1
|
Howe J, Weeks A, Reardon P, Barbar E. Multivalent binding of the hub protein LC8 at a newly discovered site in 53BP1. Biophys J 2022; 121:4433-4442. [PMID: 36335430 PMCID: PMC9748353 DOI: 10.1016/j.bpj.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/28/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Tumor suppressor p53 binding protein 1 (53BP1) is a scaffolding protein involved in poly-ADP ribose polymerase inhibitor hypersensitivity in BRCA1-negative cancers. 53BP1 plays a critical role in the DNA damage response and relies on its oligomerization to create foci that promote repair of DNA double-strand breaks. Previous work shows that mutation of either the oligomerization domain or the dynein light chain 8 (LC8)-binding sites of 53BP1 results in reduced accumulation of 53BP1 at double-strand breaks. Mutation of both abolishes focus formation almost completely. Here, we show that, contrary to current literature, 53BP1 contains three LC8-binding sites, all of which are conserved in mammals. Isothermal titration calorimetry measuring binding affinity of 53BP1 variants with LC8 shows that the third LC8-binding site has a high affinity and can bind LC8 in the absence of other sites. NMR titrations confirm that the third site binds LC8 even in variants that lack the other LC8-binding sites. The third site is the closest to the oligomerization domain of 53BP1, and its discovery would challenge our current understanding of the role of LC8 in 53BP1 function.
Collapse
Affiliation(s)
- Jesse Howe
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Austin Weeks
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Patrick Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, Oregon
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon.
| |
Collapse
|
2
|
Carew JA, Cristofaro V, Siegelman NA, Goyal RK, Sullivan MP. Expression of Myosin 5a splice variants in murine stomach. Neurogastroenterol Motil 2021; 33:e14162. [PMID: 33939222 DOI: 10.1111/nmo.14162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The motor protein, Myosin 5a (Myo5a) is known to play a role in inhibitory neurotransmission in gastric fundus. However, there is no information regarding the relative expression of total Myo5a, or of its alternative exon splice variants, across the stomach. This study investigated the differential distribution of Myo5a variants expressed within distinct anatomical regions of murine stomach. METHODS The distribution of Myo5a protein and mRNA in the stomach was assessed by immunofluorescence microscopy and fluorescent in situ hybridization. Quantitative PCR, restriction enzyme analysis, and electrophoresis were used to identify Myo5a splice variants and quantify their expression levels in the fundus, body, antrum, and pylorus. KEY RESULTS Myo5a protein colocalized with βIII-Tubulin in the myenteric plexus, and with synaptophysin in nerve fibers. Total Myo5a mRNA expression was lower in pylorus than in antrum, body, or fundus (p < 0.001), which expressed equivalent amounts of Myo5a. However, Myo5a splice variants were differentially expressed across the stomach. While the ABCE splice variant predominated in the antrum and body regions, the ACEF/ACDEF variants were enriched in fundus and pylorus. CONCLUSIONS AND INFERENCES Myo5a splice variants varied in their relative expression across anatomically distinguishable stomach regions and might mediate distinct physiological functions in gastric neurotransmission.
Collapse
Affiliation(s)
- Josephine A Carew
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Vivian Cristofaro
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Raj K Goyal
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Maryrose P Sullivan
- VA Boston Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Lai KY, Rizzato M, Aydin I, Villalonga-Planells R, Drexler HCA, Schelhaas M. A Ran-binding protein facilitates nuclear import of human papillomavirus type 16. PLoS Pathog 2021; 17:e1009580. [PMID: 33974675 PMCID: PMC8139508 DOI: 10.1371/journal.ppat.1009580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023] Open
Abstract
Human papillomaviruses (HPVs) utilize an atypical mode of nuclear import during cell entry. Residing in the Golgi apparatus until mitosis onset, a subviral complex composed of the minor capsid protein L2 and viral DNA (L2/vDNA) is imported into the nucleus after nuclear envelope breakdown by associating with mitotic chromatin. In this complex, L2 plays a crucial role in the interactions with cellular factors that enable delivery and ultimately tethering of the viral genome to mitotic chromatin. To date, the cellular proteins facilitating these steps remain unknown. Here, we addressed which cellular proteins may be required for this process. Using label-free mass spectrometry, biochemical assays, microscopy, and functional virological assays, we discovered that L2 engages a hitherto unknown protein complex of Ran-binding protein 10 (RanBP10), karyopherin alpha2 (KPNA2), and dynein light chain DYNLT3 to facilitate transport towards mitotic chromatin. Thus, our study not only identifies novel cellular interactors and mechanism that facilitate a poorly understood step in HPV entry, but also a novel cellular transport complex. Human papillomaviruses (HPVs) cause proliferative lesions such as benign warts or malignant invasive cancers. Like other DNA viruses, HPV has to deliver its genome to the nucleus for viral genome transcription and replication. After initial attachment, HPVs are endocytosed to be eventually directed to the trans-Golgi-network (TGN) by intracellular trafficking, where they reside until cell division. Mitosis onset enables access of the virus to cellular chromatin after nuclear envelope breakdown. Tethering of the virus to mitotic chromatin ensures nuclear delivery upon reformation of the nuclear envelope after mitosis. Our previous work showed that the minor capsid protein L2 facilitates nuclear delivery. However, the detailed mechanism, namely, how HPV trafficks from cytosol to the nuclear space, is barely understood. Here, we identified for the first time cellular proteins that interacted with L2 for nuclear import. Mechanistically, the proteins formed a hitherto unknown cellular transport complex that interacted with L2 to direct the virus to mitotic chromosomes by microtubular transport. Our findings provided not only evidence for a transport mechanism of a poorly understood step of HPV entry, but also discovered a novel cellular transport complex.
Collapse
Affiliation(s)
- Kun-Yi Lai
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre ‘Cells in Motion’ (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Matteo Rizzato
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Inci Aydin
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | | | - Hannes C. A. Drexler
- Biomolecular Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre ‘Cells in Motion’ (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
4
|
Khramushin A, Marcu O, Alam N, Shimony O, Padhorny D, Brini E, Dill KA, Vajda S, Kozakov D, Schueler-Furman O. Modeling beta-sheet peptide-protein interactions: Rosetta FlexPepDock in CAPRI rounds 38-45. Proteins 2020; 88:1037-1049. [PMID: 31891416 PMCID: PMC7539656 DOI: 10.1002/prot.25871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023]
Abstract
Peptide-protein docking is challenging due to the considerable conformational freedom of the peptide. CAPRI rounds 38-45 included two peptide-protein interactions, both characterized by a peptide forming an additional beta strand of a beta sheet in the receptor. Using the Rosetta FlexPepDock peptide docking protocol we generated top-performing, high-accuracy models for targets 134 and 135, involving an interaction between a peptide derived from L-MAG with DLC8. In addition, we were able to generate the only medium-accuracy models for a particularly challenging target, T121. In contrast to the classical peptide-mediated interaction, in which receptor side chains contact both peptide backbone and side chains, beta-sheet complementation involves a major contribution to binding by hydrogen bonds between main chain atoms. To establish how binding affinity and specificity are established in this special class of peptide-protein interactions, we extracted PeptiDBeta, a benchmark of solved structures of different protein domains that are bound by peptides via beta-sheet complementation, and tested our protocol for global peptide-docking PIPER-FlexPepDock on this dataset. We find that the beta-strand part of the peptide is sufficient to generate approximate and even high resolution models of many interactions, but inclusion of adjacent motif residues often provides additional information necessary to achieve high resolution model quality.
Collapse
Affiliation(s)
- Alisa Khramushin
- Department of Microbiologyand Molecular Genetics, Institute
for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University,
Jerusalem, Israel
| | - Orly Marcu
- Department of Microbiologyand Molecular Genetics, Institute
for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University,
Jerusalem, Israel
| | - Nawsad Alam
- Department of Microbiologyand Molecular Genetics, Institute
for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University,
Jerusalem, Israel
| | - Orly Shimony
- Department of Microbiologyand Molecular Genetics, Institute
for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University,
Jerusalem, Israel
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony
Brook University, New York, New York
- Laufer Center for Physical and Quantitative Biology, Stony
Brook University, New York, New York
| | - Emiliano Brini
- Laufer Center for Physical and Quantitative Biology, Stony
Brook University, New York, New York
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, Stony
Brook University, New York, New York
- Department of Physics and Astronomy, Stony Brook
University, New York, New York
- Department of Chemistry, Stony Brook University, New York,
New York
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University,
Boston, Massachusetts
- Department of Chemistry, Boston University, Boston,
Massachusetts
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony
Brook University, New York, New York
- Laufer Center for Physical and Quantitative Biology, Stony
Brook University, New York, New York
| | - Ora Schueler-Furman
- Department of Microbiologyand Molecular Genetics, Institute
for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University,
Jerusalem, Israel
| |
Collapse
|
5
|
Reardon PN, Jara KA, Rolland AD, Smith DA, Hoang HTM, Prell JS, Barbar EJ. The dynein light chain 8 (LC8) binds predominantly "in-register" to a multivalent intrinsically disordered partner. J Biol Chem 2020; 295:4912-4922. [PMID: 32139510 PMCID: PMC7152752 DOI: 10.1074/jbc.ra119.011653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/03/2020] [Indexed: 01/18/2023] Open
Abstract
Dynein light chain 8 (LC8) interacts with intrinsically disordered proteins (IDPs) and influences a wide range of biological processes. It is becoming apparent that among the numerous IDPs that interact with LC8, many contain multiple LC8-binding sites. Although it is established that LC8 forms parallel IDP duplexes with some partners, such as nucleoporin Nup159 and dynein intermediate chain, the molecular details of these interactions and LC8's interactions with other diverse partners remain largely uncharacterized. LC8 dimers could bind in either a paired "in-register" or a heterogeneous off-register manner to any of the available sites on a multivalent partner. Here, using NMR chemical shift perturbation, analytical ultracentrifugation, and native electrospray ionization MS, we show that LC8 forms a predominantly in-register complex when bound to an IDP domain of the multivalent regulatory protein ASCIZ. Using saturation transfer difference NMR, we demonstrate that at substoichiometric LC8 concentrations, the IDP domain preferentially binds to one of the three LC8 recognition motifs. Further, the differential dynamic behavior for the three sites and the size of the fully bound complex confirmed an in-register complex. Dynamics measurements also revealed that coupling between sites depends on the linker length separating these sites. These results identify linker length and motif specificity as drivers of in-register binding in the multivalent LC8-IDP complex assembly and the degree of compositional and conformational heterogeneity as a promising emerging mechanism for tuning of binding and regulation.
Collapse
Affiliation(s)
- Patrick N Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, Oregon 97331
| | - Kayla A Jara
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Delaney A Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Hanh T M Hoang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
6
|
Dapkūnas J, Kairys V, Olechnovič K, Venclovas Č. Template-based modeling of diverse protein interactions in CAPRI rounds 38-45. Proteins 2019; 88:939-947. [PMID: 31697420 DOI: 10.1002/prot.25845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/03/2019] [Indexed: 11/09/2022]
Abstract
Structures of proteins complexed with other proteins, peptides, or ligands are essential for investigation of molecular mechanisms. However, the experimental structures of protein complexes of interest are often not available. Therefore, computational methods are widely used to predict these structures, and, of those methods, template-based modeling is the most successful. In the rounds 38-45 of the Critical Assessment of PRediction of Interactions (CAPRI), we applied template-based modeling for 9 of 11 protein-protein and protein-peptide interaction targets, resulting in medium and high-quality models for six targets. For the protein-oligosaccharide docking targets, we used constraints derived from template structures, and generated models of at least acceptable quality for most of the targets. Apparently, high flexibility of oligosaccharide molecules was the main cause preventing us from obtaining models of higher quality. We also participated in the CAPRI scoring challenge, the goal of which was to identify the highest quality models from a large pool of decoys. In this experiment, we tested VoroMQA, a scoring method based on interatomic contact areas. The results showed VoroMQA to be quite effective in scoring strongly binding and obligatory protein complexes, but less successful in the case of transient interactions. We extensively used manual intervention in both CAPRI modeling and scoring experiments. This oftentimes allowed us to select the correct templates from available alternatives and to limit the search space during the model scoring.
Collapse
Affiliation(s)
- Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Visvaldas Kairys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
7
|
Myllykoski M, Eichel MA, Jung RB, Kelm S, Werner HB, Kursula P. High-affinity heterotetramer formation between the large myelin-associated glycoprotein and the dynein light chain DYNLL1. J Neurochem 2018; 147:764-783. [PMID: 30261098 DOI: 10.1111/jnc.14598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/21/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
Abstract
The close association of myelinated axons and their myelin sheaths involves numerous intercellular molecular interactions. For example, myelin-associated glycoprotein (MAG) mediates myelin-to-axon adhesion and signalling via molecules on the axonal surface. However, knowledge about intracellular binding partners of myelin proteins, including MAG, has remained limited. The two splice isoforms of MAG, S- and L-MAG, display distinct cytoplasmic domains and spatiotemporal expression profiles. We used yeast two-hybrid screening to identify interaction partners of L-MAG and found the dynein light chain DYNLL1 (also termed dynein light chain 8). DYNLL1 homodimers are known to facilitate dimerization of target proteins. L-MAG and DYNLL1 associate with high affinity, as confirmed with recombinant proteins in vitro. Structural analyses of the purified complex indicate that the DYNLL1-binding segment is localized close to the L-MAG C terminus, next to the Fyn kinase Tyr phosphorylation site. The crystal structure of the complex between DYNLL1 and its binding segment on L-MAG shows 2 : 2 binding in a parallel arrangement, indicating a heterotetrameric complex. The homology between L-MAG and previously characterized DYNLL1-ligands is limited, and some details of binding site interactions are unique for L-MAG. The structure of the complex between the entire L-MAG cytoplasmic domain and DYNLL1, as well as that of the extracellular domain of MAG, were modelled based on small-angle X-ray scattering data, allowing structural insights into L-MAG interactions on both membrane surfaces. Our data imply that DYNLL1 dimerizes L-MAG, but not S-MAG, through the formation of a specific 2 : 2 heterotetramer. This arrangement is likely to affect, in an isoform-specific manner, the functions of MAG in adhesion and myelin-to-axon signalling. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Read the Editorial Highlight for this article on page 712.
Collapse
Affiliation(s)
- Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Maria A Eichel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Georg August University School of Science, University of Göttingen, Göttingen, Germany
| | - Ramona B Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen (CBIB), University of Bremen, Bremen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Structural atlas of dynein motors at atomic resolution. Biophys Rev 2018; 10:677-686. [PMID: 29478092 DOI: 10.1007/s12551-018-0402-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
Dynein motors are biologically important bio-nanomachines, and many atomic resolution structures of cytoplasmic dynein components from different organisms have been analyzed by X-ray crystallography, cryo-EM, and NMR spectroscopy. This review provides a historical perspective of structural studies of cytoplasmic and axonemal dynein including accessory proteins. We describe representative structural studies of every component of dynein and summarize them as a structural atlas that classifies the cytoplasmic and axonemal dyneins. Based on our review of all dynein structures in the Protein Data Bank, we raise two important points for understanding the two types of dynein motor and discuss the potential prospects of future structural studies.
Collapse
|
9
|
Erdős G, Szaniszló T, Pajkos M, Hajdu-Soltész B, Kiss B, Pál G, Nyitray L, Dosztányi Z. Novel linear motif filtering protocol reveals the role of the LC8 dynein light chain in the Hippo pathway. PLoS Comput Biol 2017; 13:e1005885. [PMID: 29240760 PMCID: PMC5746249 DOI: 10.1371/journal.pcbi.1005885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/28/2017] [Accepted: 11/20/2017] [Indexed: 01/12/2023] Open
Abstract
Protein-protein interactions (PPIs) formed between short linear motifs and globular domains play important roles in many regulatory and signaling processes but are highly underrepresented in current protein-protein interaction databases. These types of interactions are usually characterized by a specific binding motif that captures the key amino acids shared among the interaction partners. However, the computational proteome-level identification of interaction partners based on the known motif is hindered by the huge number of randomly occurring matches from which biologically relevant motif hits need to be extracted. In this work, we established a novel bioinformatic filtering protocol to efficiently explore interaction network of a hub protein. We introduced a novel measure that enabled the optimization of the elements and parameter settings of the pipeline which was built from multiple sequence-based prediction methods. In addition, data collected from PPI databases and evolutionary analyses were also incorporated to further increase the biological relevance of the identified motif hits. The approach was applied to the dynein light chain LC8, a ubiquitous eukaryotic hub protein that has been suggested to be involved in motor-related functions as well as promoting the dimerization of various proteins by recognizing linear motifs in its partners. From the list of putative binding motifs collected by our protocol, several novel peptides were experimentally verified to bind LC8. Altogether 71 potential new motif instances were identified. The expanded list of LC8 binding partners revealed the evolutionary plasticity of binding partners despite the highly conserved binding interface. In addition, it also highlighted a novel, conserved function of LC8 in the upstream regulation of the Hippo signaling pathway. Beyond the LC8 system, our work also provides general guidelines that can be applied to explore the interaction network of other linear motif binding proteins or protein domains. Fine-tuning of many cellular processes relies on weak, transient protein-protein interactions. Such interactions often involve compact functional modules, called short linear motifs (SLiMs) that can bind to specific globular domains. SLiM-mediated interactions can carry out diverse molecular functions by targeting proteins to specific cellular locations, regulating the activity and binding preferences of proteins, or aiding the assembly of macromolecular complexes. The key to the function of SLiMs is their small size and highly flexible nature. At the same time, these properties make their experimental identification challenging. Consequently, only a small portion of SLiM-mediated interactions is currently known. This underlies the importance of novel computational methods that can reliably identify candidate sites involved in binding to linear motif binding domains. Here we present a novel bioinformatic approach that efficiently predicts new binding partners for SLiM-binding domains. We applied this method to the dynein light chain LC8, a protein that was already known to bind many partners in a wide range of organisms. With this method, we not only significantly expanded the interaction network of LC8, but also identified a novel function of LC8 in a highly important pathway controlling organ size in animals.
Collapse
Affiliation(s)
- Gábor Erdős
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Szaniszló
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mátyás Pajkos
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Borbála Hajdu-Soltész
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
10
|
Cheeseman LP, Boulanger J, Bond LM, Schuh M. Two pathways regulate cortical granule translocation to prevent polyspermy in mouse oocytes. Nat Commun 2016; 7:13726. [PMID: 27991490 PMCID: PMC5187413 DOI: 10.1038/ncomms13726] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
An egg must be fertilized by a single sperm only. To prevent polyspermy, the zona pellucida, a structure that surrounds mammalian eggs, becomes impermeable upon fertilization, preventing the entry of further sperm. The structural changes in the zona upon fertilization are driven by the exocytosis of cortical granules. These translocate from the oocyte's centre to the plasma membrane during meiosis. However, very little is known about the mechanism of cortical granule translocation. Here we investigate cortical granule transport and dynamics in live mammalian oocytes by using Rab27a as a marker. We show that two separate mechanisms drive their transport: myosin Va-dependent movement along actin filaments, and an unexpected vesicle hitchhiking mechanism by which cortical granules bind to Rab11a vesicles powered by myosin Vb. Inhibiting cortical granule translocation severely impaired the block to sperm entry, suggesting that translocation defects could contribute to miscarriages that are caused by polyspermy.
Mammalian eggs release cortical granules to avoid being fertilized by more than a single sperm as polyspermy results in nonviable embryos. Here, the authors describe the mechanism driving translocation of the granules to the cortex in the mouse egg and show this process is essential to prevent polyspermy.
Collapse
Affiliation(s)
- Liam P Cheeseman
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jérôme Boulanger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Lisa M Bond
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Melina Schuh
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.,Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
11
|
Wang X, Olson JR, Rasoloson D, Ellenbecker M, Bailey J, Voronina E. Dynein light chain DLC-1 promotes localization and function of the PUF protein FBF-2 in germline progenitor cells. Development 2016; 143:4643-4653. [PMID: 27864381 DOI: 10.1242/dev.140921] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022]
Abstract
PUF family translational repressors are conserved developmental regulators, but the molecular function provided by the regions flanking the PUF RNA-binding domain is unknown. In C. elegans, the PUF proteins FBF-1 and FBF-2 support germline progenitor maintenance by repressing production of meiotic proteins and use distinct mechanisms to repress their target mRNAs. We identify dynein light chain DLC-1 as an important regulator of FBF-2 function. DLC-1 directly binds to FBF-2 outside of the RNA-binding domain and promotes FBF-2 localization and function. By contrast, DLC-1 does not interact with FBF-1 and does not contribute to FBF-1 activity. Surprisingly, we find that the contribution of DLC-1 to FBF-2 activity is independent of the dynein motor. Our findings suggest that PUF protein localization and activity are mediated by sequences flanking the RNA-binding domain that bind specific molecular partners. Furthermore, these results identify a new role for DLC-1 in post-transcriptional regulation of gene expression.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jenessa R Olson
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Dominique Rasoloson
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, HHMI, Baltimore, MD 21205, USA
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jessica Bailey
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
12
|
Pálfy G, Kiss B, Nyitray L, Bodor A. Multilevel Changes in Protein Dynamics upon Complex Formation of the Calcium-Loaded S100A4 with a Nonmuscle Myosin IIA Tail Fragment. Chembiochem 2016; 17:1829-1838. [PMID: 27418229 DOI: 10.1002/cbic.201600280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 11/11/2022]
Abstract
Dysregulation of Ca2+ -binding S100 proteins plays important role in various diseases. The asymmetric complex of Ca2+ -bound S100A4 with nonmuscle myosin IIA has high stability and highly increased Ca2+ affinity. Here we investigated the possible causes of this allosteric effect by NMR spectroscopy. Chemical shift-based secondary-structure analysis did not show substantial changes for the complex. Backbone dynamics revealed slow-timescale local motions in the H1 helices of homodimeric S100A4; these were less pronounced in the complex form and might be accompanied by an increase in dimer stability. Different mobilities in the Ca2+ -coordinating EF-hand sites indicate that they communicate by an allosteric mechanism operating through changes in protein dynamics; this must be responsible for the elevated Ca2+ affinity. These multilevel changes in protein dynamics as conformational adaptation allow S100A4 fine-tuning of its protein-protein interactions inside the cell during Ca2+ signaling.
Collapse
Affiliation(s)
- Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1 A, 1117, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| | - Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1 A, 1117, Budapest, Hungary.
| |
Collapse
|
13
|
Clark S, Nyarko A, Löhr F, Karplus PA, Barbar E. The Anchored Flexibility Model in LC8 Motif Recognition: Insights from the Chica Complex. Biochemistry 2015; 55:199-209. [PMID: 26652654 DOI: 10.1021/acs.biochem.5b01099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
LC8 is a dimeric hub protein involved in a large number of interactions central to cell function. It binds short linear motifs--usually containing a Thr-Gln-Thr (TQT) triplet--in intrinsically disordered regions of its binding partners, some of which have several LC8 recognition motifs in tandem. Hallmarks of the 7-10 amino acid motif are a high variability of LC8 binding affinity and extensive sequence permutation outside the TQT triplet. To elucidate the molecular basis of motif recognition, we use a 69-residue segment of the human Chica spindle adaptor protein that contains four putative TQT recognition motifs in tandem. NMR-derived secondary chemical shifts and relaxation properties show that the Chica LC8 binding domain is essentially disordered with a dynamically restricted segment in one linker between motifs. Calorimetry of LC8 binding to synthetic motif-mimicking peptides shows that the first motif dominates LC8 recruitment. Crystal structures of the complexes of LC8 bound to each of two motif peptides show highly ordered and invariant TQT-LC8 interactions and more flexible and conformationally variable non-TQT-LC8 interactions. These data highlight rigidity in both LC8 residues that bind TQT and in the TQT portion of the motif as an important new characteristic of LC8 recognition. On the basis of these data and others in the literature, we propose that LC8 recognition is based on rigidly fixed interactions between LC8 and TQT residues that act as an anchor, coupled with inherently flexible interactions between LC8 and non-TQT residues. The "anchored flexibility" model explains the requirement for the TQT triplet and the ability of LC8 to accommodate a large variety of motif sequences and affinities.
Collapse
Affiliation(s)
- Sarah Clark
- Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon 97331, United States
| | - Afua Nyarko
- Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon 97331, United States
| | - Frank Löhr
- Institute of Biophysical Chemistry, Goethe-University , D-60438 Frankfurt, Germany
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon 97331, United States
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
14
|
Merino-Gracia J, García-Mayoral MF, Rapali P, Valero RA, Bruix M, Rodríguez-Crespo I. DYNLT (Tctex-1) forms a tripartite complex with dynein intermediate chain and RagA, hence linking this small GTPase to the dynein motor. FEBS J 2015; 282:3945-58. [PMID: 26227614 DOI: 10.1111/febs.13388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/02/2015] [Accepted: 07/28/2015] [Indexed: 12/15/2022]
Abstract
It has been suggested that DYNLT, a dynein light chain known to bind to various cellular and viral proteins, can function as a microtubule-cargo adaptor. Recent data showed that DYNLT links the small GTPase Rab3D to microtubules and, for this to occur, the DYNLT homodimer needs to display a binding site for dynein intermediate chain together with a binding site for the small GTPase. We have analysed in detail how RagA, another small GTPase, associates to DYNLT. After narrowing down the binding site of RagA to DYNLT we could identify that a β strand, part of the RagA G3 box involved in nucleotide binding, mediates this association. Interestingly, we show that both microtubule-associated DYNLT and cytoplasmic DYNLT are equally able to bind to the small GTPases Rab3D and RagA. Using NMR spectroscopy, we analysed the binding of dynein intermediate chain and RagA to mammalian DYNLT. Our experiments identify residues of DYNLT affected by dynein intermediate chain binding and residues affected by RagA binding, hence distinguishing the docking site for each of them. In summary, our results shed light on the mechanisms adopted by DYNLT when binding to protein cargoes that become transported alongside microtubules bound to the dynein motor.
Collapse
Affiliation(s)
- Javier Merino-Gracia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Spain
| | - María Flor García-Mayoral
- Departamento de Química Biológica, Instituto de Química-Física Rocasolano, CSIC, Serrano, Madrid, Spain
| | - Peter Rapali
- Dynamics of Cell Growth and Division, Institut de Biologie Cellulaire et de Génétique, Centre National de la Recherche Scientifique, Bordeaux, France
| | - Ruth Ana Valero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Spain
| | - Marta Bruix
- Departamento de Química Biológica, Instituto de Química-Física Rocasolano, CSIC, Serrano, Madrid, Spain
| | - Ignacio Rodríguez-Crespo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Spain
| |
Collapse
|
15
|
Clark SA, Jespersen N, Woodward C, Barbar E. Multivalent IDP assemblies: Unique properties of LC8-associated, IDP duplex scaffolds. FEBS Lett 2015; 589:2543-51. [PMID: 26226419 DOI: 10.1016/j.febslet.2015.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 01/17/2023]
Abstract
A wide variety of subcellular complexes are composed of one or more intrinsically disordered proteins (IDPs) that are multivalent, flexible, and characterized by dynamic binding of diverse partner proteins. These multivalent IDP assemblies, of broad functional diversity, are classified here into five categories distinguished by the number of IDP chains and the arrangement of partner proteins in the functional complex. Examples of each category are summarized in the context of the exceptional molecular and biological properties of IDPs. One type - IDP duplex scaffolds - is considered in detail. Its unique features include parallel alignment of two IDP chains, formation of new self-associated domains, enhanced affinity for additional bivalent ligands, and ubiquitous binding of the hub protein LC8. For two IDP duplex scaffolds, dynein intermediate chain IC and nucleoporin Nup159, these duplex features, together with the inherent flexibility of IDPs, are central to their assembly and function. A new type of IDP-LC8 interaction, distributed binding of LC8 among multiple IDP recognition sites, is described for Nup159 assembly.
Collapse
Affiliation(s)
- Sarah A Clark
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Nathan Jespersen
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Clare Woodward
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, St. Paul, MN 55108, United States
| | - Elisar Barbar
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|