1
|
Schwarze B, Korn A, Höfling C, Zeitschel U, Krueger M, Roßner S, Huster D. Peptide backbone modifications of amyloid β (1-40) impact fibrillation behavior and neuronal toxicity. Sci Rep 2021; 11:23767. [PMID: 34887476 PMCID: PMC8660793 DOI: 10.1038/s41598-021-03091-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022] Open
Abstract
Fibril formation of amyloid β (Aβ) peptides is one of the key molecular events connected to Alzheimer's disease. The pathway of formation and mechanism of action of Aβ aggregates in biological systems is still object of very active research. To this end, systematic modifications of the Phe19-Leu34 hydrophobic contact, which has been reported in almost all structural studies of Aβ40 fibrils, helps understanding Aβ folding pathways and the underlying free energy landscape of the amyloid formation process. In our approach, a series of Aβ40 peptide variants with two types of backbone modifications, namely incorporation of (i) a methylene or an ethylene spacer group and (ii) a N-methylation at the amide functional group, of the amino acids at positions 19 or 34 was applied. These mutations are expected to challenge the inter-β-strand side chain contacts as well as intermolecular backbone β-sheet hydrogen bridges. Using a multitude of biophysical methods, it is shown that these backbone modifications lead, in most of the cases, to alterations in the fibril formation kinetics, a higher local structural heterogeneity, and a somewhat modified fibril morphology without generally impairing the fibril formation capacity of the peptides. The toxicological profile found for the variants depend on the type and extent of the modification.
Collapse
Affiliation(s)
- Benedikt Schwarze
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Alexander Korn
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16/18, 04107, Leipzig, Germany
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstr. 19, 04103, Leipzig, Germany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstr. 19, 04103, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103, Leipzig, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstr. 19, 04103, Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16/18, 04107, Leipzig, Germany.
| |
Collapse
|
2
|
Probing the Influence of Single-Site Mutations in the Central Cross-β Region of Amyloid β (1-40) Peptides. Biomolecules 2021; 11:biom11121848. [PMID: 34944492 PMCID: PMC8699037 DOI: 10.3390/biom11121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Amyloid β (Aβ) is a peptide known to form amyloid fibrils in the brain of patients suffering from Alzheimer’s disease. A complete mechanistic understanding how Aβ peptides form neurotoxic assemblies and how they kill neurons has not yet been achieved. Previous analysis of various Aβ40 mutants could reveal the significant importance of the hydrophobic contact between the residues Phe19 and Leu34 for cell toxicity. For some mutations at Phe19, toxicity was completely abolished. In the current study, we assessed if perturbations introduced by mutations in the direct proximity of the Phe19/Leu34 contact would have similar relevance for the fibrillation kinetics, structure, dynamics and toxicity of the Aβ assemblies. To this end, we rationally modified positions Phe20 or Gly33. A small library of Aβ40 peptides with Phe20 mutated to Lys, Tyr or the non-proteinogenic cyclohexylalanine (Cha) or Gly33 mutated to Ala was synthesized. We used electron microscopy, circular dichroism, X-ray diffraction, solid-state NMR spectroscopy, ThT fluorescence and MTT cell toxicity assays to comprehensively investigate the physicochemical properties of the Aβ fibrils formed by the modified peptides as well as toxicity to a neuronal cell line. Single mutations of either Phe20 or Gly33 led to relatively drastic alterations in the Aβ fibrillation kinetics but left the global, as well as the local structure, of the fibrils largely unchanged. Furthermore, the introduced perturbations caused a severe decrease or loss of cell toxicity compared to wildtype Aβ40. We suggest that perturbations at position Phe20 and Gly33 affect the fibrillation pathway of Aβ40 and, thereby, influence the especially toxic oligomeric species manifesting so that the region around the Phe19/Leu34 hydrophobic contact provides a promising site for the design of small molecules interfering with the Aβ fibrillation pathway.
Collapse
|
3
|
Bulyáki É, Kun J, Molnár T, Papp A, Micsonai A, Vadászi H, Márialigeti B, Kovács AI, Gellén G, Yamaguchi K, Lin Y, So M, Józsi M, Schlosser G, Lee YH, Liliom K, Goto Y, Kardos J. Pathogenic D76N Variant of β 2-Microglobulin: Synergy of Diverse Effects in Both the Native and Amyloid States. BIOLOGY 2021; 10:biology10111197. [PMID: 34827190 PMCID: PMC8614874 DOI: 10.3390/biology10111197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023]
Abstract
Simple Summary Elevated β2-microglobulin (β2m) serum levels cause serious complications in patients on long-term kidney dialysis by depositing in the form of amyloid fibrils in the osteoarticular system. Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N β2m mutant exhibiting normal serum levels and a distinct, visceral deposition pattern. D76N β2m showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Despite the extensive research, the molecular bases of the aberrant aggregation of β2m in vivo remains elusive. Here, using a variety of biophysical techniques, we investigated the role of the pathogenic D76N mutation in the amyloid formation of β2m by point mutations affecting the stabilizing ion-pairs of β2m. We found that, relative to WT β2m, the exceptional amyloidogenicity of the pathogenic D76N β2m variant is realized by the synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular matrix proteins. Understanding the underlying molecular mechanisms might help to find target points for effective treatments against diseases associated with the deleterious aggregation of proteins. Abstract β2-microglobulin (β2m), the light chain of the MHC-I complex, is associated with dialysis-related amyloidosis (DRA). Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N β2m variant, which showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Here, we investigated the role of the D76N mutation in the amyloid formation of β2m by point mutations affecting the Asp76-Lys41 ion-pair of WT β2m and the charge cluster on Asp38. Using a variety of biophysical techniques, we investigated the conformational stability and partial unfolding of the native state of the variants, as well as their amyloidogenic propensity and the stability of amyloid fibrils under various conditions. Furthermore, we studied the intermolecular interactions of WT and mutant proteins with various binding partners that might have in vivo relevance. We found that, relative to WT β2m, the exceptional amyloidogenicity of the pathogenic D76N β2m variant is realized by the deleterious synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules (e.g., lipids) and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular components, including extracellular matrix proteins.
Collapse
Affiliation(s)
- Éva Bulyáki
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Judit Kun
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Tamás Molnár
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Alexandra Papp
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (A.P.); (M.J.)
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Henrietta Vadászi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Borbála Márialigeti
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Attila István Kovács
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Gabriella Gellén
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; (K.Y.); (Y.G.)
| | - Yuxi Lin
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (Y.L.); (Y.-H.L.)
| | - Masatomo So
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan; or
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (A.P.); (M.J.)
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (Y.L.); (Y.-H.L.)
- Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University (CNU), Daejeon 34134, Korea
- Research Headquarters, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Károly Liliom
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; (K.Y.); (Y.G.)
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan; or
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
- Correspondence:
| |
Collapse
|
4
|
Howlett GJ, Ryan TM, Griffin MD. Lipid-apolipoprotein interactions in amyloid fibril formation and relevance to atherosclerosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:502-507. [DOI: 10.1016/j.bbapap.2018.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023]
|
5
|
Zlatic CO, Mao Y, Todorova N, Mok YF, Howlett GJ, Yarovsky I, Gooley PR, Griffin MDW. Polymorphism in disease-related apolipoprotein C-II amyloid fibrils: a structural model for rod-like fibrils. FEBS J 2018; 285:2799-2812. [PMID: 29791776 DOI: 10.1111/febs.14517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 11/29/2022]
Abstract
Human apolipoprotein (apo) C-II is one of several plasma apolipoproteins that form amyloid deposits in vivo and is an independent risk factor for cardiovascular disease. Lipid-free apoC-II readily self-assembles into twisted-ribbon amyloid fibrils but forms straight, rod-like amyloid fibrils in the presence of low concentrations of micellar phospholipids. Charge mutations exerted significantly different effects on rod-like fibril formation compared to their effects on twisted-ribbon fibril formation. For instance, the double mutant, K30D-D69K apoC-II, readily formed twisted-ribbon fibrils, while the rate of rod-like fibril formation in the presence of micellar phospholipid was negligible. Structural analysis of rod-like apoC-II fibrils, using hydrogen-deuterium exchange and NMR analysis showed exchange protection consistent with a core cross-β structure comprising the C-terminal 58-76 region. Molecular dynamics simulations of fibril arrangements for this region favoured a parallel cross-β structure. X-ray fibre diffraction data for aligned rod-like fibrils showed a major meridional spacing at 4.6 Å and equatorial spacings at 9.7, 23.8 and 46.6 Å. The latter two equatorial spacings are not observed for aligned twisted-ribbon fibrils and are predicted for a model involving two cross-β fibrils in an off-set antiparallel structure with four apoC-II units per rise of the β-sheet. This model is consistent with the mutational effects on rod-like apoC-II fibril formation. The lipid-dependent polymorphisms exhibited by apoC-II fibrils could determine the properties of apoC-II in renal amyloid deposits and their potential role in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Courtney O Zlatic
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Yu Mao
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Vic., Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Geoffrey J Howlett
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Vic., Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Vic., Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
6
|
Todorova N, Zlatic CO, Mao Y, Yarovsky I, Howlett GJ, Gooley PR, Griffin MDW. Intra- and Intersubunit Ion-Pair Interactions Determine the Ability of Apolipoprotein C-II Mutants To Form Hybrid Amyloid Fibrils. Biochemistry 2017; 56:1757-1767. [DOI: 10.1021/acs.biochem.6b01146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nevena Todorova
- School
of Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia
| | - Courtney O. Zlatic
- Department
of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yu Mao
- Department
of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Irene Yarovsky
- School
of Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia
| | - Geoffrey J. Howlett
- Department
of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul R. Gooley
- Department
of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael D. W. Griffin
- Department
of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Siddiqi MK, Alam P, Chaturvedi SK, Nusrat S, Shahein YE, Khan RH. Attenuation of amyloid fibrillation in presence of Warfarin: A biophysical investigation. Int J Biol Macromol 2017; 95:713-718. [DOI: 10.1016/j.ijbiomac.2016.11.110] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022]
|
8
|
Mao Y, Todorova N, Zlatic CO, Gooley PR, Griffin MDW, Howlett GJ, Yarovsky I. Solution Conditions Affect the Ability of the K30D Mutation To Prevent Amyloid Fibril Formation by Apolipoprotein C-II: Insights from Experiments and Theoretical Simulations. Biochemistry 2016; 55:3815-24. [DOI: 10.1021/acs.biochem.6b00266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Mao
- Department
of Biochemistry and Molecular Biology and Bio21 Molecular Science
and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nevena Todorova
- School
of Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia
| | - Courtney O. Zlatic
- Department
of Biochemistry and Molecular Biology and Bio21 Molecular Science
and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul R. Gooley
- Department
of Biochemistry and Molecular Biology and Bio21 Molecular Science
and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael D. W. Griffin
- Department
of Biochemistry and Molecular Biology and Bio21 Molecular Science
and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Geoffrey J. Howlett
- Department
of Biochemistry and Molecular Biology and Bio21 Molecular Science
and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Irene Yarovsky
- School
of Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia
| |
Collapse
|
9
|
Adler J, Baumann M, Voigt B, Scheidt HA, Bhowmik D, Häupl T, Abel B, Madhu PK, Balbach J, Maiti S, Huster D. A Detailed Analysis of the Morphology of Fibrils of Selectively Mutated Amyloid β (1-40). Chemphyschem 2016; 17:2744-53. [PMID: 27224205 DOI: 10.1002/cphc.201600413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 01/08/2023]
Abstract
A small library of rationally designed amyloid β [Aβ(1-40)] peptide variants is generated, and the morphology of their fibrils is studied. In these molecules, the structurally important hydrophobic contact between phenylalanine 19 (F19) and leucine 34 (L34) is systematically mutated to introduce defined physical forces to act as specific internal constraints on amyloid formation. This Aβ(1-40) peptide library is used to study the fibril morphology of these variants by employing a comprehensive set of biophysical techniques including solution and solid-state NMR spectroscopy, AFM, fluorescence correlation spectroscopy, and XRD. Overall, the findings demonstrate that the introduction of significant local physical perturbations of a crucial early folding contact of Aβ(1-40) only results in minor alterations of the fibrillar morphology. The thermodynamically stable structure of mature Aβ fibrils proves to be relatively robust against the introduction of significantly altered molecular interaction patterns due to point mutations. This underlines that amyloid fibril formation is a highly generic process in protein misfolding that results in the formation of the thermodynamically most stable cross-β structure.
Collapse
Affiliation(s)
- Juliane Adler
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107, Leipzig, Germany
| | - Monika Baumann
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, B.-Heimann-Strasse 7, 06120, Halle, Germany
| | - Bruno Voigt
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, B.-Heimann-Strasse 7, 06120, Halle, Germany
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107, Leipzig, Germany
| | - Debanjan Bhowmik
- Department of Chemistry, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Tilmann Häupl
- Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, 04318, Leipzig, Germany.,Wilhelm-Ostwald Institute of Physical and Theoretical Chemistry, Leipzig University, Linnéstrasse 3, 04103, Leipzig, Germany
| | - Bernd Abel
- Wilhelm-Ostwald Institute of Physical and Theoretical Chemistry, Leipzig University, Linnéstrasse 3, 04103, Leipzig, Germany
| | - Perunthiruthy K Madhu
- Department of Chemistry, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India.,TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Leipzig University, 21 Brundavan Colony, Narsingi, Hyderabad, 500075, India
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, B.-Heimann-Strasse 7, 06120, Halle, Germany
| | - Sudipta Maiti
- Department of Chemistry, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107, Leipzig, Germany. .,Department of Chemistry, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India.
| |
Collapse
|
10
|
Martínez J, Sánchez R, Castellanos M, Makarava N, Aguzzi A, Baskakov IV, Gasset M. PrP charge structure encodes interdomain interactions. Sci Rep 2015; 5:13623. [PMID: 26323476 PMCID: PMC4555102 DOI: 10.1038/srep13623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022] Open
Abstract
Almost all proteins contain charged residues, and their chain distribution is tailored to fulfill essential ionic interactions for folding, binding and catalysis. Among proteins, the hinged two-domain chain of the cellular prion protein (PrPC) exhibits a peculiar charge structure with unclear consequences in its structural malleability. To decipher the charge design role, we generated charge-reverted mutants for each domain and analyzed their effect on conformational and metabolic features. We found that charges contain the information for interdomain interactions. Use of dynamic light scattering and thermal denaturation experiments delineates the compaction of the α-fold by an electrostatic compensation between the polybasic 23–30 region and the α3 electronegative surface. This interaction increases stability and disfavors fibrillation. Independently of this structural effect, the N-terminal electropositive clusters regulate the α-cleavage efficiency. In the fibrillar state, use of circular dichroism, atomic-force and fluorescence microscopies reveal that the N-terminal positive clusters and the α3 electronegative surface dictate the secondary structure, the assembly hierarchy and the growth length of the fibril state. These findings show that the PrP charge structure functions as a code set up to ensure function and reduce pathogenic routes.
Collapse
Affiliation(s)
- Javier Martínez
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Rosa Sánchez
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Milagros Castellanos
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain; IMDEA-Nanociencia, Madrid 28049, Spain
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Zürich 8091, Switzerland
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - María Gasset
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| |
Collapse
|
11
|
Mao Y, Zlatic CO, Griffin MDW, Howlett GJ, Todorova N, Yarovsky I, Gooley PR. Hydrogen/Deuterium Exchange and Molecular Dynamics Analysis of Amyloid Fibrils Formed by a D69K Charge-Pair Mutant of Human Apolipoprotein C-II. Biochemistry 2015. [DOI: 10.1021/acs.biochem.5b00535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Mao
- Department of Biochemistry and
Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Courtney O. Zlatic
- Department of Biochemistry and
Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael D. W. Griffin
- Department of Biochemistry and
Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Geoffrey J. Howlett
- Department of Biochemistry and
Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nevena Todorova
- Health Innovations
Research Institute, RMIT University, GPO
Box 2476, Melbourne, Victoria 3001, Australia
| | - Irene Yarovsky
- Health Innovations
Research Institute, RMIT University, GPO
Box 2476, Melbourne, Victoria 3001, Australia
| | - Paul R. Gooley
- Department of Biochemistry and
Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Zlatic CO, Mao Y, Ryan TM, Mok YF, Roberts BR, Howlett GJ, Griffin MDW. Fluphenazine·HCl and Epigallocatechin Gallate Modulate the Rate of Formation and Structural Properties of Apolipoprotein C-II Amyloid Fibrils. Biochemistry 2015; 54:3831-8. [DOI: 10.1021/acs.biochem.5b00399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Courtney O. Zlatic
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yu Mao
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Timothy M. Ryan
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Blaine R. Roberts
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Geoffrey J. Howlett
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular
Biology, Bio21 Molecular
Science and Biotechnology Institute, ‡The Florey Institute of Neuroscience and Mental
Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|