1
|
Pal S, Yuvaraj R, Krishnan H, Venkatraman B, Abraham J, Gopinathan A. Unraveling radiation resistance strategies in two bacterial strains from the high background radiation area of Chavara-Neendakara: A comprehensive whole genome analysis. PLoS One 2024; 19:e0304810. [PMID: 38857267 PMCID: PMC11164402 DOI: 10.1371/journal.pone.0304810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/18/2024] [Indexed: 06/12/2024] Open
Abstract
This paper reports the results of gamma irradiation experiments and whole genome sequencing (WGS) performed on vegetative cells of two radiation resistant bacterial strains, Metabacillus halosaccharovorans (VITHBRA001) and Bacillus paralicheniformis (VITHBRA024) (D10 values 2.32 kGy and 1.42 kGy, respectively), inhabiting the top-ranking high background radiation area (HBRA) of Chavara-Neendakara placer deposit (Kerala, India). The present investigation has been carried out in the context that information on strategies of bacteria having mid-range resistance for gamma radiation is inadequate. WGS, annotation, COG and KEGG analyses and manual curation of genes helped us address the possible pathways involved in the major domains of radiation resistance, involving recombination repair, base excision repair, nucleotide excision repair and mismatch repair, and the antioxidant genes, which the candidate could activate to survive under ionizing radiation. Additionally, with the help of these data, we could compare the candidate strains with that of the extremely radiation resistant model bacterium Deinococccus radiodurans, so as to find the commonalities existing in their strategies of resistance on the one hand, and also the rationale behind the difference in D10, on the other. Genomic analysis of VITHBRA001 and VITHBRA024 has further helped us ascertain the difference in capability of radiation resistance between the two strains. Significantly, the genes such as uvsE (NER), frnE (protein protection), ppk1 and ppx (non-enzymatic metabolite production) and those for carotenoid biosynthesis, are endogenous to VITHBRA001, but absent in VITHBRA024, which could explain the former's better radiation resistance. Further, this is the first-time study performed on any bacterial population inhabiting an HBRA. This study also brings forward the two species whose radiation resistance has not been reported thus far, and add to the knowledge on radiation resistant capabilities of the phylum Firmicutes which are abundantly observed in extreme environment.
Collapse
Affiliation(s)
- Sowptika Pal
- Molecular Endocrinology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramani Yuvaraj
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Hari Krishnan
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Balasubramanian Venkatraman
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Jayanthi Abraham
- Microbial Biotechnology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anilkumar Gopinathan
- Molecular Endocrinology Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Xiong Y, Wei L, Xin S, Min R, Liu F, Li N, Zhang Y. Comprehensive Temporal Protein Dynamics during Postirradiation Recovery in Deinococcus radiodurans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1622829. [PMID: 36411759 PMCID: PMC9674996 DOI: 10.1155/2022/1622829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 10/15/2023]
Abstract
Deinococcus radiodurans (D. radiodurans) is an extremophile that can tolerate ionizing radiation, ultraviolet radiation, and oxidation. How D. radiodurans responds to and survives high levels of ionizing radiation is still not clear. In this study, we performed label-free proteomics to explore the proteome dynamics during postirradiation recovery (PIR). Surprisingly, proteins involved in translation were repressed during the initial hours of PIR. D. radiodurans also showed enhanced DNA repair and antioxidative response after 6 kGy of gamma irradiation. Moreover, proteins involved in sulfur metabolism and phenylalanine metabolism were enriched at 1 h and 12 h, respectively, indicating different energy and material needs during PIR. Furthermore, based on these findings, we proposed a novel model to elucidate the possible molecular mechanisms of robust radioresistance in D. radiodurans, which may serve as a reference for future radiation repair.
Collapse
Affiliation(s)
- Yan Xiong
- Analysis & Testing Center, Beijing Institute of Technology, Beijing 102488, China
| | - Linyang Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shuchen Xin
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rui Min
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Feng Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Nuomin Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yongqian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Langton M, Appell M, Koob J, Pandelia ME. Domain Fusion of Two Oxygenases Affords Organophosphonate Degradation in Pathogenic Fungi. Biochemistry 2022; 61:956-962. [PMID: 35506879 PMCID: PMC9177745 DOI: 10.1021/acs.biochem.2c00163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Proteins of the HD-domain superfamily employ a conserved histidine-aspartate (HD) dyad to coordinate diverse metallocofactors. While most known HD-domain proteins are phosphohydrolases, new additions to this superfamily have emerged such as oxygenases and lyases, expanding their functional repertoire. To date, three HD-domain oxygenases have been identified, all of which employ a mixed-valent FeIIFeIII cofactor to activate their substrates and utilize molecular oxygen to afford cleavage of C-C or C-P bonds via a diferric superoxo intermediate. Phylogenetic analysis reveals an uncharacterized multidomain protein in the pathogenic soil fungus Fonsecaea multimorphosa, herein designated PhoF. PhoF consists of an N-terminal FeII/α-ketoglutarate-dependent domain resembling that of PhnY and a C-terminal HD-domain like that of PhnZ. PhnY and PhnZ are part of an organophosphonate degradation pathway in which PhnY hydroxylates 2-aminoethylphosphonic acid, and PhnZ cleaves the C-P bond of the hydroxylated product yielding phosphate and glycine. Employing electron paramagnetic resonance and Mössbauer spectroscopies in tandem with activity assays, we determined that PhoF carries out the O2-dependent degradation of two aminophosphonates, demonstrating an expanded catalytic efficiency with respect to the individual, but mechanistically coupled PhnY and PhnZ. Our results recognize PhoF as a new example of an HD-domain oxygenase and show that domain fusion of an organophosphonate degradation pathway may be a strategy for disease-causing fungi to acquire increased functional versatility, potentially important for their survival.
Collapse
Affiliation(s)
- Michelle Langton
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Matthew Appell
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Jeremy Koob
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
4
|
Kim S, Lee K, Park SH, Kwak GH, Kim MS, Kim HY, Hwang KY. Structural Insights into a Bifunctional Peptide Methionine Sulfoxide Reductase MsrA/B Fusion Protein from Helicobacter pylori. Antioxidants (Basel) 2021; 10:389. [PMID: 33807684 PMCID: PMC8000184 DOI: 10.3390/antiox10030389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Abstract
Methionine sulfoxide reductase (Msr) is a family of enzymes that reduces oxidized methionine and plays an important role in the survival of bacteria under oxidative stress conditions. MsrA and MsrB exist in a fusion protein form (MsrAB) in some pathogenic bacteria, such as Helicobacter pylori (Hp), Streptococcus pneumoniae, and Treponema denticola. To understand the fused form instead of the separated enzyme at the molecular level, we determined the crystal structure of HpMsrABC44S/C318S at 2.2 Å, which showed that a linker region (Hpiloop, 193-205) between two domains interacted with each HpMsrA or HpMsrB domain via three salt bridges (E193-K107, D197-R103, and K200-D339). Two acetate molecules in the active site pocket showed an sp2 planar electron density map in the crystal structure, which interacted with the conserved residues in fusion MsrABs from the pathogen. Biochemical and kinetic analyses revealed that Hpiloop is required to increase the catalytic efficiency of HpMsrAB. Two salt bridge mutants (D193A and E199A) were located at the entrance or tailgate of Hpiloop. Therefore, the linker region of the MsrAB fusion enzyme plays a key role in the structural stability and catalytic efficiency and provides a better understanding of why MsrAB exists in a fused form.
Collapse
Affiliation(s)
- Sulhee Kim
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (S.K.); (K.L.); (S.-H.P.); (M.S.K.)
| | - Kitaik Lee
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (S.K.); (K.L.); (S.-H.P.); (M.S.K.)
| | - Sun-Ha Park
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (S.K.); (K.L.); (S.-H.P.); (M.S.K.)
| | - Geun-Hee Kwak
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 42415, Korea;
| | - Min Seok Kim
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (S.K.); (K.L.); (S.-H.P.); (M.S.K.)
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 42415, Korea;
| | - Kwang Yeon Hwang
- Department of Biotechnology, Korea University, Seoul 02841, Korea; (S.K.); (K.L.); (S.-H.P.); (M.S.K.)
| |
Collapse
|
5
|
Kappler U, Nasreen M, McEwan A. New insights into the molecular physiology of sulfoxide reduction in bacteria. Adv Microb Physiol 2019; 75:1-51. [PMID: 31655735 DOI: 10.1016/bs.ampbs.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sulfoxides occur in biology as products of the S-oxygenation of small molecules as well as in peptides and proteins and their formation is often associated with oxidative stress and can affect biological function. In bacteria, sulfoxide damage can be reversed by different types of enzymes. Thioredoxin-dependent peptide methionine sulfoxide reductases (MSR proteins) repair oxidized methionine residues and are found in all Domains of life. In bacteria MSR proteins are often found in the cytoplasm but in some bacteria, including pathogenic Neisseria, Streptococci, and Haemophilus they are extracytoplasmic. Mutants lacking MSR proteins are often sensitive to oxidative stress and in pathogens exhibit decreased virulence as indicated by reduced survival in host cell or animal model systems. Molybdenum enzymes are also known to reduce S-oxides and traditionally their physiological role was considered to be in anaerobic respiration using dimethylsulfoxide (DMSO) as an electron acceptor. However, it now appears that some enzymes (MtsZ) of the DMSO reductase family of Mo enzymes use methionine sulfoxide as preferred physiological substrate and thus may be involved in scavenging/recycling of this amino acid. Similarly, an enzyme (MsrP/YedY) of the sulfite oxidase family of Mo enzymes has been shown to be involved in repair of methionine sulfoxides in periplasmic proteins. Again, some mutants deficient in Mo-dependent sulfoxide reductases exhibit reduced virulence, and there is evidence that these Mo enzymes and some MSR systems are induced by hypochlorite produced by the innate immune system. This review describes recent advances in the understanding of the molecular microbiology of MSR systems and the broadening of the role of Mo-dependent sulfoxide reductase to encompass functions beyond anaerobic respiration.
Collapse
Affiliation(s)
- Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marufa Nasreen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alastair McEwan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Boschi-Muller S. Molecular Mechanisms of the Methionine Sulfoxide Reductase System from Neisseria meningitidis. Antioxidants (Basel) 2018; 7:antiox7100131. [PMID: 30275362 PMCID: PMC6210582 DOI: 10.3390/antiox7100131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis, an obligate pathogenic bacterium in humans, has acquired different defense mechanisms to detect and fight the oxidative stress generated by the host’s defense during infection. A notable example of such a mechanism is the PilB reducing system, which repairs oxidatively-damaged methionine residues. This review will focus on the catalytic mechanism of the two methionine sulfoxide reductase (MSR) domains of PilB, which represent model enzymes for catalysis of the reduction of a sulfoxide function by thiols through sulfenic acid chemistry. The mechanism of recycling of these MSR domains by various “Trx-like” disulfide oxidoreductases will also be discussed.
Collapse
Affiliation(s)
- Sandrine Boschi-Muller
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS-Université de Lorraine, Bâtiment Biopole, Faculté de Médecine, 54506 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
7
|
Methionine Sulfoxide Reductases of Archaea. Antioxidants (Basel) 2018; 7:antiox7100124. [PMID: 30241308 PMCID: PMC6211008 DOI: 10.3390/antiox7100124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 01/04/2023] Open
Abstract
Methionine sulfoxide reductases are found in all domains of life and are important in reversing the oxidative damage of the free and protein forms of methionine, a sulfur containing amino acid particularly sensitive to reactive oxygen species (ROS). Archaea are microbes of a domain of life distinct from bacteria and eukaryotes. Archaea are well known for their ability to withstand harsh environmental conditions that range from habitats of high ROS, such as hypersaline lakes of intense ultraviolet (UV) radiation and desiccation, to hydrothermal vents of low concentrations of dissolved oxygen at high temperature. Recent evidence reveals the methionine sulfoxide reductases of archaea function not only in the reduction of methionine sulfoxide but also in the ubiquitin-like modification of protein targets during oxidative stress, an association that appears evolutionarily conserved in eukaryotes. Here is reviewed methionine sulfoxide reductases and their distribution and function in archaea.
Collapse
|
8
|
Si M, Feng Y, Chen K, Kang Y, Chen C, Wang Y, Shen X. Functional comparison of methionine sulphoxide reductase A and B in Corynebacterium glutamicum. J GEN APPL MICROBIOL 2017; 63:280-286. [PMID: 28904252 DOI: 10.2323/jgam.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Methionine sulphoxide reductases (Msr) are able to reduce methionine sulfoxide to methionine and protect bacteria against reactive oxygen species (ROS). Many organisms express both methionine sulphoxide reductase A (MsrA), specific for methionine-S-sulfoxide and methionine sulphoxide reductase B (MsrB), active against methionine-R-sulfoxide. Corynebacterium glutamicum expresses MsrA, the function of which has been well defined; however, the function of MsrB has not been studied. Whether MsrB and MsrA play an equally important role in the antioxidant process is also poorly understood. In this study, we identified MsrB encoded by ncgl1823 in C. glutamicum, investigated its function and made a comparison with MsrA. The msrB gene showed a slight effect on utilizing methionine sulfoxide (MetO) as the sole Met source; however, the survival rates showed no sensitivity to oxidants. MsrB showed catalytic activity using thioredoxin/thioredoxin reductase (Trx/TrxR) reducing system as electron donors, but independent from the mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) system. Therefore, MsrB plays a limited role in resisting oxidative stress and it could reduce MetO to Met by the Trx/TrxR reducing system, which is useful for expanding the understanding of the functions of Msr in this important industrial microbe.
Collapse
Affiliation(s)
- Meiru Si
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University.,College of Life Sciences, Qufu Normal University
| | - Yanyan Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | - Keqi Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | - Yiwen Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | - Can Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University.,College of Life Science and Agronomy, Zhoukou Normal University
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University
| |
Collapse
|
9
|
Han AR, Kim MJ, Kwak GH, Son J, Hwang KY, Kim HY. Essential Role of the Linker Region in the Higher Catalytic Efficiency of a Bifunctional MsrA-MsrB Fusion Protein. Biochemistry 2016; 55:5117-27. [PMID: 27551953 DOI: 10.1021/acs.biochem.6b00544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many bacteria, particularly pathogens, possess methionine sulfoxide reductase A (MsrA) and B (MsrB) as a fusion form (MsrAB). However, it is not clear why they possess a fusion MsrAB form rather than the separate enzymes that exist in most organisms. In this study, we performed biochemical and kinetic analyses of MsrAB from Treponema denticola (TdMsrAB), single-domain forms (TdMsrA and TdMsrB), and catalytic Cys mutants (TdMsrAB(C11S) and TdMsrAB(C285S)). We found that the catalytic efficiency of both MsrA and MsrB increased after fusion of the domains and that the linker region (iloop) that connects TdMsrA and TdMsrB is required for the higher catalytic efficiency of TdMsrAB. We also determined the crystal structure of TdMsrAB at 2.3 Å, showing that the iloop mainly interacts with TdMsrB via hydrogen bonds. Further kinetic analysis using the iloop mutants revealed that the iloop-TdMsrB interactions are critical to MsrB and MsrA activities. We also report the structure in which an oxidized form of dithiothreitol, an in vitro reductant for MsrA and MsrB, is present in the active site of TdMsrA. Collectively, the results of this study reveal an essential role of the iloop in maintaining the higher catalytic efficiency of the MsrAB fusion enzyme and provide a better understanding of why the MsrAB enzyme exists as a fused form.
Collapse
Affiliation(s)
- Ah-Reum Han
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Seoul 02841, Republic of Korea
| | - Moon-Jung Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine , Daegu 42415, Republic of Korea
| | - Geun-Hee Kwak
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine , Daegu 42415, Republic of Korea
| | - Jonghyeon Son
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Seoul 02841, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University , Seoul 02841, Republic of Korea
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine , Daegu 42415, Republic of Korea
| |
Collapse
|
10
|
The promises and challenges of fusion constructs in protein biochemistry and enzymology. Appl Microbiol Biotechnol 2016; 100:8273-81. [PMID: 27541749 DOI: 10.1007/s00253-016-7795-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023]
Abstract
Fusion constructs are used to improve the properties of or impart novel functionality to proteins for biotechnological applications. The biochemical characteristics of enzymes or functional proteins optimized by fusion include catalytic efficiency, stability, activity, expression, secretion, and solubility. In this review, we summarize the parameters of enzymes or functional proteins that can be modified by fusion constructs. For each parameter, fusion strategies and molecular partners are examined using examples from recent studies. Future prospects in this field are also discussed. This review is expected to increase interest in and advance fusion strategies for optimization of enzymes and other functional proteins.
Collapse
|
11
|
Lin Y, Boese CJ, St Maurice M. The urea carboxylase and allophanate hydrolase activities of urea amidolyase are functionally independent. Protein Sci 2016; 25:1812-24. [PMID: 27452902 DOI: 10.1002/pro.2990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Urea amidolyase (UAL) is a multifunctional biotin-dependent enzyme that contributes to both bacterial and fungal pathogenicity by catalyzing the ATP-dependent cleavage of urea into ammonia and CO2 . UAL is comprised of two enzymatic components: urea carboxylase (UC) and allophanate hydrolase (AH). These enzyme activities are encoded on separate but proximally related genes in prokaryotes while, in most fungi, they are encoded by a single gene that produces a fusion enzyme on a single polypeptide chain. It is unclear whether the UC and AH activities are connected through substrate channeling or other forms of direct communication. Here, we use multiple biochemical approaches to demonstrate that there is no substrate channeling or interdomain/intersubunit communication between UC and AH. Neither stable nor transient interactions can be detected between prokaryotic UC and AH and the catalytic efficiencies of UC and AH are independent of one another. Furthermore, an artificial fusion of UC and AH does not significantly alter the AH enzyme activity or catalytic efficiency. These results support the surprising functional independence of AH from UC in both the prokaryotic and fungal UAL enzymes and serve as an important reminder that the evolution of multifunctional enzymes through gene fusion events does not always correlate with enhanced catalytic function.
Collapse
Affiliation(s)
- Yi Lin
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Cody J Boese
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Martin St Maurice
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, 53201.
| |
Collapse
|
12
|
Membranous adenylyl cyclase 1 activation is regulated by oxidation of N- and C-terminal methionine residues in calmodulin. Biochem Pharmacol 2014; 93:196-209. [PMID: 25462816 DOI: 10.1016/j.bcp.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 12/19/2022]
Abstract
Membranous adenylyl cyclase 1 (AC1) is associated with memory and learning. AC1 is activated by the eukaryotic Ca(2+)-sensor calmodulin (CaM), which contains nine methionine residues (Met) important for CaM-target interactions. During ageing, Met residues are oxidized to (S)- and (R)-methionine sulfoxide (MetSO) by reactive oxygen species arising from an age-related oxidative stress. We examined how oxidation by H2O2 of Met in CaM regulates CaM activation of AC1. We employed a series of thirteen mutant CaM proteins never assessed before in a single study, where leucine is substituted for Met, in order to analyze the effects of oxidation of specific Met. CaM activation of AC1 is regulated by oxidation of all of the C-terminal Met in CaM, and by two N-terminal Met, M36 and M51. CaM with all Met oxidized is unable to activate AC1. Activity is fully restored by the combined catalytic activities of methionine sulfoxide reductases A and B (MsrA and B), which catalyze reduction of the (S)- and (R)-MetSO stereoisomers. A small change in secondary structure is observed in wild-type CaM upon oxidation of all nine Met, but no significant secondary structure changes occur in the mutant proteins when Met residues are oxidized by H2O2, suggesting that localized polarity, flexibility and structural changes promote the functional changes accompanying oxidation. The results signify that AC1 catalytic activity can be delicately adjusted by mediating CaM activation of AC1 by reversible Met oxidation in CaM. The results are important for memory, learning and possible therapeutic routes for regulating AC1.
Collapse
|
13
|
Dokainish HM, Gauld JW. A Molecular Dynamics and Quantum Mechanics/Molecular Mechanics Study of the Catalytic Reductase Mechanism of Methionine Sulfoxide Reductase A: Formation and Reduction of a Sulfenic Acid. Biochemistry 2013; 52:1814-27. [DOI: 10.1021/bi301168p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hisham M. Dokainish
- Department of Chemistry
and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - James W. Gauld
- Department of Chemistry
and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
14
|
Fu N, Su D, Cort JR, Chen B, Xiong Y, Qian WJ, Konopka AE, Bigelow DJ, Squier TC. Synthesis and Application of an Environmentally Insensitive Cy3-Based Arsenical Fluorescent Probe To Identify Adaptive Microbial Responses Involving Proximal Dithiol Oxidation. J Am Chem Soc 2013; 135:3567-75. [DOI: 10.1021/ja3117284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Na Fu
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dian Su
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John R. Cort
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Baowei Chen
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yijia Xiong
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Allan E. Konopka
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Diana J. Bigelow
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Thomas C. Squier
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
15
|
Xiong Y, Chen B, Shi L, Fredrickson JK, Bigelow DJ, Squier TC. Targeted Protein Degradation of Outer Membrane Decaheme Cytochrome MtrC Metal Reductase in Shewanella oneidensis MR-1 Measured Using Biarsenical Probe CrAsH-EDT2. Biochemistry 2011; 50:9738-51. [DOI: 10.1021/bi200602f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yijia Xiong
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Baowei Chen
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Liang Shi
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - James K. Fredrickson
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Diana J. Bigelow
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Thomas C. Squier
- Biological Sciences Division, Fundamental
Sciences
Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Pomorski A, Krężel A. Exploration of biarsenical chemistry--challenges in protein research. Chembiochem 2011; 12:1152-67. [PMID: 21538762 DOI: 10.1002/cbic.201100114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Indexed: 11/07/2022]
Abstract
The fluorescent modification of proteins (with genetically encoded low-molecular-mass fluorophores, affinity probes, or other chemically active species) is extraordinarily useful for monitoring and controlling protein functions in vitro, as well as in cell cultures and tissues. The large sizes of some fluorescent tags, such as fluorescent proteins, often perturb normal activity and localization of the protein of interest, as well as other effects. Of the many fluorescent-labeling strategies applied to in vitro and in vivo studies, one is very promising. This requires a very short (6- to 12-residue), appropriately spaced, tetracysteine sequence (-CCXXCC-); this is either placed at a protein terminus, within flexible loops, or incorporated into secondary structure elements. Proteins that contain the tetracysteine motif become highly fluorescent upon labeling with a nonluminescent biarsenical probe, and form very stable covalent complexes. We focus on the development, growth, and multiple applications of this protein research methodology, both in vitro and in vivo. Its application is not limited to intact-cell protein visualization; it has tremendous potential in other protein research disciplines, such as protein purification and activity control, electron microscopy imaging of cells or tissue, protein-protein interaction studies, protein stability, and aggregation studies.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | |
Collapse
|
17
|
Bigelow DJ, Squier TC. Thioredoxin-dependent redox regulation of cellular signaling and stress response through reversible oxidation of methionines. MOLECULAR BIOSYSTEMS 2011; 7:2101-9. [DOI: 10.1039/c1mb05081h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Khor HK, Jacoby ME, Squier TC, Chu GC, Chelius D. Identification of methionine sulfoxide diastereomers in immunoglobulin gamma antibodies using methionine sulfoxide reductase enzymes. MAbs 2010; 2:299-308. [PMID: 20404551 PMCID: PMC2881256 DOI: 10.4161/mabs.2.3.11755] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/11/2010] [Indexed: 11/19/2022] Open
Abstract
Light-induced formation of singlet oxygen selectively oxidizes methionines in the heavy chain of IgG2 antibodies. Peptide mapping has indicated the following sensitivities to oxidation: M252 > M428 > M397. Irrespective of the light source, formulating proteins with the free amino acid methionine limits oxidative damage. Conventional peptide mapping cannot distinguish between the S- and R-diastereomers of methionine sulfoxide (Met[O]) formed in the photo-oxidized protein because of their identical polarities and masses. We have developed a method for identification and quantification of these diastereomers by taking advantage of the complementary stereospecificities of the methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which promote the selective reduction of S- and R-diastereomers of Met(O), respectively. In addition, an MsrBA fusion protein that contains both Msr enzyme activities permitted the quantitative reduction of all Met(O) diastereomers. Using these Msr enzymes in combination with peptide mapping, we were able to detect and differentiate diastereomers of methionine sulfoxide within the highly conserved heavy chain of an IgG2 that had been photo-oxidized, as well as those in an IgG1 oxidized with peroxide. The rapid identification of the stereospecificity of methionine oxidation by Msr enzymes not only definitively differentiates Met(O) diastereomers, which previously has been indistinguishable using traditional techniques, but also provides an important tool that may contribute to understanding of the mechanisms of protein oxidation and development of new formulation strategies to stabilize protein therapeutics.
Collapse
Affiliation(s)
- Hui K Khor
- Department of Pharmaceutics, Amgen, Inc.; One Amgen Center Drive; Thousand Oaks, CA USA
| | - Michael E Jacoby
- Division of Biological Sciences; Pacific Northwest National Laboratory; Richland, WA USA
| | - Thomas C Squier
- Division of Biological Sciences; Pacific Northwest National Laboratory; Richland, WA USA
| | - Grace C Chu
- Department of Pharmaceutics, Amgen, Inc.; One Amgen Center Drive; Thousand Oaks, CA USA
| | - Dirk Chelius
- Department of Pharmaceutics, Amgen, Inc.; One Amgen Center Drive; Thousand Oaks, CA USA
| |
Collapse
|
19
|
Grey M, Yainoy S, Prachayasittikul V, Bülow L. A superoxide dismutase-human hemoglobin fusion protein showing enhanced antioxidative properties. FEBS J 2009; 276:6195-203. [DOI: 10.1111/j.1742-4658.2009.07323.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|