1
|
Russell PPS, Maytin AK, Rickard MM, Russell MC, Pogorelov TV, Gruebele M. Metastable States in the Hinge-Bending Landscape of an Enzyme in an Atomistic Cytoplasm Simulation. J Phys Chem Lett 2024; 15:940-946. [PMID: 38252018 PMCID: PMC11180962 DOI: 10.1021/acs.jpclett.3c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Many enzymes undergo major conformational changes to function in cells, particularly when they bind to more than one substrate. We quantify the large-amplitude hinge-bending landscape of human phosphoglycerate kinase (PGK) in a human cytoplasm. Approximately 70 μs of all-atom simulations, upon coarse graining, reveal three metastable states of PGK with different hinge angle distributions and additional substates. The "open" state was more populated than the "semi-open" or "closed" states. In addition to free energies and barriers within the landscape, we characterized the average transition state passage time of ≈0.3 μs and reversible substrate and product binding. Human PGK in a dilute solution simulation shows a transition directly from the open to closed states, in agreement with previous SAXS experiments, suggesting that the cell-like model environment promotes stability of the human PGK semi-open state. Yeast PGK also sampled three metastable states within the cytoplasm model, with the closed state favored in our simulation.
Collapse
Affiliation(s)
| | - Andrew K. Maytin
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Meredith M. Rickard
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Matthew C. Russell
- Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
2
|
Palmai Z, Seifert C, Gräter F, Balog E. An allosteric signaling pathway of human 3-phosphoglycerate kinase from force distribution analysis. PLoS Comput Biol 2014; 10:e1003444. [PMID: 24465199 PMCID: PMC3900376 DOI: 10.1371/journal.pcbi.1003444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
3-Phosphogycerate kinase (PGK) is a two domain enzyme, which transfers a phosphate group between its two substrates, 1,3-bisphosphoglycerate bound to the N-domain and ADP bound to the C-domain. Indispensable for the phosphoryl transfer reaction is a large conformational change from an inactive open to an active closed conformation via a hinge motion that should bring substrates into close proximity. The allosteric pathway resulting in the active closed conformation has only been partially uncovered. Using Molecular Dynamics simulations combined with Force Distribution Analysis (FDA), we describe an allosteric pathway, which connects the substrate binding sites to the interdomain hinge region. Glu192 of alpha-helix 7 and Gly394 of loop L14 act as hinge points, at which these two secondary structure elements straighten, thereby moving the substrate-binding domains towards each other. The long-range allosteric pathway regulating hPGK catalytic activity, which is partially validated and can be further tested by mutagenesis, highlights the virtue of monitoring internal forces to reveal signal propagation, even if only minor conformational distortions, such as helix bending, initiate the large functional rearrangement of the macromolecule. 3-Phosphoglycerate kinase (PGK) is an essential enzyme for living organisms. It catalyzes the phospho-transfer reaction between two catabolites during carbohydrate metabolism. In addition to this physiological role, human PGK has been shown to phosphorylate L-nucleoside analogues, potential drugs against viral infection and cancer. PGK is a two domain enzyme, with the two substrates bound to the two separate domains. In order to perform its function the enzyme has to undergo a large conformational change involving a hinge bending to bring the substrates into close proximity. The allosteric pathway from the open non-reactive state of PGK to the closed reactive state as triggered by substrate binding has only been partially uncovered by experimental studies. Here we describe a complete allosteric pathway, which connects the substrate binding sites to the interdomain hinge region using Molecular Dynamics simulations combined with Force Distribution Analysis (FDA). While previously identified key residues involved in PGK domain closure are part of this pathway, we here fill the numerous gaps in the pathway by identifying newly uncovered residues and interesting candidates for future mutational studies.
Collapse
Affiliation(s)
- Zoltan Palmai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Christian Seifert
- Molecular Biomechanics, Heidelberger Institut für Theoretische Studien gGmbH, Heidelberg, Germany
| | - Frauke Gräter
- Molecular Biomechanics, Heidelberger Institut für Theoretische Studien gGmbH, Heidelberg, Germany
- MPG-CAS Partner Institute and Key Laboratory for Computational Biology, Shanghai, China
- * E-mail: (FG); (EB)
| | - Erika Balog
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- * E-mail: (FG); (EB)
| |
Collapse
|
3
|
Lallemand P, Leban N, Kunzelmann S, Chaloin L, Serpersu EH, Webb MR, Barman T, Lionne C. Transient kinetics of aminoglycoside phosphotransferase(3')-IIIa reveals a potential drug target in the antibiotic resistance mechanism. FEBS Lett 2012; 586:4223-7. [PMID: 23108046 PMCID: PMC3510435 DOI: 10.1016/j.febslet.2012.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 11/24/2022]
Abstract
Aminoglycoside phosphotransferases are bacterial enzymes responsible for the inactivation of aminoglycoside antibiotics by O-phosphorylation. It is important to understand the mechanism of enzymes in order to find efficient drugs. Using rapid-mixing methods, we studied the transient kinetics of aminoglycoside phosphotransferase(3′)-IIIa. We show that an ADP-enzyme complex is the main steady state intermediate. This intermediate interacts strongly with kanamycin A to form an abortive complex that traps the enzyme in an inactive state. A good strategy to prevent the inactivation of aminoglycosides would be to develop uncompetitive inhibitors that interact with this key ADP-enzyme complex.
Collapse
Affiliation(s)
- Perrine Lallemand
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236 CNRS, University Montpellier I & II, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Palmai Z, Perahia D, Lionne C, Fidy J, Balog E, Chaloin L. Ligand chirality effects on the dynamics of human 3-phosphoglycerate kinase: comparison between D- and L-nucleotides. Arch Biochem Biophys 2011; 511:88-100. [PMID: 21549683 DOI: 10.1016/j.abb.2011.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
Abstract
l-nucleoside analogues are now largely used as antiviral drugs for the treatment of viral infections like HBV, HCV and HIV. However, in order to be fully active, they need to be phosphorylated by cellular or viral kinases. Human 3-phosphogycerate kinase (hPGK) was shown to catalyze the last step of activation of l-enantiomers and thus constitutes an attractive target for theoretical predictions of its phosphorylation efficiency. Molecular dynamics simulations were carried out with four different nucleotides (d-/l-ADP and d-/l-CDP) in complex with hPGK and 1,3-bisphospho-d-glycerate (bPG). The binding affinities of CDPs (both enantiomers) for hPGK were found very weak while d- and l-ADP were better substrates. Interestingly, the binding affinity of the bPG substrate was found to be lower in presence of d-ADP than l-ADP which indicates a potential antagonistic effect on one substrate to the other. A detailed analysis of the simulations unravels important dynamic conditions for efficient phosphorylation. Indeed, as previously described for the natural substrate, the hinge bending motion of the domains upon substrates binding should be more correlated and directional. Interestingly, the unforeseen finding was the larger dynamics freedoms observed for the substrates that was favored by the protein atoms flexibility around the nucleobase binding site.
Collapse
Affiliation(s)
- Zoltan Palmai
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó u. 37-47, 1094, Hungary
| | | | | | | | | | | |
Collapse
|
5
|
Interaction of human 3-phosphoglycerate kinase with its two substrates: is substrate antagonism a kinetic advantage? J Mol Biol 2011; 409:742-57. [PMID: 21549713 DOI: 10.1016/j.jmb.2011.04.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/17/2011] [Accepted: 04/20/2011] [Indexed: 11/22/2022]
Abstract
Substrate antagonism has been described for a variety of enzymes with more than one substrate and is characterized by a lowering of the affinity of one substrate in the presence of the other(s). 3-Phosphoglycerate kinase (PGK) catalyzes phosphotransfer from 1,3-bisphosphoglycerate (bPG) to ADP to give 3-phosphoglycerate (PG) and ATP, and is subject to substrate antagonism. Because of the instability of bPG, antagonism has only been described between PG and ATP or ADP. Here, we show that antagonism also occurs between bPG and ADP. Using the stopped-flow method, we show that the dissociation constant for one substrate increases in the presence of the other, and that this decrease in affinity is mainly due to an increase in the dissociation rate constant. As a consequence, there is an increase in the overall interaction kinetics. Interestingly, in the presence of the mirror image of natural d-ADP, l-ADP (a good substrate for PGK), antagonism is absent. Using rapid-quench-flow, we studied the kinetics of ATP formation. The time courses present the following: (1) a lag with l-ADP, but not with d-ADP, the kinetics of which were similar to the interaction kinetics measured by stopped-flow; (2) a burst that is directed by the phosphotransfer; and (3) a steady-state that is rate limited by the release of product kinetics. Structural explanations for these results are proposed by analyzing the crystallographic structure of the fully closed conformation of PGK in complex with l-ADP, PG, and the transition-state analogue AlF(4)(-) compared to previously determined structures.
Collapse
|
6
|
Varga A, Chaloin L, Sági G, Sendula R, Gráczer E, Liliom K, Závodszky P, Lionne C, Vas M. Nucleotide promiscuity of 3-phosphoglycerate kinase is in focus: implications for the design of better anti-HIV analogues. MOLECULAR BIOSYSTEMS 2011; 7:1863-73. [PMID: 21505655 DOI: 10.1039/c1mb05051f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The wide specificity of 3-phosphoglycerate kinase (PGK) towards its nucleotide substrate is a property that allows contribution of this enzyme to the effective phosphorylation (i.e. activation) of nucleotide-based pro-drugs against HIV. Here, the structural basis of the nucleotide-PGK interaction is characterised in comparison to other kinases, namely pyruvate kinase (PK) and creatine kinase (CK), by enzyme kinetic analysis and structural modelling (docking) studies. The results provided evidence for favouring the purine vs. pyrimidine base containing nucleotides for PGK rather than for PK or CK. This is due to the exceptional ability of PGK in forming the hydrophobic contacts of the nucleotide rings that assures the appropriate positioning of the connected phosphate-chain for catalysis. As for the D-/L-configurations of the nucleotides, the L-forms (both purine and pyrimidine) are well accepted by PGK rather than either by PK or CK. Here again the dominance of the hydrophobic interactions of the L-form of pyrimidines with PGK is underlined in comparison with those of PK or CK. Furthermore, for the l-forms, the absence of the ribose OH-groups with PGK is better tolerated for the purine than for the pyrimidine containing compounds. On the other hand, the positioning of the phosphate-chain is an even more important term for PGK in the case of both purines and pyrimidines with an L-configuration, as deduced from the present kinetic studies with various nucleotide-site mutants of PGK. These characteristics of the kinase-nucleotide interactions can provide a guideline for designing new drugs.
Collapse
Affiliation(s)
- Andrea Varga
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P O Box 7, H-1518 Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Palmai Z, Chaloin L, Lionne C, Fidy J, Perahia D, Balog E. Substrate binding modifies the hinge bending characteristics of human 3-phosphoglycerate kinase: A molecular dynamics study. Proteins 2009; 77:319-29. [DOI: 10.1002/prot.22437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Varga A, Szabó J, Flachner B, Gugolya Z, Vonderviszt F, Závodszky P, Vas M. Thermodynamic analysis of substrate induced domain closure of 3-phosphoglycerate kinase. FEBS Lett 2009; 583:3660-4. [PMID: 19854185 DOI: 10.1016/j.febslet.2009.10.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 11/26/2022]
Abstract
The energetic changes accompanying domain closure of 3-phosphoglycerate kinase, a typical hinge-bending enzyme, were assessed. Calorimetric titrations of the enzyme with each substrate, both in the absence and presence of the other one, provide information not only about the energetics of substrate binding, but of the associated conformational changes, including domain closure. Our results suggest that conformational rearrangements in the hinge generated by binding of both substrates provide the main driving force for domain closure overcoming the slightly unfavourable contact interactions between the domains.
Collapse
Affiliation(s)
- Andrea Varga
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, PO Box 7, H-1518 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
9
|
Varga A, Lionne C, Lallemand P, Szabó J, Adamek N, Valentin C, Vas M, Barman T, Chaloin L. Direct Kinetic Evidence That Lysine 215 Is Involved in the Phospho-Transfer Step of Human 3-Phosphoglycerate Kinase. Biochemistry 2009; 48:6998-7008. [DOI: 10.1021/bi900396h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Varga
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Karolina Út 29, H-1113 Budapest, Hungary
| | - Corinne Lionne
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236, CNRS, Université Montpellier 1, Université Montpellier 2, Institut de Biologie, 4 bd Henri IV, CS69033, 34965 Montpellier Cedex 2, France
| | - Perrine Lallemand
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236, CNRS, Université Montpellier 1, Université Montpellier 2, Institut de Biologie, 4 bd Henri IV, CS69033, 34965 Montpellier Cedex 2, France
| | - Judit Szabó
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Karolina Út 29, H-1113 Budapest, Hungary
| | - Nancy Adamek
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | - Christian Valentin
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236, CNRS, Université Montpellier 1, Université Montpellier 2, Institut de Biologie, 4 bd Henri IV, CS69033, 34965 Montpellier Cedex 2, France
| | - Mária Vas
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Karolina Út 29, H-1113 Budapest, Hungary
| | - Tom Barman
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236, CNRS, Université Montpellier 1, Université Montpellier 2, Institut de Biologie, 4 bd Henri IV, CS69033, 34965 Montpellier Cedex 2, France
| | - Laurent Chaloin
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR 5236, CNRS, Université Montpellier 1, Université Montpellier 2, Institut de Biologie, 4 bd Henri IV, CS69033, 34965 Montpellier Cedex 2, France
| |
Collapse
|
10
|
Ruta J, Perrier S, Ravelet C, Roy B, Perigaud C, Peyrin E. Aptamer-modified micellar electrokinetic chromatography for the enantioseparation of nucleotides. Anal Chem 2009; 81:1169-76. [PMID: 19128144 DOI: 10.1021/ac802443j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this paper, a new aptamer-based capillary electrophoresis (CE) method, which was able to separate the enantiomers of an anionic target (adenosine monophosphate, AMP) displaying the same electrophoretic mobility as that of the oligonucleotidic chiral selector, is reported. The design of the aptamer-modified micellar electrokinetic chromatography (MEKC) mode consisted of nonionic micelles which acted as a pseudostationary phase and a hydrophobic cholesteryl group-tagged aptamer (Chol-Apt) which partitioned into the uncharged micellar phase. Under partial-filling format and suppressed electroosmotic flow conditions, the strong mobility alteration of Chol-Apt permitted AMP enantiomers to pass through the micelle-anchored aptamer zone and promoted the target enantioseparation. The influence of several electrophoretic parameters (such as concentration and nature of the nonionic surfactant, preincubation of the Chol-Apt and surfactant, capillary temperature, and applied voltage) on the AMP enantiomer migration was investigated in order to define the utilization conditions of the aptamer-modified MEKC mode. The chiral resolution, in a single run, of three adenine nucleotides, i.e., AMP, ADP (adenosine diphosphate), and ATP (adenosine triphosphate), was further accomplished using such methodology. This approach demonstrates the possibility to extend the CE applicability of aptamer chiral selectors to potentially any target, without restriction on its charge-to-mass ratio.
Collapse
Affiliation(s)
- Josephine Ruta
- Département de Pharmacochimie Moléculaire UMR 5063, Institut de Chimie Moléculaire de Grenoble FR 2607, CNRS-Université Grenoble I (Joseph Fourier), 38041 Grenoble Cedex 9, France
| | | | | | | | | | | |
Collapse
|
11
|
Gondeau C, Chaloin L, Lallemand P, Roy B, Périgaud C, Barman T, Varga A, Vas M, Lionne C, Arold ST. Molecular basis for the lack of enantioselectivity of human 3-phosphoglycerate kinase. Nucleic Acids Res 2008; 36:3620-9. [PMID: 18463139 PMCID: PMC2441801 DOI: 10.1093/nar/gkn212] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Non-natural l-nucleoside analogues are increasingly used as therapeutic agents to treat cancer and viral infections. To be active, l-nucleosides need to be phosphorylated to their respective triphosphate metabolites. This stepwise phosphorylation relies on human enzymes capable of processing l-nucleoside enantiomers. We used crystallographic analysis to reveal the molecular basis for the low enantioselectivity and the broad specificity of human 3-phosphoglycerate kinase (hPGK), an enzyme responsible for the last step of phosphorylation of many nucleotide derivatives. Based on structures of hPGK in the absence of nucleotides, and bound to l and d forms of MgADP and MgCDP, we show that a non-specific hydrophobic clamp to the nucleotide base, as well as a water-filled cavity behind it, allows high flexibility in the interaction between PGK and the bases. This, combined with the dispensability of hydrogen bonds to the sugar moiety, and ionic interactions with the phosphate groups, results in the positioning of different nucleotides so to expose their diphosphate group in a position competent for catalysis. Since the third phosphorylation step is often rate limiting, our results are expected to alleviate in silico tailoring of l-type prodrugs to assure their efficient metabolic processing.
Collapse
Affiliation(s)
- C Gondeau
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, UMR 5236, CNRS-Universités Montpellier 1 et 2, Institut de Biologie, 4 bd Henri IV, CS69033, 34965 Montpellier cedex 2, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|