1
|
Lombard CK, Davis AL, Inukai T, Maly DJ. Allosteric Modulation of JNK Docking Site Interactions with ATP-Competitive Inhibitors. Biochemistry 2018; 57:5897-5909. [PMID: 30211540 DOI: 10.1021/acs.biochem.8b00776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The c-Jun N-terminal kinases (JNKs) play a wide variety of roles in cellular signaling processes, dictating important, and even divergent, cellular fates. These essential kinases possess docking surfaces distal to their active sites that interact with diverse binding partners, including upstream activators, downstream substrates, and protein scaffolds. Prior studies have suggested that the interactions of certain protein-binding partners with one such JNK docking surface, termed the D-recruitment site (DRS), can allosterically influence the conformational state of the ATP-binding pocket of JNKs. To further explore the allosteric relationship between the ATP-binding pockets and DRSs of JNKs, we investigated how the interactions of the scaffolding protein JIP1, as well as the upstream activators MKK4 and MKK7, are allosterically influenced by the ATP-binding site occupancy of the JNKs. We show that the affinity of the JNKs for JIP1 can be divergently modulated with ATP-competitive inhibitors, with a >50-fold difference in dissociation constant observed between the lowest- and highest-affinity JNK1-inhibitor complexes. Furthermore, we found that we could promote or attenuate phosphorylation of JNK1's activation loop by MKK4 and MKK7, by varying the ATP-binding site occupancy. Given that JIP1, MKK4, and MKK7 all interact with JNK DRSs, these results demonstrate that there is functional allostery between the ATP-binding sites and DRSs of these kinases. Furthermore, our studies suggest that ATP-competitive inhibitors can allosterically influence the intracellular binding partners of the JNKs.
Collapse
Affiliation(s)
- Chloe K Lombard
- Department of Chemistry , University of Washington , Seattle , Washington 98117 , United States
| | - Audrey L Davis
- Department of Chemistry , University of Washington , Seattle , Washington 98117 , United States
| | - Takayuki Inukai
- Medicinal Chemistry Research Laboratories , Ono Pharmaceutical Company, Ltd. , 3-1-1 Sakurai , Shimamoto, Mishima, Osaka 618-8585 , Japan
| | - Dustin J Maly
- Department of Chemistry , University of Washington , Seattle , Washington 98117 , United States.,Department of Biochemistry , University of Washington , Seattle , Washington 98117 , United States
| |
Collapse
|
2
|
Bardwell AJ, Bardwell L. Two hydrophobic residues can determine the specificity of mitogen-activated protein kinase docking interactions. J Biol Chem 2015; 290:26661-74. [PMID: 26370088 DOI: 10.1074/jbc.m115.691436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/06/2022] Open
Abstract
MAPKs bind to many of their upstream regulators and downstream substrates via a short docking motif (the D-site) on their binding partner. MAPKs that are in different families (e.g. ERK, JNK, and p38) can bind selectively to D-sites in their authentic substrates and regulators while discriminating against D-sites in other pathways. Here we demonstrate that the short hydrophobic region at the distal end of the D-site plays a critical role in determining the high selectivity of JNK MAPKs for docking sites in their cognate MAPK kinases. Changing just 1 or 2 key hydrophobic residues in this submotif is sufficient to turn a weak JNK-binding D-site into a strong one, or vice versa. These specificity-determining differences are also found in the D-sites of the ETS family transcription factors Elk-1 and Net. Moreover, swapping two hydrophobic residues between these D-sites switches the relative efficiency of Elk-1 and Net as substrates for ERK versus JNK, as predicted. These results provide new insights into docking specificity and suggest that this specificity can evolve rapidly by changes to just 1 or 2 amino acids.
Collapse
Affiliation(s)
- A Jane Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Lee Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| |
Collapse
|
3
|
Structural basis and biological consequences for JNK2/3 isoform selective aminopyrazoles. Sci Rep 2015; 5:8047. [PMID: 25623238 PMCID: PMC4306959 DOI: 10.1038/srep08047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/31/2014] [Indexed: 12/19/2022] Open
Abstract
Three JNK isoforms, JNK1, JNK2, and JNK3 have been reported and unique biological function has been ascribed to each. It is unknown if selective inhibition of these isoforms would confer therapeutic or safety benefit. To probe JNK isoform function we designed JNK2/3 inhibitors that have >30-fold selectivity over JNK1. Utilizing site-directed mutagenesis and x-ray crystallography we identified L144 in JNK3 as a key residue for selectivity. To test whether JNK2/3 selective inhibitors protect human dopaminergic neurons against neurotoxin-induced mitochondrial dysfunction, we monitored reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP). The results showed that JNK2/3 selective inhibitors protected against 6-hydroxydopamine-induced ROS generation and MMP depolarization. These results suggest that it was possible to develop JNK2/3 selective inhibitors and that residues in hydrophobic pocket I were responsible for selectivity. Moreover, the findings also suggest that inhibition of JNK2/3 likely contributed to protecting mitochondrial function and prevented ultimate cell death.
Collapse
|
4
|
Abstract
The c-Jun N-terminal kinases (JNKs) are serine/threonine kinases implicated in the pathogenesis of various diseases. Recent advances in the development of novel inhibitors of JNKs will be reviewed. Significant progress in the design of JNK inhibitors displaying selectivity versus other kinases has been achieved within the past 4 years. However, the development of isoform selective JNK inhibitors is still an open task.
Collapse
Affiliation(s)
- Pierre Koch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | |
Collapse
|
5
|
Regot S, Hughey JJ, Bajar BT, Carrasco S, Covert MW. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 2014; 157:1724-34. [PMID: 24949979 DOI: 10.1016/j.cell.2014.04.039] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/19/2014] [Accepted: 04/25/2014] [Indexed: 01/31/2023]
Abstract
Increasing evidence has shown that population dynamics are qualitatively different from single-cell behaviors. Reporters to probe dynamic, single-cell behaviors are desirable yet relatively scarce. Here, we describe an easy-to-implement and generalizable technology to generate reporters of kinase activity for individual cells. Our technology converts phosphorylation into a nucleocytoplasmic shuttling event that can be measured by epifluorescence microscopy. Our reporters reproduce kinase activity for multiple types of kinases and allow for calculation of active kinase concentrations via a mathematical model. Using this technology, we made several experimental observations that had previously been technicallyunfeasible, including stimulus-dependent patterns of c-Jun N-terminal kinase (JNK) and nuclear factor kappa B (NF-κB) activation. We also measured JNK, p38, and ERK activities simultaneously, finding that p38 regulates the peak number, but not the intensity, of ERK fluctuations. Our approach opens the possibility of analyzing a wide range of kinase-mediated processes in individual cells.
Collapse
Affiliation(s)
- Sergi Regot
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Jacob J Hughey
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Bryce T Bajar
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Silvia Carrasco
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Feng Y, Chambers JW, Iqbal S, Koenig M, Park H, Cherry L, Hernandez P, Figuera-Losada M, LoGrasso PV. A small molecule bidentate-binding dual inhibitor probe of the LRRK2 and JNK kinases. ACS Chem Biol 2013; 8:1747-54. [PMID: 23751758 DOI: 10.1021/cb3006165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Both JNK and LRRK2 are associated with Parkinson's disease (PD). Here we report a reasonably selective and potent kinase inhibitor (compound 6) that bound to both JNK and LRRK2 (a dual inhibitor). A bidentate-binding strategy that simultaneously utilized the ATP hinge binding and a unique protein surface site outside of the ATP pocket was applied to the design and identification of this kind of inhibitor. Compound 6 was a potent JNK3 and modest LRRK2 dual inhibitor with an enzyme IC50 value of 12 nM and 99 nM (LRRK2-G2019S), respectively. Compound 6 also exhibited good cell potency, inhibited LRRK2:G2019S-induced mitochondrial dysfunction in SHSY5Y cells, and was demonstrated to be reasonably selective against a panel of 116 kinases from representative kinase families. Design of such a probe molecule may help enable testing if dual JNK and LRRK2 inhibitions have added or synergistic efficacy in protecting against neurodegeneration in PD.
Collapse
Affiliation(s)
- Yangbo Feng
- Medicinal Chemistry, ‡Discovery Biology, §Modeling/Crystallography
Facility, Translational Research Institute, and ∥Department of Molecular Therapeutics, The Scripps Research Institute, Florida,
Jupiter, Florida 33458, United States
| | - Jeremy W. Chambers
- Medicinal Chemistry, ‡Discovery Biology, §Modeling/Crystallography
Facility, Translational Research Institute, and ∥Department of Molecular Therapeutics, The Scripps Research Institute, Florida,
Jupiter, Florida 33458, United States
| | - Sarah Iqbal
- Medicinal Chemistry, ‡Discovery Biology, §Modeling/Crystallography
Facility, Translational Research Institute, and ∥Department of Molecular Therapeutics, The Scripps Research Institute, Florida,
Jupiter, Florida 33458, United States
| | - Marcel Koenig
- Medicinal Chemistry, ‡Discovery Biology, §Modeling/Crystallography
Facility, Translational Research Institute, and ∥Department of Molecular Therapeutics, The Scripps Research Institute, Florida,
Jupiter, Florida 33458, United States
| | - HaJeung Park
- Medicinal Chemistry, ‡Discovery Biology, §Modeling/Crystallography
Facility, Translational Research Institute, and ∥Department of Molecular Therapeutics, The Scripps Research Institute, Florida,
Jupiter, Florida 33458, United States
| | - Lisa Cherry
- Medicinal Chemistry, ‡Discovery Biology, §Modeling/Crystallography
Facility, Translational Research Institute, and ∥Department of Molecular Therapeutics, The Scripps Research Institute, Florida,
Jupiter, Florida 33458, United States
| | - Pamela Hernandez
- Medicinal Chemistry, ‡Discovery Biology, §Modeling/Crystallography
Facility, Translational Research Institute, and ∥Department of Molecular Therapeutics, The Scripps Research Institute, Florida,
Jupiter, Florida 33458, United States
| | - Mariana Figuera-Losada
- Medicinal Chemistry, ‡Discovery Biology, §Modeling/Crystallography
Facility, Translational Research Institute, and ∥Department of Molecular Therapeutics, The Scripps Research Institute, Florida,
Jupiter, Florida 33458, United States
| | - Philip V. LoGrasso
- Medicinal Chemistry, ‡Discovery Biology, §Modeling/Crystallography
Facility, Translational Research Institute, and ∥Department of Molecular Therapeutics, The Scripps Research Institute, Florida,
Jupiter, Florida 33458, United States
| |
Collapse
|
7
|
Laughlin JD, Nwachukwu JC, Figuera-Losada M, Cherry L, Nettles KW, LoGrasso PV. Structural mechanisms of allostery and autoinhibition in JNK family kinases. Structure 2012; 20:2174-84. [PMID: 23142346 DOI: 10.1016/j.str.2012.09.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/27/2012] [Accepted: 09/30/2012] [Indexed: 01/24/2023]
Abstract
c-Jun N-terminal (JNK) family kinases have a common peptide-docking site used by upstream activating kinases, substrates, scaffold proteins, and phosphatases, where the ensemble of bound proteins determines signaling output. Although there are many JNK structures, little is known about mechanisms of allosteric regulation between the catalytic and peptide-binding sites, and the activation loop, whose phosphorylation is required for catalytic activity. Here, we compare three structures of unliganded JNK3 bound to different peptides. These were compared as a class to structures that differ in binding of peptide, small molecule ligand, or conformation of the kinase activation loop. Peptide binding induced an inhibitory interlobe conformer that was reversed by alterations in the activation loop. Structure class analysis revealed the subtle structural mechanisms for allosteric signaling between the peptide-binding site and activation loop. Biochemical data from isothermal calorimetry, fluorescence energy transfer, and enzyme inhibition demonstrated affinity differences among the three peptides that were consistent with structural observations.
Collapse
Affiliation(s)
- John D Laughlin
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | | | | | | | | | | |
Collapse
|
8
|
Ong JX, Yap CW, Ang WH. Rational Design of Selective Organoruthenium Inhibitors of Protein Tyrosine Phosphatase 1B. Inorg Chem 2012; 51:12483-92. [DOI: 10.1021/ic301884j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jun Xiang Ong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3,
Singapore 117543
| | - Chun Wei Yap
- Department
of Pharmacy, National University of Singapore, 18 Science Drive
4, Singapore 117543
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3,
Singapore 117543
| |
Collapse
|
9
|
Lu L, Gao X, Zhu M, Wang S, Wu Q, Xing S, Fu X, Liu Z, Guo M. Exploration of biguanido-oxovanadium complexes as potent and selective inhibitors of protein tyrosine phosphatases. Biometals 2012; 25:599-610. [PMID: 22547055 DOI: 10.1007/s10534-012-9548-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
The inhibitory effects of three biguanido-oxovanadium complexes ([VO(L(1-3))(2)]·nH(2)O: HL(1) = metformin, HL(2) = phenformin, HL(3) = moroxydine) against four protein tyrosine phosphatases (PTPs) and an alkaline phosphatase (ALP) were investigated. The complexes display strong inhibition against PTP1B and TCPTP (IC(50), 80-160 nM), a bit weaker inhibition against HePTP (IC(50), 190-410 nM) and SHP-1(IC(50), 0.8-3.3 μM) and much weaker inhibition against ALP (IC(50), 17-35 μM). Complex 3 is about twofold less potent against PTP1B, TCPTP and HePTP than complexes 1 and 2, while complex 2 inhibits SHP-1 more strongly (about three to fourfold) than the other two complexes. These results suggest that the structures of the ligands slightly influence the potency and selectivity against PTPs. The complexes inhibit PTP1B and ALP with a typical competitive type.
Collapse
Affiliation(s)
- Liping Lu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Figuera-Losada M, LoGrasso PV. Enzyme kinetics and interaction studies for human JNK1β1 and substrates activating transcription factor 2 (ATF2) and c-Jun N-terminal kinase (c-Jun). J Biol Chem 2012; 287:13291-302. [PMID: 22351776 DOI: 10.1074/jbc.m111.323766] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) is a stress signal transducer linked to cell death, and survival. JNK1 has been implicated in obesity, glucose intolerance, and insulin resistance. In this study we report the kinetic mechanism for JNK1β1 with transcription factors ATF2 and c-Jun along with interaction kinetics for these substrates. JNK1β1 followed a random sequential mechanism forming a ternary complex between JNK-substrate-ATP. K(m) for ATF2 and c-Jun was 1.1 and 2.8 μM, respectively. Inhibition studies using adenosine 5'-(β,γ-methylenetriphosphate) and a peptide derived from JNK interacting protein 1 (JIP1) supported the proposed kinetic mechanism. Biolayer interferometry studies showed that unphosphorylated JNK1β1 bound to ATF2 with similar affinity as it did to c-Jun (K(D) = 2.60 ± 0.34 versus 1.00 ± 0.35 μM, respectively). The presence of ATP increased the affinity of unphosphorylated JNK1β1 for ATF2 and c-Jun, to 0.80 ± 0.04 versus 0.65 ± 0.07 μM, respectively. Phosphorylation of JNK1β1 decreased the affinity of the kinase for ATF2 to 11.0 ± 1.1 μM and for c-Jun to 17.0 ± 7.5 μM in the absence of ATP. The presence of ATP caused a shift in the K(D) of the active kinase for ATF2 to 1.70 ± 0.25 μM and for c-Jun of 3.50 ± 0.95 μM. These results are the first kinetic and biochemical characterization of JNK1β1 and uncover some of the differences in the enzymatic activity of JNK1β1 compared with other variants and suggest that ATP binding or JNK phosphorylation could induce changes in the interactions with substrates, activators, and regulatory proteins.
Collapse
Affiliation(s)
- Mariana Figuera-Losada
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | | |
Collapse
|
11
|
Chambers JW, Cherry L, Laughlin JD, Figuera-Losada M, LoGrasso PV. Selective inhibition of mitochondrial JNK signaling achieved using peptide mimicry of the Sab kinase interacting motif-1 (KIM1). ACS Chem Biol 2011; 6:808-18. [PMID: 21563797 PMCID: PMC3158843 DOI: 10.1021/cb200062a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The c-jun N-terminal kinases (JNKs) are responsive to stress stimuli leading to activation of proapoptotic proteins and transcription. Additionally, JNK mitochondrial localization has been reported. To selectively target mitochondrial JNK signaling, we exploited JNK interaction with its mitochondrial scaffold, Sab, using small interfering RNAs (siRNAs) and a cell-permeable peptide corresponding to the KIM1 domain of Sab. Gene silencing and peptide interference of this interaction disrupted JNK translocation to the mitochondria and reduced phosphorylation of Bcl-2 without significant impact on c-Jun phosphorylation or AP-1 transcription. In contrast, the JNK inhibitory peptide (TI-JIP1) prevented these three functions. Tat-Sab(KIM1) selectivity was also demonstrated in anisomycin-stressed HeLa cells where Tat-Sab(KIM1) prevented Bcl-2 phosphorylation, cell death, loss of mitochondrial membrane potential, and superoxide generation but not c-Jun phosphorylation. Conversely, TI-JIP1 prevented all aforementioned stress-induced events. This probe introduces a means to evaluate JNK-mediated events on the mitochondria without intervening in nuclear functions of JNK.
Collapse
Affiliation(s)
- Jeremy W. Chambers
- Department of Molecular Therapeutics, and Translational Research Institute, The Scripps Research Institute, Scripps Florida
| | - Lisa Cherry
- Department of Molecular Therapeutics, and Translational Research Institute, The Scripps Research Institute, Scripps Florida
| | - John D. Laughlin
- Department of Molecular Therapeutics, and Translational Research Institute, The Scripps Research Institute, Scripps Florida
| | - Mariana Figuera-Losada
- Department of Molecular Therapeutics, and Translational Research Institute, The Scripps Research Institute, Scripps Florida
| | - Philip V. LoGrasso
- Department of Molecular Therapeutics, and Translational Research Institute, The Scripps Research Institute, Scripps Florida
| |
Collapse
|
12
|
Crocker CE, Khan S, Cameron MD, Robertson HA, Robertson GS, LoGrasso P. JNK Inhibition Protects Dopamine Neurons and Provides Behavioral Improvement in a Rat 6-hydroxydopamine Model of Parkinson's Disease. ACS Chem Neurosci 2011; 2:207-212. [PMID: 21666838 DOI: 10.1021/cn1001107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Parkinson's disease (PD) results from the loss of dopamine neurons located in the substantia nigra pars compacta (SNpc) that project to the striatum. A therapeutic has yet to be identified that halts this neurodegenerative process, and as such, development of a brain penetrant small molecule neuroprotective agent would represent a significant advancement in the treatment of the disease. To fill this void we developed an aminopyrimidine JNK inhibitor (SR-3306) that reduced the loss of dopaminergic cell bodies in the SNpc and their terminals in the striatum produced by unilateral injection of 6-hydroxydopamine (6-OHDA) into the nigrostriatal pathway. Administration of SR-3306 [10 mg/kg/day (s.c.) for 14 days] increased the number of tyrosine hydroxylase immunoreactive (TH(+)) neurons in the SNpc by six-fold and reduced the loss of the TH(+) terminals in the striatum relative to the corresponding side of 6-OHDA-lesioned rats that received only vehicle (p<0.05). In addition, SR-3306 [10 mg/kg/day (s.c.) for 14 days] decreased d-amphetamine-induced circling by 87% compared to 6-OHDA-lesioned animals given vehicle. Steady-state brain levels of SR-3306 at day 14 were 347 nM, which was approximately two-fold higher than the cell-based IC(50) for this compound. Finally, immunohistochemical staining for phospho-c-jun (p-c-jun) revealed that SR-3306 [10 mg/kg/day (s.c.) for 14 days] produced a 2.3-fold reduction of the number of immunoreactive neurons in the SNpc relative to vehicle treated rats. Collectively, these data suggest that orally bioavailable JNK inhibitors may be useful neuroprotective agents for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Candice E. Crocker
- Departments of Psychiatry and Pharmacology, Sir Charles Tuper Medical Building, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | - Susan Khan
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, Florida 33458, United States
| | - Michael D. Cameron
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, Florida 33458, United States
| | - Harold A. Robertson
- Departments of Psychiatry and Pharmacology, Sir Charles Tuper Medical Building, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | - George S. Robertson
- Departments of Psychiatry and Pharmacology, Sir Charles Tuper Medical Building, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | - Philip LoGrasso
- Department of Molecular Therapeutics and Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #A2A, Jupiter, Florida 33458, United States
| |
Collapse
|
13
|
Abstract
An improved understanding of the roles of protein kinases in intracellular signalling and disease progression has driven significant advances in protein kinase inhibitor discovery. Peptide inhibitors that target the kinase protein substrate-binding site have continued to attract attention. In the present paper, we describe a novel JNK (c-Jun N-terminal kinase) inhibitory peptide PYC71N, which inhibits JNK activity in vitro towards a range of recombinant protein substrates including the transcription factors c-Jun, ATF2 (activating trancription factor 2) and Elk1, and the microtubule regulatory protein DCX (doublecortin). Analysis of cell culture studies confirmed the actions of a cell-permeable version of PYC71 to inhibit c-Jun phosphorylation during acute hyperosmotic stress. The analysis of the in vitro data for the kinetics of this inhibition indicated a substrate–inhibitor complex-mediated inhibition of JNK by PYC71N. Alanine-scanning replacement studies revealed the importance of two residues (PYC71N Phe9 or Phe11 within an FXF motif) for JNK inhibition. The importance of these residues was confirmed through interaction studies showing that each change decreased interaction of the peptide with c-Jun. Furthermore, PYC71N interacted with both non-phosphorylated (inactive) JNK1 and the substrate c-Jun, but did not recognize active JNK1. In contrast, a previously characterized JNK-inhibitory peptide TIJIP [truncated inhibitory region of JIP (JNK-interacting protein)], showed stronger interaction with active JNK1. Competition binding analysis confirmed that PYC71N inhibited the interaction of c-Jun with JNK1. Taken together, the results of the present study define novel properties of the PYC71N peptide as well as differences from the characterized TIJIP, and highlight the value of these peptides to probe the biochemistry of JNK-mediated substrate interactions and phosphorylation.
Collapse
|
14
|
Kopec K, Flood DG, Gasior M, McKenna BAW, Zuvich E, Schreiber J, Salvino JM, Durkin JT, Ator MA, Marino MJ. Glycine transporter (GlyT1) inhibitors with reduced residence time increase prepulse inhibition without inducing hyperlocomotion in DBA/2 mice. Biochem Pharmacol 2010; 80:1407-17. [PMID: 20637735 DOI: 10.1016/j.bcp.2010.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 12/25/2022]
Abstract
Inhibition of the glycine transporter type 1 (GlyT1) leading to potentiation of the glycine site (GlyB) on the N-methyl-d-aspartate (NMDA) receptor has been proposed as a novel therapeutic approach for schizophrenia. However, sarcosine-based GlyT1 inhibitors produce undesirable side effects including compulsive walking and respiratory distress. The influence of specific biochemical properties of GlyT1 inhibitors, such as mode of inhibition and residence time, on adverse effects is unknown. Two GlyT1 inhibitors that contain a sarcosine moiety, sarcosine and ALX-5407, and two compounds that do not contain a sarcosine moiety, Roche-7 and Merck (S)-13h, were evaluated for their potency, mode of inhibition, and target residence times in vitro, and modulation of prepulse inhibition (PPI) and locomotor activity in vivo. (S)-13h and sarcosine were competitive inhibitors while ALX-5407 and Roche-7 demonstrated mixed noncompetitive inhibition. Potency of GlyT1 inhibition (ALX-5407>(S)-13h>Roche-7≫sarcosine) did not correlate with residence time on GlyT1 (sarcosine=Roche-7≪(S)-13h<ALX-5407). ALX-5407 and (S)-13h induced compulsive walking, termed obstinate progression (OP), at doses that increased PPI in DBA/2 mice, demonstrating that OP was not a function of mode of inhibition or inhibitor chemotype. Sarcosine and Roche-7 increased PPI without inducing OP, suggesting that compounds with decreased GlyT1 residence time were efficacious without adverse effects. Direct activation of the GlyB site by d-serine did not produce OP. However, OP induced by (S)-13h was blocked by strychnine, a glycine receptor (GlyA) antagonist, suggesting that OP induced by GlyT1 inhibition was mediated by GlyA. Thus, GlyT1 inhibitors with short residence times demonstrated efficacy without mechanism-based adverse effects.
Collapse
Affiliation(s)
- Karla Kopec
- Cephalon, Inc., West Chester, PA 19380, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY, Ng DC. c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:463-75. [DOI: 10.1016/j.bbapap.2009.11.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/28/2022]
|
16
|
Kamenecka T, Jiang R, Song X, Duckett D, Chen W, Ling YY, Habel J, Laughlin JD, Chambers J, Figuera-Losada M, Cameron MD, Lin L, Ruiz CH, LoGrasso PV. Synthesis, biological evaluation, X-ray structure, and pharmacokinetics of aminopyrimidine c-jun-N-terminal kinase (JNK) inhibitors. J Med Chem 2010; 53:419-31. [PMID: 19947601 DOI: 10.1021/jm901351f] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Given the significant body of data supporting an essential role for c-jun-N-terminal kinase (JNK) in neurodegenerative disorders, we set out to develop highly selective JNK inhibitors with good cell potency and good brain penetration properties. The structure-activity relationships (SAR) around a series of aminopyrimidines were evaluated utilizing biochemical and cell-based assays to measure JNK inhibition and brain penetration in mice. Microsomal stability in three species, P450 inhibition, inhibition of generation of reactive oxygen species (ROS), and pharmacokinetics in rats were also measured. Compounds 9g, 9i, 9j, and 9l had greater than 135-fold selectivity over p38, and cell-based IC(50) values < 100 nM. Moreover, compound 9l showed an IC(50) = 0.8 nM for inhibition of ROS and had good pharmacokinetic properties in rats along with a brain-to-plasma ratio of 0.75. These results suggest that biaryl substituted aminopyrimidines represented by compound 9l may serve as the first small molecule inhibitors to test efficacy of JNK inhibitors in neurodegenerative disorders.
Collapse
Affiliation(s)
- Ted Kamenecka
- Department of Molecular Therapeutics, and Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way A2A, Jupiter, Florida 33458, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yagi YI, Abe K, Ikebukuro K, Sode K. Kinetic Mechanism and Inhibitor Characterization of WNK1 Kinase. Biochemistry 2009; 48:10255-66. [DOI: 10.1021/bi900666n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yukiko I. Yagi
- Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
| | - Koichi Abe
- Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
| | - Kazunori Ikebukuro
- Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
| | - Koji Sode
- Tokyo University of Agriculture and Technology, 2-24-16 Naka-machi, Koganei, Tokyo, Japan
| |
Collapse
|
18
|
Abstract
JNK1 (c-Jun N-terminal kinase 1) plays a crucial role in the regulation of obesity-induced insulin resistance and is implicated in the pathology of Type 2 diabetes. Its partner, JIP1 (JNK-interacting protein 1), serves a scaffolding function that facilitates JNK1 activation by MKK4 [MAPK (mitogen-activated protein kinase) kinase 4] and MKK7 (MAPK kinase 7). For example, reduced insulin resistance and JNK activation are observed in JIP1-deficient mice. On the basis of the in vivo efficacy of a cell-permeable JIP peptide, the JIP–JNK interaction appears to be a potential target for JNK inhibition. The goal of the present study was to identify small-molecule inhibitors that disrupt the JIP–JNK interaction to provide an alternative approach for JNK inhibition to ATP-competitive inhibitors. High-throughput screening was performed by utilizing a fluorescence polarization assay that measured the binding of JNK1 to the JIP peptide. Multiple chemical series were identified, revealing two categories of JIP/JNK inhibitors: ‘dual inhibitors’ that are ATP competitive and probably inhibit JIP–JNK binding allosterically, and ‘JIP-site binders’ that block binding through interaction with the JIP site. A series of polychloropyrimidines from the second category was characterized by biochemical methods and explored through medicinal-chemistry efforts. As predicted, these inhibitors also inhibited full-length JIP–JNK binding and were selective against a panel of 34 representative kinases, including ones in the MAPK family. Overall, this work demonstrates that small molecules can inhibit protein–protein interactions in vitro in the MAPK family effectively and provides strategies for similar approaches within other target families.
Collapse
|
19
|
Ternary oxovanadium(IV) complexes of ONO-donor Schiff base and polypyridyl derivatives as protein tyrosine phosphatase inhibitors: synthesis, characterization, and biological activities. J Biol Inorg Chem 2009; 14:841-51. [PMID: 19290551 DOI: 10.1007/s00775-009-0496-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
|
20
|
Bardwell AJ, Frankson E, Bardwell L. Selectivity of docking sites in MAPK kinases. J Biol Chem 2009; 284:13165-73. [PMID: 19196711 DOI: 10.1074/jbc.m900080200] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein kinases often recognize their substrates and regulators through docking interactions that occur outside of the active site; these interactions can help us to understand kinase networks, and to target kinases with drugs. During mitogen-activated protein kinase (MAPK) signaling, the ability of MAPK kinases (MKKs, or MEKs) to recognize their cognate MAPKs is facilitated by a short docking motif (the D-site) in the MKK N terminus, which binds to a complementary region on the MAPK. MAPKs then recognize many of their targets using the same strategy, because many MAPK substrates also contain D-sites. The extent to which docking contributes to the specificity of MAPK transactions is incompletely understood. Here we characterize the selectivity of the interaction between MKK-derived D-sites and MAPKs by measuring the ability of D-site peptides to inhibit MAPK-mediated phosphorylation of D-site-containing substrates. We find that all MKK D-sites bind better to their cognate MAPKs than they do to non-cognate MAPKs. For instance, the MKK3 D-site peptide, which is a remarkably potent inhibitor of p38alpha (IC(50) < 10 nm), does not inhibit JNK1 or JNK2. Likewise, MAPKs generally bind as well or better to cognate D-sites than to non-cognate D-sites. For instance, JNK1 and JNK2 do not appreciably bind to any D-sites other than their cognate D-sites from MKK4 and MKK7. In general, cognate, within-pathway interactions are preferred about an order of magnitude over non-cognate interactions. However, the selectivity of MAPKs and their cognate MKK-derived D-sites for each other is limited in some cases; in particular, ERK2 is not very selective. We conclude that MAPK-docking sites in MAPK kinases bind selectively to their cognate MAPKs.
Collapse
Affiliation(s)
- A Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | | | | |
Collapse
|
21
|
Ember B, LoGrasso P. Mechanistic characterization for c-jun-N-Terminal Kinase 1alpha1. Arch Biochem Biophys 2008; 477:324-9. [PMID: 18559253 DOI: 10.1016/j.abb.2008.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 05/30/2008] [Accepted: 06/01/2008] [Indexed: 01/31/2023]
Abstract
c-jun-N-terminal kinase 1alpha1 (JNK1alpha1) is a serine/threonine kinase of the mitogen-activated protein (MAP) kinase family that phosphorylates protein transcription factors after activation by a variety of environmental stressors. In this study, the kinetic mechanism for JNK1alpha1 phosphorylation of activating transcription factor 2 (ATF2) was determined utilizing steady-state kinetics in the presence and absence of both ATF2 and ATP competitive inhibitors. Data from initial velocity studies were consistent with a sequential mechanism for JNK1alpha1. AMP-PCP exhibited competitive inhibition versus ATP and pure noncompetitive inhibition versus ATF2. JIP-1 peptide (RPKRPTTLNLF) was competitive versus ATF2 and mixed noncompetitive versus ATP. These data suggest that JNK1alpha1 proceeded via a random sequential kinetic mechanism with non-interacting ATF2 and ATP substrate sites.
Collapse
Affiliation(s)
- Brian Ember
- Department of Molecular Therapeutics and Drug Discovery, The Scripps Research Institute, Scripps Florida, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | | |
Collapse
|