1
|
Fields JL, Zhang H, Bellis NF, Petersen HA, Halder SK, Rich-New ST, Krupovic M, Wu H, Wang F. Structural diversity and clustering of bacterial flagellar outer domains. Nat Commun 2024; 15:9500. [PMID: 39489766 PMCID: PMC11532411 DOI: 10.1038/s41467-024-53923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
Supercoiled flagellar filaments function as mechanical propellers within the bacterial flagellum complex, playing a crucial role in motility. Flagellin, the building block of the filament, features a conserved inner D0/D1 core domain across different bacterial species. In contrast, approximately half of the flagellins possess additional, highly divergent outer domain(s), suggesting varied functional potential. In this study, we report atomic structures of flagellar filaments from three distinct bacterial species: Cupriavidus gilardii, Stenotrophomonas maltophilia, and Geovibrio thiophilus. Our findings reveal that the flagella from the facultative anaerobic G. thiophilus possesses a significantly more negatively charged surface, potentially enabling adhesion to positively charged minerals. Furthermore, we analyze all AlphaFold predicted structures for annotated bacterial flagellins, categorizing the flagellin outer domains into 682 structural clusters. This classification provides insights into the prevalence and experimental verification of these outer domains. Remarkably, two of the flagellar structures reported herein belong to a distinct cluster, indicating additional opportunities on the study of the functional diversity of flagellar outer domains. Our findings underscore the complexity of bacterial flagellins and open up possibilities for future studies into their varied roles beyond motility.
Collapse
Affiliation(s)
- Jessie Lynda Fields
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Hua Zhang
- Department of Oral Rehabilitation & Biosciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nathan F Bellis
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Holly A Petersen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Sajal K Halder
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Shane T Rich-New
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, 75015, France
| | - Hui Wu
- Department of Oral Rehabilitation & Biosciences, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
2
|
Prajapati A, Hemanth RA, Namrutha MR, Bindu S, Yogisharadhya R, Mohanty NN, Chanda MM, Shivachandra SB. Production of highly soluble and immuno-reactive recombinant flagellin protein of Clostridium chauvoei. Anaerobe 2024; 89:102899. [PMID: 39142535 DOI: 10.1016/j.anaerobe.2024.102899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE Flagellin protein, an integral component of flagella, provides motility to several bacterial species and also acts as a candidate antigen in diagnostics and subunit vaccines. The bulk production of flagellin with retention of all conformational epitopes using recombinant protein technology is of paramount importance in the development of pathogen-specific immuno-assays and vaccines. We describe the production of highly soluble and immuno-reactive rFliA(C) protein of Clostridium chauvoei, a causative agent of blackleg or black quarter (BQ) affecting cattle and small ruminants worldwide. The bacterium is known to possess peritrichous flagella that provide motility and also act as a virulence factor with high protective antigenicity. METHODS Upon sequence and structural analysis, a partial fliA(C) gene from Clostridium chauvoei was cloned and the recombinant mature protein with N- and C- terminal truncation was over-expressed as a His-tagged fusion protein (∼25 kDa) in Escherichia coli. Subsequently, rFliA(C) protein was purified by single-step affinity chromatography and characterized for its immuno-reactivity in laboratory animals, Western blot, and indirect-ELISA format. RESULTS rFliA(C) was highly soluble and was purified in high quantity and quality. rFliA(C) elicited antigen-specific conformational polyclonal antibodies in rabbit and guinea pig models, as well as anti-Clostridium chauvoei-specific antibodies being specifically detected in BQ-vaccinated and convalescent sera of bovines in Western blot and in indirect-ELISA format. Further, no cross reactivity was noted with antibodies against major bovine diseases (e.g., foot-and-mouth disease, IBR, LSDV, hemorrhagic septicaemia, brucellosis, and leptospirosis). CONCLUSION The study indicated the production of conformational recombinant flagellin-rFliA(C)-antigen and its potential utility in development of diagnostics for detection of Clostridium chauvoei-specific antibodies in BQ-recovered and/or vaccinated animals.
Collapse
Affiliation(s)
- Awadhesh Prajapati
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Roopa Anandamurthy Hemanth
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Mandira Ramakrishna Namrutha
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Suresh Bindu
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Revanaiah Yogisharadhya
- ICAR-Krishi Vigyan Kendra (KVK), ICAR-Research Complex for NEH Region, Hailakandi, 788152, Assam, India
| | - Nihar Nalini Mohanty
- CCS-National Institute of Animal Health (NIAH), Baghpat, 250609, Uttar Pradesh (UP), India
| | - Mohammed Mudassar Chanda
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India
| | - Sathish Bhadravati Shivachandra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Post Box No. 6450, Yelahanka, Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
3
|
Fields JL, Zhang H, Bellis NF, Petersen HA, Halder SK, Rich-New ST, Wu H, Wang F. Structural diversity and clustering of bacterial flagellar outer domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585621. [PMID: 38562817 PMCID: PMC10983879 DOI: 10.1101/2024.03.18.585621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Supercoiled flagellar filaments function as mechanical propellers within the bacterial flagellum complex, playing a crucial role in motility. Flagellin, the building block of the filament, features a conserved inner D0/D1 core domain across different bacterial species. In contrast, approximately half of the flagellins possess additional, highly divergent outer domain(s), suggesting varied functional potential. In this study, we elucidate atomic structures of flagellar filaments from three distinct bacterial species: Cupriavidus gilardii , Stenotrophomonas maltophilia , and Geovibrio thiophilus . Our findings reveal that the flagella from the facultative anaerobic G. thiophilus possesses a significantly more negatively charged surface, potentially enabling adhesion to positively charged minerals. Furthermore, we analyzed all AlphaFold predicted structures for annotated bacterial flagellins, categorizing the flagellin outer domains into 682 structural clusters. This classification provides insights into the prevalence and experimental verification of these outer domains. Remarkably, two of the flagellar structures reported herein belong to a previously unexplored cluster, indicating new opportunities on the study of the functional diversity of flagellar outer domains. Our findings underscore the complexity of bacterial flagellins and open up possibilities for future studies into their varied roles beyond motility.
Collapse
|
4
|
MURATA K, KAWAI S, HASHIMOTO W. Bacteria with a mouth: Discovery and new insights into cell surface structure and macromolecule transport. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:529-552. [PMID: 36504195 PMCID: PMC9751261 DOI: 10.2183/pjab.98.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
A bacterium with a "mouth"-like pit structure isolated for the first time in the history of microbiology was a Gram-negative rod, containing glycosphingolipids in the cell envelope, and named Sphingomonas sp. strain A1. The pit was dynamic, with repetitive opening and closing during growth on alginate, and directly included alginate concentrated around the pit, particularly by flagellins, an alginate-binding protein localized on the cell surface. Alginate incorporated into the periplasm was subsequently transferred to the cytoplasm by cooperative interactions of periplasmic solute-binding proteins and an ATP-binding cassette transporter in the cytoplasmic membrane. The mechanisms of assembly, functions, and interactions between the above-mentioned molecules were clarified using structural biology. The pit was transplanted into other strains of sphingomonads, and the pitted recombinant cells were effectively applied to the production of bioethanol, bioremediation for dioxin removal, and other tasks. Studies of the function of the pit shed light on the biological significance of cell surface structures and macromolecule transport in bacteria.
Collapse
Affiliation(s)
| | - Shigeyuki KAWAI
- Research Institute for Bioresource and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Wataru HASHIMOTO
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
5
|
Structural Conservation and Adaptation of the Bacterial Flagella Motor. Biomolecules 2020; 10:biom10111492. [PMID: 33138111 PMCID: PMC7693769 DOI: 10.3390/biom10111492] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacteria require flagella for the ability to move, survive, and cause infection. The flagellum is a complex nanomachine that has evolved to increase the fitness of each bacterium to diverse environments. Over several decades, molecular, biochemical, and structural insights into the flagella have led to a comprehensive understanding of the structure and function of this fascinating nanomachine. Notably, X-ray crystallography, cryo-electron microscopy (cryo-EM), and cryo-electron tomography (cryo-ET) have elucidated the flagella and their components to unprecedented resolution, gleaning insights into their structural conservation and adaptation. In this review, we focus on recent structural studies that have led to a mechanistic understanding of flagellar assembly, function, and evolution.
Collapse
|
6
|
Xu M, Xie Y, Tan M, Zheng K, Xiao Y, Jiang C, Zhao F, Zeng T, Wu Y. The N-terminal D1 domain of Treponema pallidum flagellin binding to TLR5 is required but not sufficient in activation of TLR5. J Cell Mol Med 2019; 23:7490-7504. [PMID: 31493340 PMCID: PMC6815820 DOI: 10.1111/jcmm.14617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/02/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Syphilis is a chronic bacterial infection caused by Treponema pallidum (T pallidum) and the pathogenesis that T pallidum infection induces immunopathological damages in skin and other tissues remains unclear. We have previously reported that recombinant flagellins of T pallidum can elicit IL‐6 and IL‐8 transcriptions via TLR5 pathway. To identify the domains which induced the pro‐inflammatory activity and the importance of the interactions between TLR5 and domains, homology‐based modelling and comparative structural analyses revealed that Tpflagellins can combine with TLR5 directly. Deletion mutations showed that the ND1 domain binding to TLR5 is required but not sufficient in TLR5 activation. Moreover, site‐directed mutagenesis analysis indicated that the arginine residue (Tpflagellins R89) of the ND1 domain and its adjacent residues (Tpflagellins L93 and E113) constitute a hot spot that elicits IL‐6, IL‐8 transcriptions and TLR5 activation, and affects the binding of Tpflagellins to TLR5. Taken together, these results give insight into the pathogenesis of T pallidum and may contribute to the future design of Tpflagellins‐based therapeutics and syphilis vaccine.
Collapse
Affiliation(s)
- Man Xu
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yafeng Xie
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Manyi Tan
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Kang Zheng
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Chuanhao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feijun Zhao
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Tiebing Zeng
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yimou Wu
- Institution of Pathogenic Biology, Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
7
|
Maruyama Y, Hashimoto W, Murata K. Structural studies on bacterial system used in the recognition and uptake of the macromolecule alginate. Biosci Biotechnol Biochem 2019; 83:794-802. [PMID: 30744540 DOI: 10.1080/09168451.2019.1578642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alginate is an acidic heteropolysaccharide produced by brown seaweed and certain kinds of bacteria. The cells of Sphingomonas sp. strain A1, a gram-negative bacterium, have several alginate-degrading enzymes in their cytoplasm and efficiently utilize this polymer for their growth. Sphingomonas sp. strain A1 cells can directly incorporate alginate into their cytoplasm through a transport system consisting of a "pit" on their cell surface, substrate-binding proteins in their periplasm, and an ATP-binding cassette transporter in their inner membrane. This review deals with the structural and functional aspects of bacterial systems necessary for the recognition and uptake of alginate.
Collapse
Affiliation(s)
- Yukie Maruyama
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji, Kyoto , Japan.,b Department of Life Science, Faculty of Science and Engineering , Setsunan University , Neyagawa, Osaka , Japan
| | - Wataru Hashimoto
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji, Kyoto , Japan
| | - Kousaku Murata
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Uji, Kyoto , Japan.,b Department of Life Science, Faculty of Science and Engineering , Setsunan University , Neyagawa, Osaka , Japan
| |
Collapse
|
8
|
Altegoer F, Mukherjee S, Steinchen W, Bedrunka P, Linne U, Kearns DB, Bange G. FliS/flagellin/FliW heterotrimer couples type III secretion and flagellin homeostasis. Sci Rep 2018; 8:11552. [PMID: 30068950 PMCID: PMC6070490 DOI: 10.1038/s41598-018-29884-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023] Open
Abstract
Flagellin is amongst the most abundant proteins in flagellated bacterial species and constitutes the major building block of the flagellar filament. The proteins FliW and FliS serve in the post-transcriptional control of flagellin and guide the protein to the flagellar type III secretion system (fT3SS), respectively. Here, we present the high-resolution structure of FliS/flagellin heterodimer and show that FliS and FliW bind to opposing interfaces located at the N- and C-termini of flagellin. The FliS/flagellin/FliW heterotrimer is able to interact with FlhA-C suggesting that FliW and FliS are released during flagellin export. After release, FliW and FliS are recycled to execute a new round of post-transcriptional regulation and targeting. Taken together, our study provides a mechanism explaining how FliW and FliS synchronize the production of flagellin with the capacity of the fT3SS to secrete flagellin.
Collapse
Affiliation(s)
- Florian Altegoer
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany
| | - Sampriti Mukherjee
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN, 47405, USA
| | - Wieland Steinchen
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany
| | - Patricia Bedrunka
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany
| | - Uwe Linne
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany
| | - Daniel B Kearns
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN, 47405, USA
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology & Dep. of Chemistry, Philipps University Marburg, Hans-Meerwein-Strasse 6, 35043, Marburg, Germany.
| |
Collapse
|
9
|
Il Kim M, Lee C, Park J, Jeon BY, Hong M. Crystal structure of Bacillus cereus flagellin and structure-guided fusion-protein designs. Sci Rep 2018; 8:5814. [PMID: 29643437 PMCID: PMC5895748 DOI: 10.1038/s41598-018-24254-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
Flagellin is a major component of the flagellar filament. Flagellin also functions as a specific ligand that stimulates innate immunity through direct interaction with Toll-like receptor 5 (TLR5) in the host. Because flagellin activates the immune response, it has been of interest to develop as a vaccine adjuvant in subunit vaccines or antigen fusion vaccines. Despite the widespread application of flagellin fusion in preventing infectious diseases, flagellin-antigen fusion designs have never been biophysically and structurally characterized. Moreover, flagellin from Salmonella species has been used extensively despite containing hypervariable regions not required for TLR5 that can cause an unexpected immune response. In this study, flagellin from Bacillus cereus (BcFlg) was identified as the smallest flagellin molecule containing only the conserved TLR5-activating D0 and D1 domains. The crystal structure of BcFlg was determined to provide a scheme for fusion designs. Through homology-based modeling and comparative structural analyses, diverse fusion strategies were proposed. Moreover, cellular and biophysical analysis of an array of fusion constructs indicated that insertion fusion at BcFlg residues 178–180 does not interfere with the protein stability or TLR5-stimulating capacity of flagellin, suggesting its usefulness in the development and optimization of flagellin fusion vaccines.
Collapse
Affiliation(s)
- Meong Il Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Choongdeok Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Jaewan Park
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Bo-Young Jeon
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, 26493, Republic of Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
10
|
Kobayashi M, Konishi H, Maruyama Y, Murata K, Hashimoto W. Lateral-typed flagellin responsible for formation of a polar flagellum but not of lateral flagella in Sphingomonas sp. strain A1. Microbiology (Reading) 2016; 162:2042-2052. [DOI: 10.1099/mic.0.000385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Masahiro Kobayashi
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hidenori Konishi
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yukie Maruyama
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kousaku Murata
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
11
|
Abstract
Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.
Collapse
|
12
|
Altegoer F, Schuhmacher J, Pausch P, Bange G. From molecular evolution to biobricks and synthetic modules: a lesson by the bacterial flagellum. Biotechnol Genet Eng Rev 2014; 30:49-64. [DOI: 10.1080/02648725.2014.921500] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Song WS, Yoon SI. Crystal structure of FliC flagellin from Pseudomonas aeruginosa and its implication in TLR5 binding and formation of the flagellar filament. Biochem Biophys Res Commun 2014; 444:109-15. [PMID: 24434155 DOI: 10.1016/j.bbrc.2014.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/07/2014] [Indexed: 01/24/2023]
Abstract
Pseudomonas aeruginosa is one of leading opportunistic pathogens in humans and its movement is driven by a flagellar filament that is constituted through the polymerization of a single protein, FliC flagellin (paFliC). paFliC is an essential virulence factor for the colonization of P. aeruginosa. paFliC activates innate immune responses via its recognition by Toll-like receptor 5 (TLR5) and adaptive immunity in the host. Thus, paFliC has been a vaccine candidate to prevent P. aeruginosa infection, particularly for cystic fibrosis patients. To provide structural information on paFliC and its flagellar filament, we have determined the crystal structure of paFliC, which contains the conserved D1 and variable D2 domains, at 2.1 Å resolution. As observed for Salmonella FliC, the paFliC D1 domain is folded into a rod-shaped structure, and paFliC was demonstrated by gel filtration and native PAGE analyses to directly interact with TLR5. Moreover, a structural model of the paFliC-TLR5 complex suggests that paFliC D1 would provide major TLR5-binding sites, similar to Salmonella FliC. In contrast to the D1 domain, the paFliC D2 domain exhibits a unique structure of two β-sheets and one α-helix that has not been found in other flagellins. An in silico construction of a flagellar filament based on the packing of paFliC in the crystal suggests that the D2 domain would be exposed to solution and could play an important role in immunogenicity. Our biophysical and structure-based modeling study on paFliC, the paFliC-TLR5 complex, and the paFliC filament could contribute to the improvement of vaccine design to control P. aeruginosa infection.
Collapse
Affiliation(s)
- Wan Seok Song
- Department of Systems Immunology and Institute of Antibody Research, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Sung-il Yoon
- Department of Systems Immunology and Institute of Antibody Research, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
14
|
French S, Puddephatt D, Habash M, Glasauer S. The dynamic nature of bacterial surfaces: Implications for metal–membrane interaction. Crit Rev Microbiol 2012; 39:196-217. [DOI: 10.3109/1040841x.2012.702098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Wong E, Vaaje-Kolstad G, Ghosh A, Hurtado-Guerrero R, Konarev PV, Ibrahim AFM, Svergun DI, Eijsink VGH, Chatterjee NS, van Aalten DMF. The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog 2012; 8:e1002373. [PMID: 22253590 PMCID: PMC3257281 DOI: 10.1371/journal.ppat.1002373] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 09/27/2011] [Indexed: 02/06/2023] Open
Abstract
Vibrio cholerae is a bacterial pathogen that colonizes the chitinous exoskeleton of zooplankton as well as the human gastrointestinal tract. Colonization of these different niches involves an N-acetylglucosamine binding protein (GbpA) that has been reported to mediate bacterial attachment to both marine chitin and mammalian intestinal mucin through an unknown molecular mechanism. We report structural studies that reveal that GbpA possesses an unusual, elongated, four-domain structure, with domains 1 and 4 showing structural homology to chitin binding domains. A glycan screen revealed that GbpA binds to GlcNAc oligosaccharides. Structure-guided GbpA truncation mutants show that domains 1 and 4 of GbpA interact with chitin in vitro, whereas in vivo complementation studies reveal that domain 1 is also crucial for mucin binding and intestinal colonization. Bacterial binding studies show that domains 2 and 3 bind to the V. cholerae surface. Finally, mouse virulence assays show that only the first three domains of GbpA are required for colonization. These results explain how GbpA provides structural/functional modular interactions between V. cholerae, intestinal epithelium and chitinous exoskeletons. Vibrio cholerae is the bacterium that causes cholera, a disease endemic in developing countries with poor sanitation. The bacterium colonizes aquatic organisms that serve as a reservoir of transmission to humans. Our work has focused on GbpA, a protein that is secreted by V. cholerae and appears to facilitate growth of the bacteria both in the human intestine and on the exoskeletons of marine organisms. We show that the protein possesses an unusual three-dimensional structure consisting of four separate domains. Two of the domains are similar to proteins that are known to bind chitin, an exoskeleton biopolymer, and our data show that these domains indeed harbour the chitin binding properties of GbpA. One of these domains is also capable of binding intestinal mucus. The two remaining domains are required for interacting with the bacterium itself, creating a stable interface between the bacterium and the human/marine host, facilitating colonization. Finally, work with a cholera mouse model shows that only the first three domains of GbpA are required for colonization. These results show how GbpA provides structural/functional modular interactions between V. cholerae, the intestinal epithelium and chitinous exoskeletons.
Collapse
Affiliation(s)
- Edmond Wong
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Avishek Ghosh
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Ramon Hurtado-Guerrero
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Peter V. Konarev
- European Molecular Biology Laboratory (EMBL), Outstation Hamburg at DESY, Hamburg, Germany
| | - Adel F. M. Ibrahim
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL), Outstation Hamburg at DESY, Hamburg, Germany
| | - Vincent G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Nabendu S. Chatterjee
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Scheme XM, Beliaghata, Kolkata, India
| | - Daan M. F. van Aalten
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Maruyama Y, Ochiai A, Mikami B, Hashimoto W, Murata K. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif. Biochem Biophys Res Commun 2011; 405:411-6. [PMID: 21238429 DOI: 10.1016/j.bbrc.2011.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10Å resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.
Collapse
Affiliation(s)
- Yukie Maruyama
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
17
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
18
|
Hashimoto W, Kawai S, Murata K. Bacterial supersystem for alginate import/metabolism and its environmental and bioenergy applications. Bioeng Bugs 2009; 1:97-109. [PMID: 21326935 DOI: 10.4161/bbug.1.2.10322] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 11/19/2022] Open
Abstract
Distinct from most alginate-assimilating bacteria that secrete polysaccharide lyases extracellularly, a gram-negative bacterium, Sphingomonas sp. A1 (strain A1), can directly incorporate alginate into its cytoplasm, without degradation, through a "superchannel" consisting of a mouth-like pit on the cell surface, periplasmic binding proteins, and a cytoplasmic membrane-bound ATP-binding cassette transporter. Flagellin homologues function as cell surface alginate receptors essential for expressing the superchannel. Cytoplasmic alginate lyases with different substrate specificities and action modes degrade the polysaccharide to its constituent monosaccharides. The resultant monosaccharides, α-keto acids, are converted to a reduced form by NADPH-dependent reductase, and are finally metabolized in the TCA cycle. Transplantation of the strain A1 superchannel to xenobiotic-degrading sphingomonads enhances bioremediation through the propagation of bacteria with an elevated transport activity. Furthermore, strain A1 cells transformed with Zymomonas mobilis genes for pyruvate decarboxylase and alcohol dehydrogenase II produce considerable amounts of biofuel ethanol from alginate when grown statically.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology,; Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | |
Collapse
|
19
|
Hashimoto W, Ochiai A, Momma K, Itoh T, Mikami B, Maruyama Y, Murata K. Crystal structure of the glycosidase family 73 peptidoglycan hydrolase FlgJ. Biochem Biophys Res Commun 2009; 381:16-21. [PMID: 19351587 DOI: 10.1016/j.bbrc.2009.01.186] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
Glycoside hydrolase (GH) categorized into family 73 plays an important role in degrading bacterial cell wall peptidoglycan. The flagellar protein FlgJ contains N- and C-terminal domains responsible for flagellar rod assembly and peptidoglycan hydrolysis, respectively. A member of family GH-73, the C-terminal domain (SPH1045-C) of FlgJ from Sphingomonas sp. strain A1 was expressed in Escherichia coli, purified, and characterized. SPH1045-C exhibited bacterial cell lytic activity most efficiently at pH 6.0 and 37 degrees C. The X-ray crystallographic structure of SPH1045-C was determined at 1.74 A resolution by single-wavelength anomalous diffraction. The enzyme consists of two lobes, alpha and beta. A deep cleft located between the two lobes can accommodate polymer molecules, suggesting that the active site is located in the cleft. Although SPH1045-C shows a structural homology with family GH-22 and GH-23 lysozymes, the arrangement of the nucleophile/base residue in the active site is specific to each peptidoglycan hydrolase.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
He J, Ochiai A, Fukuda Y, Hashimoto W, Murata K. A putative lipoprotein of Sphingomonas sp. strain A1 binds alginate rather than a lipid moiety. FEMS Microbiol Lett 2008; 288:221-6. [PMID: 18803672 DOI: 10.1111/j.1574-6968.2008.01354.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Gram-negative Sphingomonas sp. strain A1 accumulates alginate in the cell surface pit and directly incorporates the polysaccharide into its cytoplasm through a 'superchannel'. A cell surface protein Algp7 (27 kDa) is inducibly expressed in the presence of alginate. Although the protein Algp7 was initially classified as a lipoprotein based on its primary structure, Algp7 purified from strain A1 cells did not possess a lipid moiety. Algp7 bound alginate efficiently at a neutral pH with a K(d) of 3.6 x 10(-8) M, suggesting that the cell surface protein contributed to accumulation of alginate in the pit.
Collapse
Affiliation(s)
- Jinshan He
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | |
Collapse
|