1
|
Time-resolved infrared absorption spectroscopy applied to photoinduced reactions: how and why. Photochem Photobiol Sci 2022; 21:557-584. [DOI: 10.1007/s43630-022-00180-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/28/2022] [Indexed: 10/19/2022]
|
2
|
Mezzetti A, Leibl W. Time-resolved infrared spectroscopy in the study of photosynthetic systems. PHOTOSYNTHESIS RESEARCH 2017; 131:121-144. [PMID: 27678250 DOI: 10.1007/s11120-016-0305-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
Time-resolved (TR) infrared (IR) spectroscopy in the nanosecond to second timescale has been extensively used, in the last 30 years, in the study of photosynthetic systems. Interesting results have also been obtained at lower time resolution (minutes or even hours). In this review, we first describe the used techniques-dispersive IR, laser diode IR, rapid-scan Fourier transform (FT)IR, step-scan FTIR-underlying the advantages and disadvantages of each of them. Then, the main TR-IR results obtained so far in the investigation of photosynthetic reactions (in reaction centers, in light-harvesting systems, but also in entire membranes or even in living organisms) are presented. Finally, after the general conclusions, the perspectives in the field of TR-IR applied to photosynthesis are described.
Collapse
Affiliation(s)
- Alberto Mezzetti
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7197, Laboratoire de Réactivité de Surfaces, 4 Pl. Jussieu, 75005, Paris, France.
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Winfried Leibl
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Naumann RLC, Geiss AF, Steininger C, Knoll W. Biomimetic Membranes for Multi-Redox Center Proteins. Int J Mol Sci 2016; 17:330. [PMID: 26950120 PMCID: PMC4813192 DOI: 10.3390/ijms17030330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/27/2015] [Accepted: 02/17/2016] [Indexed: 11/22/2022] Open
Abstract
His-tag technology was applied for biosensing purposes involving multi-redox center proteins (MRPs). An overview is presented on various surfaces ranging from flat to spherical and modified with linker molecules with nitrile-tri-acetic acid (NTA) terminal groups to bind his-tagged proteins in a strict orientation. The bound proteins are submitted to in situ dialysis in the presence of lipid micelles to form a so-called protein-tethered bilayer lipid membrane (ptBLM). MRPs, such as the cytochrome c oxidase (CcO) from R. sphaeroides and P. denitrificans, as well as photosynthetic reactions centers (RCs) from R. sphaeroides, were thus investigated. Electrochemical and surface-sensitive optical techniques, such as surface plasmon resonance, surface plasmon-enhanced fluorescence, surface-enhanced infrared absorption spectroscopy (SEIRAS) and surface-enhanced resonance Raman spectroscopy (SERRS), were employed in the case of the ptBLM structure on flat surfaces. Spherical particles ranging from µm size agarose gel beads to nm size nanoparticles modified in a similar fashion were called proteo-lipobeads (PLBs). The particles were investigated by laser-scanning confocal fluorescence microscopy (LSM) and UV/Vis spectroscopy. Electron and proton transfer through the proteins were demonstrated to take place, which was strongly affected by the membrane potential. MRPs can thus be used for biosensing purposes under quasi-physiological conditions.
Collapse
Affiliation(s)
- Renate L C Naumann
- Austrian Institute of Technology GmbH, AIT, Donau-City-Str. 1, 1220 Vienna, Austria.
| | - Andreas F Geiss
- Austrian Institute of Technology GmbH, AIT, Donau-City-Str. 1, 1220 Vienna, Austria.
| | - Christoph Steininger
- Austrian Institute of Technology GmbH, AIT, Donau-City-Str. 1, 1220 Vienna, Austria.
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, AIT, Donau-City-Str. 1, 1220 Vienna, Austria.
| |
Collapse
|
4
|
Krasilnikov PM. Problems of the theory of electron transfer in biological systems. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Abstract
In this paper, we describe a new method to obtain D2O/H2O exchange in photosynthetic reaction centres fromRhodobacter sphaeroides. The method is characterized by: (i) a very high efficiency of the isotopic replacement; (ii) an extremely low amount of D2O needed; (iii) the short time required for dehydration and D2O rehydration; (iv) the possibility of controlling concomitantly the hydration state of the sample. The proposed method can be applied to other proteins.
Collapse
|
6
|
Müh F, Glöckner C, Hellmich J, Zouni A. Light-induced quinone reduction in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:44-65. [PMID: 21679684 DOI: 10.1016/j.bbabio.2011.05.021] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
The photosystem II core complex is the water:plastoquinone oxidoreductase of oxygenic photosynthesis situated in the thylakoid membrane of cyanobacteria, algae and plants. It catalyzes the light-induced transfer of electrons from water to plastoquinone accompanied by the net transport of protons from the cytoplasm (stroma) to the lumen, the production of molecular oxygen and the release of plastoquinol into the membrane phase. In this review, we outline our present knowledge about the "acceptor side" of the photosystem II core complex covering the reaction center with focus on the primary (Q(A)) and secondary (Q(B)) quinones situated around the non-heme iron with bound (bi)carbonate and a comparison with the reaction center of purple bacteria. Related topics addressed are quinone diffusion channels for plastoquinone/plastoquinol exchange, the newly discovered third quinone Q(C), the relevance of lipids, the interactions of quinones with the still enigmatic cytochrome b559 and the role of Q(A) in photoinhibition and photoprotection mechanisms. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Frank Müh
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | |
Collapse
|
7
|
Burggraf F, Koslowski T. The simulation of interquinone charge transfer in a bacterial photoreaction center highlights the central role of a hydrogen-bonded non-heme iron complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:53-8. [DOI: 10.1016/j.bbabio.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 11/30/2022]
|
8
|
Deshmukh SS, Williams JC, Allen JP, Kálmán L. Light-Induced Conformational Changes in Photosynthetic Reaction Centers: Dielectric Relaxation in the Vicinity of the Dimer. Biochemistry 2010; 50:340-8. [DOI: 10.1021/bi101496c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sasmit S. Deshmukh
- Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - JoAnn C. Williams
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - James P. Allen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - László Kálmán
- Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
9
|
Iwata T, Paddock ML, Okamura MY, Kandori H. Identification of FTIR bands due to internal water molecules around the quinone binding sites in the reaction center from Rhodobacter sphaeroides. Biochemistry 2009; 48:1220-9. [PMID: 19161296 DOI: 10.1021/bi801990s] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial reaction center (RC) is a membrane protein complex that performs photosynthetic electron transfer from a bacteriochlorophyll dimer to quinone acceptors Q(A) and Q(B). Q(B) accepts electrons from the primary quinone, Q(A), in two sequential electron transfer reactions coupled to uptake of a proton from solution. It has been suggested that water molecules along the proton uptake pathway are protonated upon quinone reduction on the basis of FTIR difference spectra [Breton, J., and Nabedryk, E. (1998) Photosynth. Res. 55, 301-307]. We examined the possible involvement of water molecules in the photoreaction processes by studying (18)O water isotope effects on FTIR difference spectra resulting from formation of Q(A)(-) and Q(B)(-). Continuum bands in D(2)O due to Q(B)(-) formation in the 2300-1800 cm(-1) region did not show spectral shifts by (18)O water in the wild-type (WT) RC, suggesting that these bands do not originate from (protonated) water. In contrast, the Q(B)(-)/Q(B) spectrum of the EQ-L212 mutant RC showed a spectral shift of a band near 2100 cm(-1) due to (18)O water substitution, consistent with protonation of internal water. FTIR shifts due to (18)O water were also observed following formation of Q(A)(-) and Q(B)(-) in the spectral region of 3700-3500 cm(-1) characteristic of weakly hydrogen bonded water. The water responsible for the Q(B)(-) change was localized near Glu-L212 by spectral shifts in mutant RCs. The weakly hydrogen bonded water perturbed by quinone reduction may play a role in stabilizing the charge-separated state.
Collapse
Affiliation(s)
- Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | |
Collapse
|
10
|
Nagy L, Maróti P, Terazima M. Spectrally silent light induced conformation change in photosynthetic reaction centers. FEBS Lett 2008; 582:3657-62. [PMID: 18840436 DOI: 10.1016/j.febslet.2008.09.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
Spectrally silent conformation change after photoexcitation of photosynthetic reaction centers isolated from Rhodobacter sphaeroides R-26 was observed by the optical heterodyne transient grating technique. The signal showed spectrally silent structural change in photosynthetic reaction centers followed by the primary P+BPh- charge separation and this change remains even after the charge recombination. Without bound quinone to the RC, the conformation change relaxes with about 28micros lifetime. The presence of quinone at the primary quinone (QA) site may suppress this conformation change. However, a weak relaxation with 30-40micros lifetime is still observed under the presence of QA, which increases up to 40micros as a function of the occupancy of the secondary quinone (QB) site.
Collapse
Affiliation(s)
- László Nagy
- Institute of Medical Physics and Biophysics, University of Szeged, 6720 Szeged, Rerrich B. tér. 1., Hungary.
| | | | | |
Collapse
|
11
|
Nabedryk E, Breton J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: A perspective from FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1229-48. [DOI: 10.1016/j.bbabio.2008.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
|
12
|
Bao H, Zhang C, Kawakami K, Ren Y, Shen JR, Zhao J. Acceptor side effects on the electron transfer at cryogenic temperatures in intact photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1109-15. [DOI: 10.1016/j.bbabio.2008.04.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
|
13
|
Knox PP, Krasilnikov PM, Mamonov PA, Seifullina NK, Uchoa AF, Baptista MS. Stabilization of the electron in the quinone acceptor part of the Rhodobacter sphaeroides reaction centers. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Palazzo G, Francia F, Mallardi A, Giustini M, Lopez F, Venturoli G. Water Activity Regulates the QA− to QB Electron Transfer in Photosynthetic Reaction Centers from Rhodobacter sphaeroides. J Am Chem Soc 2008; 130:9353-63. [DOI: 10.1021/ja801963a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gerardo Palazzo
- Dipartimento di Chimica and CSGI, Università di Bari, via Orabona 4, I-70126, Bari, Italy, Dipartimento di Biologia and CNISM, Università di Bologna, Italy, Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy, and CSGI and Dipartimento di Chimica, Università “La Sapienza”, I-00185 Roma, Italy
| | - Francesco Francia
- Dipartimento di Chimica and CSGI, Università di Bari, via Orabona 4, I-70126, Bari, Italy, Dipartimento di Biologia and CNISM, Università di Bologna, Italy, Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy, and CSGI and Dipartimento di Chimica, Università “La Sapienza”, I-00185 Roma, Italy
| | - Antonia Mallardi
- Dipartimento di Chimica and CSGI, Università di Bari, via Orabona 4, I-70126, Bari, Italy, Dipartimento di Biologia and CNISM, Università di Bologna, Italy, Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy, and CSGI and Dipartimento di Chimica, Università “La Sapienza”, I-00185 Roma, Italy
| | - Mauro Giustini
- Dipartimento di Chimica and CSGI, Università di Bari, via Orabona 4, I-70126, Bari, Italy, Dipartimento di Biologia and CNISM, Università di Bologna, Italy, Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy, and CSGI and Dipartimento di Chimica, Università “La Sapienza”, I-00185 Roma, Italy
| | - Francesco Lopez
- Dipartimento di Chimica and CSGI, Università di Bari, via Orabona 4, I-70126, Bari, Italy, Dipartimento di Biologia and CNISM, Università di Bologna, Italy, Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy, and CSGI and Dipartimento di Chimica, Università “La Sapienza”, I-00185 Roma, Italy
| | - Giovanni Venturoli
- Dipartimento di Chimica and CSGI, Università di Bari, via Orabona 4, I-70126, Bari, Italy, Dipartimento di Biologia and CNISM, Università di Bologna, Italy, Istituto per i Processi Chimico-Fisici, CNR, via Orabona 4, 70126 Bari, Italy, and CSGI and Dipartimento di Chimica, Università “La Sapienza”, I-00185 Roma, Italy
| |
Collapse
|
15
|
Charge stabilization in reaction center protein investigated by optical heterodyne detected transient grating spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1167-74. [DOI: 10.1007/s00249-008-0294-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 02/14/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|
16
|
Ishikita H, Galstyan A, Knapp EW. Redox potential of the non-heme iron complex in bacterial photosynthetic reaction center. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1300-9. [DOI: 10.1016/j.bbabio.2007.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/12/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
|
17
|
Kern J, Renger G. Photosystem II: structure and mechanism of the water:plastoquinone oxidoreductase. PHOTOSYNTHESIS RESEARCH 2007; 94:183-202. [PMID: 17634752 DOI: 10.1007/s11120-007-9201-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 05/16/2007] [Indexed: 05/07/2023]
Abstract
This mini-review briefly summarizes our current knowledge on the reaction pattern of light-driven water splitting and the structure of Photosystem II that acts as a water:plastoquinone oxidoreductase. The overall process comprises three types of reaction sequences: (a) light-induced charge separation leading to formation of the radical ion pair P680+*QA(-*) ; (b) reduction of plastoquinone to plastoquinol at the QB site via a two-step reaction sequence with QA(-*) as reductant and (c) oxidative water splitting into O2 and four protons at a manganese-containing catalytic site via a four-step sequence driven by P680+* as oxidant and a redox active tyrosine YZ acting as mediator. Based on recent progress in X-ray diffraction crystallographic structure analysis the array of the cofactors within the protein matrix is discussed in relation to the functional pattern. Special emphasis is paid on the structure of the catalytic sites of PQH2 formation (QB-site) and oxidative water splitting (Mn4OxCa cluster). The energetics and kinetics of the reactions taking place at these sites are presented only in a very concise manner with reference to recent up-to-date reviews. It is illustrated that several questions on the mechanism of oxidative water splitting and the structure of the catalytic sites are far from being satisfactorily answered.
Collapse
Affiliation(s)
- Jan Kern
- Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany.
| | | |
Collapse
|