alterations in copper ion homeostasis appear coupled to neurodegenerative disorders, but mechanisms are unknown. The cytoplasmic copper chaperone Atox1 was recently found to inhibit amyloid formation in vitro of α-synuclein, the amyloidogenic protein in Parkinson's disease. As α-synuclein may have copper-dependent functions, and free copper ions promote α-synuclein amyloid formation, it is important to characterize the Atox1 interaction with α-synuclein on a molecular level. Here we applied solution-state nuclear magnetic resonance spectroscopy, with isotopically labeled α-synuclein and Atox1, to define interaction regions in both proteins. The α-synuclein interaction interface includes the whole N-terminal part up to Gln24; in Atox1, residues around the copper-binding cysteines (positions 11-16) are mostly perturbed, but additional effects are also found for residues elsewhere in both proteins. Because α-synuclein is N-terminally acetylated in vivo, we established that Atox1 also inhibits amyloid formation of this variant in vitro, and proximity ligation in human cell lines demonstrated α-synuclein-Atox1 interactions in situ. Thus, this interaction may provide the direct link between copper homeostasis and amyloid formation in vivo.
Collapse
Affiliation(s)
- Istvan Horvath
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Stéphanie Blockhuys
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Darius Šulskis
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Stellan Holgersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
28
|
Tian Y, Stanyon HF, Barritt JD, Mayet U, Patel P, Karamani E, Fusco G, Viles JH. Copper2+ Binding to α-Synuclein. Histidine50 Can Form a Ternary Complex with Cu2+ at the N-Terminus but Not a Macrochelate. Inorg Chem 2019; 58:15580-15589. [DOI: 10.1021/acs.inorgchem.9b02644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yao Tian
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
| | - Helen F. Stanyon
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
| | - Joseph D Barritt
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Uroosa Mayet
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
| | - Pelak Patel
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
| | - Elena Karamani
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB1 1EW, United Kingdom
| | - John H. Viles
- School of Biological and Chemical Sciences, Queen Mary, University of London Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
29
|
Abstract
Copper is a redox-active transition metal ion required for the function of many essential human proteins. For biosynthesis of proteins coordinating copper, the metal may bind before, during or after folding of the polypeptide. If the metal binds to unfolded or partially folded structures of the protein, such coordination may modulate the folding reaction. The molecular understanding of how copper is incorporated into proteins requires descriptions of chemical, thermodynamic, kinetic and structural parameters involved in the formation of protein-metal complexes. Because free copper ions are toxic, living systems have elaborate copper-transport systems that include particular proteins that facilitate efficient and specific delivery of copper ions to target proteins. Therefore, these pathways become an integral part of copper protein folding in vivo. This review summarizes biophysical-molecular in vitro work assessing the role of copper in folding and stability of copper-binding proteins as well as protein-protein copper exchange reactions between human copper transport proteins. We also describe some recent findings about the participation of copper ions and copper proteins in protein misfolding and aggregation reactions in vitro.
Collapse
|
30
|
Gentile I, Garro HA, Delgado Ocaña S, Gonzalez N, Strohäker T, Schibich D, Quintanar L, Sambrotta L, Zweckstetter M, Griesinger C, Menacho Márquez M, Fernández CO. Interaction of Cu(i) with the Met-X 3-Met motif of alpha-synuclein: binding ligands, affinity and structural features. Metallomics 2019; 10:1383-1389. [PMID: 30246210 DOI: 10.1039/c8mt00232k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The identity of the Cu(i) binding ligands at Met-X3-Met site of AcαS and its role into the affinity and structural properties of the interaction were elucidated by NMR spectroscopy. We provide evidence that the source of ligands for Cu(i) binding to the Met-X3-Met site comes from the N-terminal acetyl group and the Met-1, Asp-2 and Met-5 residues. From the study of site-directed mutants and synthetic peptide models of αS we demonstrated the critical role played by Met-1 and Met-5 residues on the binding affinity of the Cu(i) complex, acting as the main metal anchoring residues. While having a more modest impact in the affinity features of Cu(i) binding, as compared to the Met residues, the N-terminal acetyl group and Asp-2 are important in promoting local helical conformations, contributing to the stabilization of these structures by favoring Cu(i) binding.
Collapse
Affiliation(s)
- Iñaki Gentile
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
González N, Arcos-López T, König A, Quintanar L, Menacho Márquez M, Outeiro TF, Fernández CO. Effects of alpha-synuclein post-translational modifications on metal binding. J Neurochem 2019; 150:507-521. [PMID: 31099098 DOI: 10.1111/jnc.14721] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder worldwide. Neurodegeneration in this pathology is characterized by the loss of dopaminergic neurons in the substantia nigra, coupled with cytoplasmic inclusions known as Lewy bodies containing α-synuclein. The brain is an organ that concentrates metal ions, and there is emerging evidence that a break-down in metal homeostasis may be a critical factor in a variety of neurodegenerative diseases. α-synuclein has emerged as an important metal-binding protein in the brain, whereas these interactions play an important role in its aggregation and might represent a link between protein aggregation, oxidative damage, and neuronal cell loss. Additionally, α-synuclein undergoes several post-translational modifications that regulate its structure and physiological function, and may be linked to the aggregation and/or oligomer formation. This review is focused on the interaction of this protein with physiologically relevant metal ions, highlighting the cases where metal-AS interactions profile as key modulators for its structural, aggregation, and membrane-binding properties. The impact of α-synuclein phosphorylation and N-terminal acetylation in the metal-binding properties of the protein are also discussed, underscoring a potential interplay between PTMs and metal ion binding in regulating α-synuclein physiological functions and its role in pathology. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Nazareno González
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Trinidad Arcos-López
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Liliana Quintanar
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Mauricio Menacho Márquez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Claudio O Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.,Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
32
|
Pan BB, Yang Y, Liu HZ, Li YH, Su XC. Coordination of Platinum to α-Synuclein Inhibits Filamentous Aggregation in Solution. Chembiochem 2019; 20:1953-1958. [PMID: 30958607 DOI: 10.1002/cbic.201900224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 12/18/2022]
Abstract
Accumulation of filamentous aggregates of α-synuclein (AS) in Lewy bodies and neurites is characteristic of neurodegenerative diseases such as Parkinson's disease. Inhibition of AS fibrillation is helpful for understanding of AS aggregate structure and for developing chemical therapies. Herein, we report that the PtII -containing antitumor drug cisplatin suppresses filamentous aggregation of AS in solution. PtII thus contrasts strongly with reported transition-metal ions such as MnII , FeIII , and CuII , which accelerate AS aggregation. Interaction between PtII and the side chains of methionine and histidine residues was essential for inhibition of AS fibrillation. Binding of PtII to AS did not change the protein's overall random coil structure, as indicated by solution-state two-dimensional NMR and circular dichroism spectroscopy; and a solution of the AS⋅PtII complex remained free of filamentous aggregates. Our results constitute interesting new information about the biological chemistry of metal ions in Parkinson's disease and might open new lines of research into the suppression of filamentous aggregation.
Collapse
Affiliation(s)
- Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hui-Zhong Liu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yi-Hua Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
33
|
Abeyawardhane DL, Heitger DR, Fernández RD, Forney AK, Lucas HR. C-Terminal Cu II Coordination to α-Synuclein Enhances Aggregation. ACS Chem Neurosci 2019; 10:1402-1410. [PMID: 30384594 DOI: 10.1021/acschemneuro.8b00448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The structurally dynamic amyloidogenic protein α-synuclein (αS) is universally recognized as a key player in Parkinson's disease (PD). Copper, which acts as a neuronal signaling agent, is also an effector of αS structure, aggregation, and localization in vivo. In humans, αS is known to carry an acetyl group on the starting methionine residue, capping the N-terminal free amine which was a known high-affinity CuII binding site. We now report the first detailed characterization data using electron paramagnetic resonance (EPR) spectroscopy to describe the CuII coordination modes of N-terminally acetylated αS (NAcαS). Through use of EPR hyperfine structure analyses and the Peisach-Blumberg correlation, an N3O1 binding mode was established that involves the single histidine residue at position 50 and a lower population of a second CuII-binding mode that may involve a C-terminal contribution. We additionally generated an N-terminally acetylated disease-relevant variant, NAcH50Q, that promotes a shift in the CuII binding site to the C-terminus of the protein. Moreover, fibrillar NAcH50Q-CuII exhibits enhanced parallel β-sheet character and increased hydrophobic surface area compared to NAcαS-CuII and to both protein variants that lack a coordinated cupric ion. The results presented herein demonstrate the differential impact of distinct CuII binding sites within NAcαS, revealing that C-terminal CuII binding exacerbates the structural consequences of the H50Q missense mutation. Likewise, the global structural modifications that result from N-terminal capping augment the properties of CuII coordination. Hence, consideration of the effect of CuII on NAcαS and NAcH50Q misfolding may shed light on the extrinsic or environmental factors that influence PD pathology.
Collapse
Affiliation(s)
| | - Denver R. Heitger
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ricardo D. Fernández
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ashley K. Forney
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Heather R. Lucas
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
34
|
Lothian A, Lago L, Mukherjee S, Connor AR, Fowler C, McLean CA, Horne M, Masters CL, Cappai R, Roberts BR. Characterization of the metal status of natively purified alpha-synuclein from human blood, brain tissue, or recombinant sources using size exclusion ICP-MS reveals no significant binding of Cu, Fe or Zn. Metallomics 2019; 11:128-140. [DOI: 10.1039/c8mt00223a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The binding of Cu, Fe or Zn to alpha-synuclein has been implicated in neurodegenerative disease, such as Parkinson's.
Collapse
Affiliation(s)
- Amber Lothian
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Larissa Lago
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Soumya Mukherjee
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Andrea R. Connor
- Department of Pathology
- The University of Melbourne
- Parkville
- Australia
| | - Chris Fowler
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Catriona A. McLean
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
- Department of Anatomical Pathology
| | - Malcolm Horne
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| | - Roberto Cappai
- Department of Pathology
- The University of Melbourne
- Parkville
- Australia
- Department of Pharmacology and Therapeutics
| | - Blaine R. Roberts
- The Florey Institute of Neuroscience and Mental Health
- University of Melbourne
- Parkville 3052
- Australia
| |
Collapse
|
35
|
Abeyawardhane DL, Fernández RD, Heitger DR, Crozier MK, Wolver JC, Lucas HR. Copper Induced Radical Dimerization of α-Synuclein Requires Histidine. J Am Chem Soc 2018; 140:17086-17094. [DOI: 10.1021/jacs.8b08947] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ricardo D. Fernández
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Denver R. Heitger
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Madeleine K. Crozier
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Julia C. Wolver
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Heather R. Lucas
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
36
|
Atrián-Blasco E, Gonzalez P, Santoro A, Alies B, Faller P, Hureau C. Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coord Chem Rev 2018; 375:38-55. [PMID: 30262932 DOI: 10.1016/j.ccr.2018.04.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several diseases share misfolding of different peptides and proteins as a key feature for their development. This is the case of important neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and type II diabetes mellitus. Even more, metal ions such as copper and zinc might play an important role upon interaction with amyloidogenic peptides and proteins, which could impact their aggregation and toxicity abilities. In this review, the different coordination modes proposed for copper and zinc with amyloid-β, α-synuclein and IAPP will be reviewed as well as their impact on the aggregation, and ROS production in the case of copper. In addition, a special focus will be given to the mutations that affect metal binding and lead to familial cases of the diseases. Different modifications of the peptides that have been observed in vivo and could be relevant for the coordination of metal ions are also described.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Paulina Gonzalez
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Alice Santoro
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Bruno Alies
- Université de Bordeaux, ChemBioPharm INSERM U1212 CNRS UMR 5320, Bordeaux, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
37
|
Wongkongkathep P, Han JY, Choi TS, Yin S, Kim HI, Loo JA. Native Top-Down Mass Spectrometry and Ion Mobility MS for Characterizing the Cobalt and Manganese Metal Binding of α-Synuclein Protein. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1870-1880. [PMID: 29951842 PMCID: PMC6087494 DOI: 10.1007/s13361-018-2002-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 05/22/2023]
Abstract
Structural characterization of intrinsically disordered proteins (IDPs) has been a major challenge in the field of protein science due to limited capabilities to obtain full-length high-resolution structures. Native ESI-MS with top-down MS was utilized to obtain structural features of protein-ligand binding for the Parkinson's disease-related protein, α-synuclein (αSyn), which is natively unstructured. Binding of heavy metals has been implicated in the accelerated formation of αSyn aggregation. Using high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, native top-down MS with various fragmentation methods, including electron capture dissociation (ECD), collisional activated dissociation (CAD), and multistage tandem MS (MS3), deduced the binding sites of cobalt and manganese to the C-terminal region of the protein. Ion mobility MS (IM-MS) revealed a collapse toward compacted states of αSyn upon metal binding. The combination of native top-down MS and IM-MS provides structural information of protein-ligand interactions for intrinsically disordered proteins. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Piriya Wongkongkathep
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jong Yoon Han
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Tae Su Choi
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Sheng Yin
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul, Republic of Korea
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, UCLA Molecular Biology Institute, and UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
38
|
O'Hara DM, Kalia SK, Kalia LV. Emerging disease-modifying strategies targeting α-synuclein for the treatment of Parkinson's disease. Br J Pharmacol 2018; 175:3080-3089. [PMID: 29722028 PMCID: PMC6031880 DOI: 10.1111/bph.14345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease is the most common neurodegenerative movement disorder. It arises as a result of neuronal cell death in specific brain regions, notably the substantia nigra pars compacta, and is characterized by the accumulation of α-synuclein in these brain regions. Current pharmacological therapies alleviate the motor symptoms of the disease and are particularly effective in the early stages of the disease. Ongoing drug development efforts focus on disease-modifying strategies that aim to halt or slow disease progression. In this review, we explore a number of emerging disease-modifying strategies with a focus on direct and indirect targeting of α-synuclein dysfunction. We summarize newer classes of small molecules and biological agents intended to attenuate protein aggregation or to target enzymes that may increase the degradation of the pathogenic forms of α-synuclein. Finally, we discuss emerging strategies that are demonstrating the potential for disease modification at the preclinical stage.
Collapse
Affiliation(s)
- Darren M O'Hara
- Krembil Research Institute, Toronto Western HospitalUniversity Health NetworkTorontoCanada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western HospitalUniversity Health NetworkTorontoCanada
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoCanada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western HospitalUniversity Health NetworkTorontoCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoCanada
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western HospitalUniversity Health NetworkTorontoCanada
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoCanada
| |
Collapse
|
39
|
Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxid Redox Signal 2018; 28:1669-1703. [PMID: 29402131 PMCID: PMC5962337 DOI: 10.1089/ars.2017.7272] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations. Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated. CRITICAL ISSUES In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems. FUTURE DIRECTIONS Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669-1703.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska.,2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Yanahi Posadas
- 3 Departamentos de Farmacología y de, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México .,4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - Liliana Quintanar
- 4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - María E Gonsebatt
- 2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Rodrigo Franco
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska
| |
Collapse
|
40
|
Abeyawardhane DL, Fernández RD, Murgas CJ, Heitger DR, Forney AK, Crozier MK, Lucas HR. Iron Redox Chemistry Promotes Antiparallel Oligomerization of α-Synuclein. J Am Chem Soc 2018; 140:5028-5032. [PMID: 29608844 DOI: 10.1021/jacs.8b02013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Brain metal dyshomeostasis and altered structural dynamics of the presynaptic protein α-synuclein (αS) are both implicated in the pathology of Parkinson's disease (PD), yet a mechanistic understanding of disease progression in the context of αS structure and metal interactions remains elusive. In this Communication, we detail the influence of iron, a prevalent redox-active brain biometal, on the aggregation propensity and secondary structure of N-terminally acetylated αS (NAcαS), the physiologically relevant form in humans. We demonstrate that under aerobic conditions, Fe(II) commits NAcαS to a PD-relevant oligomeric assembly, verified by the oligomer-selective A11 antibody, that does not have any parallel β-sheet character but contains a substantial right-twisted antiparallel β-sheet component based on CD analyses and descriptive deconvolution of the secondary structure. This NAcαS-FeII oligomer does not develop into the β-sheet fibrils that have become hallmarks of PD, even after extended incubation, as verified by TEM imaging and the fibril-specific OC antibody. Thioflavin T (ThT), a fluorescent probe for β-sheet fibril formation, also lacks coordination to this antiparallel conformer. We further show that this oligomeric state is not observed when O2 is excluded, indicating a role for iron(II)-mediated O2 chemistry in locking this dynamic protein into a conformation that may have physiological or pathological implications.
Collapse
Affiliation(s)
- Dinendra L Abeyawardhane
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Ricardo D Fernández
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Cody J Murgas
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Denver R Heitger
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Ashley K Forney
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Madeleine K Crozier
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| | - Heather R Lucas
- Department of Chemistry , Virginia Commonwealth University , Richmond , Virginia 23284 , United States
| |
Collapse
|
41
|
Choi TS, Lee J, Han JY, Jung BC, Wongkongkathep P, Loo JA, Lee MJ, Kim HI. Supramolecular Modulation of Structural Polymorphism in Pathogenic α‐Synuclein Fibrils Using Copper(II) Coordination. Angew Chem Int Ed Engl 2018; 57:3099-3103. [DOI: 10.1002/anie.201712286] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Tae Su Choi
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Jeeyoung Lee
- Department of Biomedical Sciences, Neuroscience Research Institute Seoul National University College of Medicine Seoul 03080 Republic of Korea
| | - Jong Yoon Han
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Byung Chul Jung
- Department of Biomedical Sciences, Neuroscience Research Institute Seoul National University College of Medicine Seoul 03080 Republic of Korea
| | - Piriya Wongkongkathep
- Department of Chemistry and Biochemistry University of California-Los Angeles Los Angeles CA 90095 USA
- Systems Biology Center, Research Affairs Faculty of Medicine Chulalongkorn University Bangkok 10330 Thailand
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry University of California-Los Angeles Los Angeles CA 90095 USA
- Department of Biological Chemistry David Geffen School of Medicine University of California-Los Angeles Los Angeles CA 90095 USA
- UCLA Molecular Biology Institute UCLA/DOE Institute for Genomics and Proteomics University of California-Los Angeles Los Angeles CA 90095 USA
| | - Min Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute Seoul National University College of Medicine Seoul 03080 Republic of Korea
| | - Hugh I. Kim
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
42
|
Choi TS, Lee J, Han JY, Jung BC, Wongkongkathep P, Loo JA, Lee MJ, Kim HI. Supramolecular Modulation of Structural Polymorphism in Pathogenic α‐Synuclein Fibrils Using Copper(II) Coordination. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tae Su Choi
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Jeeyoung Lee
- Department of Biomedical Sciences, Neuroscience Research Institute Seoul National University College of Medicine Seoul 03080 Republic of Korea
| | - Jong Yoon Han
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Byung Chul Jung
- Department of Biomedical Sciences, Neuroscience Research Institute Seoul National University College of Medicine Seoul 03080 Republic of Korea
| | - Piriya Wongkongkathep
- Department of Chemistry and Biochemistry University of California-Los Angeles Los Angeles CA 90095 USA
- Systems Biology Center, Research Affairs Faculty of Medicine Chulalongkorn University Bangkok 10330 Thailand
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry University of California-Los Angeles Los Angeles CA 90095 USA
- Department of Biological Chemistry David Geffen School of Medicine University of California-Los Angeles Los Angeles CA 90095 USA
- UCLA Molecular Biology Institute UCLA/DOE Institute for Genomics and Proteomics University of California-Los Angeles Los Angeles CA 90095 USA
| | - Min Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute Seoul National University College of Medicine Seoul 03080 Republic of Korea
| | - Hugh I. Kim
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
43
|
Miotto MC, Pavese MD, Quintanar L, Zweckstetter M, Griesinger C, Fernández CO. Bioinorganic Chemistry of Parkinson’s Disease: Affinity and Structural Features of Cu(I) Binding to the Full-Length β-Synuclein Protein. Inorg Chem 2017; 56:10387-10395. [DOI: 10.1021/acs.inorgchem.7b01292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marco C. Miotto
- Max Planck Laboratory
for Structural Biology, Chemistry and Molecular Biophysics of Rosario
and Instituto de Investigaciones para el Descubrimiento de Fármacos
de Rosario, Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Mayra D. Pavese
- Max Planck Laboratory
for Structural Biology, Chemistry and Molecular Biophysics of Rosario
and Instituto de Investigaciones para el Descubrimiento de Fármacos
de Rosario, Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Liliana Quintanar
- Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico
Nacional 2508, 07360 D.F., México
| | - Markus Zweckstetter
- Department of NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
- Deutches Zentrum für Neurodegenerative Erkrankungen, von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Claudio O. Fernández
- Max Planck Laboratory
for Structural Biology, Chemistry and Molecular Biophysics of Rosario
and Instituto de Investigaciones para el Descubrimiento de Fármacos
de Rosario, Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
- Department of NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
44
|
Ramis R, Ortega-Castro J, Vilanova B, Adrover M, Frau J. Copper(II) Binding Sites in N-Terminally Acetylated α-Synuclein: A Theoretical Rationalization. J Phys Chem A 2017; 121:5711-5719. [DOI: 10.1021/acs.jpca.7b03165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rafael Ramis
- Departament de Química, Institut Universitari d’Investigació
en Ciències de la Salut (IUNICS), Universitat de les Illes Balears Palma de Mallorca, 07122 Palma, Spain
- Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma, Spain
| | - Joaquín Ortega-Castro
- Departament de Química, Institut Universitari d’Investigació
en Ciències de la Salut (IUNICS), Universitat de les Illes Balears Palma de Mallorca, 07122 Palma, Spain
- Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma, Spain
| | - Bartolomé Vilanova
- Departament de Química, Institut Universitari d’Investigació
en Ciències de la Salut (IUNICS), Universitat de les Illes Balears Palma de Mallorca, 07122 Palma, Spain
- Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma, Spain
| | - Miquel Adrover
- Departament de Química, Institut Universitari d’Investigació
en Ciències de la Salut (IUNICS), Universitat de les Illes Balears Palma de Mallorca, 07122 Palma, Spain
- Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma, Spain
| | - Juan Frau
- Departament de Química, Institut Universitari d’Investigació
en Ciències de la Salut (IUNICS), Universitat de les Illes Balears Palma de Mallorca, 07122 Palma, Spain
- Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma, Spain
| |
Collapse
|
45
|
A moderate metal-binding hydrazone meets the criteria for a bioinorganic approach towards Parkinson's disease: Therapeutic potential, blood-brain barrier crossing evaluation and preliminary toxicological studies. J Inorg Biochem 2017; 170:160-168. [DOI: 10.1016/j.jinorgbio.2017.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 01/14/2023]
|
46
|
DeForte S, Uversky VN. Quarterly intrinsic disorder digest (April-May-June, 2014). INTRINSICALLY DISORDERED PROTEINS 2017; 5:e1287505. [PMID: 28321370 DOI: 10.1080/21690707.2017.1287505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This is the 6th issue of the Digested Disorder series that continues to use only 2 criteria for inclusion of a paper to this digest: The publication date (a paper should be published within the covered time frame) and the topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the second quarter of 2014; i.e., during the period of April, May, and June of 2014. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included papers a short description is given on its major findings.
Collapse
Affiliation(s)
- Shelly DeForte
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Département De Biochimie and Centre Robert-Cedergren, Bio-Informatique et Génomique, Université de Montréal, Succursale Centre-Ville, Montreal, Quebec, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute of Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
47
|
Toni M, Massimino ML, De Mario A, Angiulli E, Spisni E. Metal Dyshomeostasis and Their Pathological Role in Prion and Prion-Like Diseases: The Basis for a Nutritional Approach. Front Neurosci 2017; 11:3. [PMID: 28154522 PMCID: PMC5243831 DOI: 10.3389/fnins.2017.00003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Metal ions are key elements in organisms' life acting like cofactors of many enzymes but they can also be potentially dangerous for the cell participating in redox reactions that lead to the formation of reactive oxygen species (ROS). Any factor inducing or limiting a metal dyshomeostasis, ROS production and cell injury may contribute to the onset of neurodegenerative diseases or play a neuroprotective action. Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative disorders affecting the central nervous system (CNS) of human and other mammalian species. The causative agent of TSEs is believed to be the scrapie prion protein PrPSc, the β sheet-rich pathogenic isoform produced by the conformational conversion of the α-helix-rich physiological isoform PrPC. The peculiarity of PrPSc is its ability to self-propagate in exponential fashion in cells and its tendency to precipitate in insoluble and protease-resistance amyloid aggregates leading to neuronal cell death. The expression “prion-like diseases” refers to a group of neurodegenerative diseases that share some neuropathological features with prion diseases such as the involvement of proteins (α-synuclein, amyloid β, and tau) able to precipitate producing amyloid deposits following conformational change. High social impact diseases such as Alzheimer's and Parkinson's belong to prion-like diseases. Accumulating evidence suggests that the exposure to environmental metals is a risk factor for the development of prion and prion-like diseases and that metal ions can directly bind to prion and prion-like proteins affecting the amount of amyloid aggregates. The diet, source of metal ions but also of natural antioxidant and chelating agents such as polyphenols, is an aspect to take into account in addressing the issue of neurodegeneration. Epidemiological data suggest that the Mediterranean diet, based on the abundant consumption of fresh vegetables and on low intake of meat, could play a preventive or delaying role in prion and prion-like neurodegenerative diseases. In this review, metal role in the onset of prion and prion-like diseases is dealt with from a nutritional, cellular, and molecular point of view.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University Rome, Italy
| | - Maria L Massimino
- National Research Council (CNR), Neuroscience Institute c/o Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Elisa Angiulli
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University Rome, Italy
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| |
Collapse
|
48
|
Liu JP, Li J, Lu Y, Wang L, Chen G. Impulse control disorder, lysosomal malfunction and ATP13A2 insufficiency in Parkinsonism. Clin Exp Pharmacol Physiol 2016; 44:172-179. [PMID: 27997702 DOI: 10.1111/1440-1681.12714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022]
Abstract
Lysosomal transport of cargos in neurons is essential for neuronal proteostasis, transmission and functional motors and behaviours. Lysosomal malfunction including storage disorders is involved in the pathogenesis of Parkinson's disease (PD). Given the unclear molecular mechanisms of diverse defects in PD phenotypes, especially behavioural deficits, this mini review explores the cellular contexts of PD impulse control disorders and the molecular aspects of lysosomal cross-membrane transports. Focuses are paid to trace metal involvements in α-synuclein assembly in Lewy bodies, the functions and molecular interactions of ATP13A2 as ATPase transporters in lysosomal membranes for cross-membrane trafficking and lysosomal homeostasis, and our current understandings of the neural circuits in ICD. Erroneously polarized distributions of cargos such as metals and lipids on each side of lysosomal membranes triggered by gene mutations and deregulated expression of ATP13A2 may thus instigate sensing protein structural changes such as aggregations, organelle degeneration, and specific neuronal ageing and death in Parkinsonism.
Collapse
Affiliation(s)
- Jun-Ping Liu
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China.,Department of Molecular and Translational Science, Faculty of Medicine, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.,Department of Immunology, Faculty of Medicine, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Jianfeng Li
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Yanhua Lu
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Lihui Wang
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Gang Chen
- School of Medicine, Institute of Ageing Research, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
49
|
Hecel A, De Ricco R, Valensin D. Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Coordination and redox properties of copper interaction with α-synuclein. J Inorg Biochem 2016; 163:292-300. [DOI: 10.1016/j.jinorgbio.2016.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/11/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
|