1
|
Osterburg C, Ferniani M, Antonini D, Frombach AS, D'Auria L, Osterburg S, Lotz R, Löhr F, Kehrloesser S, Zhou H, Missero C, Dötsch V. Disease-related p63 DBD mutations impair DNA binding by distinct mechanisms and varying degree. Cell Death Dis 2023; 14:274. [PMID: 37072394 PMCID: PMC10113246 DOI: 10.1038/s41419-023-05796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
The transcription factor p63 shares a high sequence identity with the tumour suppressor p53 which manifests itself in high structural similarity and preference for DNA sequences. Mutations in the DNA binding domain (DBD) of p53 have been studied in great detail, enabling a general mechanism-based classification. In this study we provide a detailed investigation of all currently known mutations in the p63 DBD, which are associated with developmental syndromes, by measuring their impact on transcriptional activity, DNA binding affinity, zinc binding capacity and thermodynamic stability. Some of the mutations we have further characterized with respect to their ability to convert human dermal fibroblasts into induced keratinocytes. Here we propose a classification of the p63 DBD mutations based on the four different mechanisms of DNA binding impairment which we identified: direct DNA contact, zinc finger region, H2 region, and dimer interface mutations. The data also demonstrate that, in contrast to p53 cancer mutations, no p63 mutation induces global unfolding and subsequent aggregation of the domain. The dimer interface mutations that affect the DNA binding affinity by disturbing the interaction between the individual DBDs retain partial DNA binding capacity which correlates with a milder patient phenotype.
Collapse
Affiliation(s)
- Christian Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Marco Ferniani
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Dario Antonini
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Ann-Sophie Frombach
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Ludovica D'Auria
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Susanne Osterburg
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Rebecca Lotz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Sebastian Kehrloesser
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Huiqing Zhou
- Departments of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
- Departments of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145, Naples, Italy.
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany.
| |
Collapse
|
2
|
Kolyasnikova NM, Pestov NB, Sanchez-Pimentel JP, Barlev NA, Ishmukhametov AA. Anti-cancer Virotherapy in Russia: Lessons from the Past, Current Challenges and Prospects for the Future. Curr Pharm Biotechnol 2023; 24:266-278. [PMID: 35578840 DOI: 10.2174/1389201023666220516121813] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
The idea of using the lytic power of viruses against malignant cells has been entertained for many decades. However, oncolytic viruses gained broad attention as an emerging anti-cancer therapy only recently with the successful implementation of several oncolytic viruses to treat advanced melanoma. Here we review the history of oncolytic viruses in the Russian Federation and recent biotechnological advances in connection with the perspectives of their practical use against aggressive tumors such as glioblastoma or pancreatic cancer. A particular emphasis is made on novel applications of safe non-lytic virus-derived vectors armed with prodrug-converting enzyme transgenes. Rational improvement of oncotropism by conjugation with biopolymers and nanoformulations is also discussed.
Collapse
Affiliation(s)
- Nadezhda M Kolyasnikova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia
| | - Nikolay B Pestov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia.,Moscow Institute of Physics and Technology, Phystech School of Biological and Medical Physics, Laboratory of Molecular Oncology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Group of Cross-Linking Enzymes, Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - Jeanne P Sanchez-Pimentel
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia
| | - Nikolay A Barlev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia.,Moscow Institute of Physics and Technology, Phystech School of Biological and Medical Physics, Laboratory of Molecular Oncology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia.,Institute of Biomedical Chemistry, Pogodinskaya 10, Moscow, 119435, Russia
| | - Aidar A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Poselok Instituta Poliomielita 8 bd 17, Poselenie Moskovskiy, Moscow, 108819, Russia
| |
Collapse
|
3
|
Osterburg C, Dötsch V. Structural diversity of p63 and p73 isoforms. Cell Death Differ 2022; 29:921-937. [PMID: 35314772 PMCID: PMC9091270 DOI: 10.1038/s41418-022-00975-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Abstract
The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family.
Facts
Distinct physiological roles/functions are performed by specific isoforms.
The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
Mdm2 binds to all three family members but ubiquitinates only p53.
TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
What is the physiological function of the p63/p73 SAM domains?
Do the short isoforms of p63 and p73 have physiological functions?
What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Collapse
|
4
|
Koley T, Chowdhury SR, Kushwaha T, Kumar M, Inampudi KK, Kaur P, Singh TP, Viadiu H, Ethayathulla AS. Deciphering the mechanism of p73 recognition of p53 response elements using the crystal structure of p73-DNA complexes and computational studies. Int J Biol Macromol 2022; 206:40-50. [PMID: 35217090 DOI: 10.1016/j.ijbiomac.2022.02.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 11/05/2022]
Abstract
P73 belongs to p53 family transcription factor activating more than 50% of cell fate p53 target genes involved in cell cycle, apoptosis, DNA damage response alongside neuronal system development and differentiation by binding to 20-bp response elements (REs) having sequence motif (PPPCA/T-T/AGYYY) where P-purines and Y-pyrimidines with each 10-bp separated by minimum 0 to 13-bp spacer. The promiscuous nature of recognizing both cell fate and development genes and the underlying RE selectivity mechanism by p73 is not well understood. Here, we report the molecular details of p73 recognizing the REs using the crystal structure of p73 DNA binding domain (DBD) in complex with 12 base pair DNA sequence 5'-cAGGCATGCCTg-3' and molecular dynamics simulations with six different p53 natural promoter sequences. Each 20-base pair natural promoter forms a different major/minor groove due to the presence of nucleotides A/T, A/C, G/G, T/T and G/T at positions 3, 8, 13, 18 uniquely recognized by p73 key residues Lys138 and Arg268. The loops L1 and L3 bearing these residues influence inter-and intra-dimer interfaces interactions and hence p73 forms a unique tetramer with each natural promoter sequence. Structural features of the DNA and the spacing between half-sites influence p73 tetramerization and its transactivation function.
Collapse
Affiliation(s)
- Tirthankar Koley
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanghati Roy Chowdhury
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tej Pal Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Héctor Viadiu
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|
5
|
Distinct p63 and p73 Protein Interactions Predict Specific Functions in mRNA Splicing and Polyploidy Control in Epithelia. Cells 2020; 10:cells10010025. [PMID: 33375680 PMCID: PMC7824480 DOI: 10.3390/cells10010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial organs are the first barrier against microorganisms and genotoxic stress, in which the p53 family members p63 and p73 have both overlapping and distinct functions. Intriguingly, p73 displays a very specific localization to basal epithelial cells in human tissues, while p63 is expressed in both basal and differentiated cells. Here, we analyse systematically the literature describing p63 and p73 protein-protein interactions to reveal distinct functions underlying the aforementioned distribution. We have found that p73 and p63 cooperate in the genome stability surveillance in proliferating cells; p73 specific interactors contribute to the transcriptional repression, anaphase promoting complex and spindle assembly checkpoint, whereas p63 specific interactors play roles in the regulation of mRNA processing and splicing in both proliferating and differentiated cells. Our analysis reveals the diversification of the RNA and DNA specific functions within the p53 family.
Collapse
|
6
|
Tan YS, Mhoumadi Y, Verma CS. Roles of computational modelling in understanding p53 structure, biology, and its therapeutic targeting. J Mol Cell Biol 2020; 11:306-316. [PMID: 30726928 PMCID: PMC6487789 DOI: 10.1093/jmcb/mjz009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 12/21/2022] Open
Abstract
The transcription factor p53 plays pivotal roles in numerous biological processes, including the suppression of tumours. The rich availability of biophysical data aimed at understanding its structure–function relationships since the 1990s has enabled the application of a variety of computational modelling techniques towards the establishment of mechanistic models. Together they have provided deep insights into the structure, mechanics, energetics, and dynamics of p53. In parallel, the observation that mutations in p53 or changes in its associated pathways characterize several human cancers has resulted in a race to develop therapeutic modulators of p53, some of which have entered clinical trials. This review describes how computational modelling has played key roles in understanding structural-dynamic aspects of p53, formulating hypotheses about domains that are beyond current experimental investigations, and the development of therapeutic molecules that target the p53 pathway.
Collapse
Affiliation(s)
- Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore
| | - Yasmina Mhoumadi
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| |
Collapse
|
7
|
Xiao D, Yang D, Guo L, Lu W, Charpentier M, Yan B. Regulation of carboxylesterase-2 expression by p53 family proteins and enhanced anti-cancer activities among 5-fluorouracil, irinotecan and doxazolidine prodrug. Br J Pharmacol 2015; 168:1989-99. [PMID: 23373735 DOI: 10.1111/bph.12125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 11/05/2012] [Accepted: 12/10/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE For four decades, 5-fluorouracil (5-FU) has been a major anti-cancer medicine. This drug is increasingly used with other anti-cancer agents such as irinotecan. Irinotecan and many others such as PPD (pentyl carbamate of p-aminobenzyl carbamate of doxazolidine) require activation by carboxylesterase-2 (CES2). 5-FU, on the other hand, reportedly induces CES2 in colorectal tumour lines. The aims of this study were to determine the molecular basis for the induction and to ascertain interactive cell-killing activity between 5-FU and ester prodrugs. EXPERIMENTAL APPROACH Colorectal and non-colorectal lines and xenografts were treated with 5-FU and the expression of CES2 was determined. Cell-killing activity of irinotecan and PPD were determined in the presence or absence of CES2 inhibitor. Several molecular experiments were used to determine the molecular basis for the induction. KEY RESULTS Without exceptions, robust induction was detected in cell lines expressing functional p53. High-level induction was also detected in xenografts. 5-FU pretreatment significantly increased cell-killing activity of irinotecan and PPD. Molecular experiments established that the induction was achieved by both transactivation and increased mRNA stability through p53. Either p63 or p73, functionally related to p53, did not support the transactivation. CONCLUSIONS AND IMPLICATIONS The results in this study suggest that FOLFIRI, a common regimen combining irinotecan and 5-FU, should switch the dosing sequence, namely from 5-FU to irinotecan, to enhance hydrolytic activation of irinotecan. This modified order likely reduces the dose of anti-cancer agents, thus minimizing overall toxicity. The results also conclude that p53 family members act differently in regulating gene expression.
Collapse
Affiliation(s)
- Da Xiao
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | |
Collapse
|
8
|
Pagano B, Jama A, Martinez P, Akanho E, Bui TTT, Drake AF, Fraternali F, Nikolova PV. Structure and stability insights into tumour suppressor p53 evolutionary related proteins. PLoS One 2013; 8:e76014. [PMID: 24124530 PMCID: PMC3790848 DOI: 10.1371/journal.pone.0076014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/19/2013] [Indexed: 01/06/2023] Open
Abstract
The p53 family of genes and their protein products, namely, p53, p63 and p73, have over one billion years of evolutionary history. Advances in computational biology and genomics are enabling studies of the complexities of the molecular evolution of p53 protein family to decipher the underpinnings of key biological conditions spanning from cancer through to various metabolic and developmental disorders and facilitate the design of personalised medicines. However, a complete understanding of the inherent nature of the thermodynamic and structural stability of the p53 protein family is still lacking. This is due, to a degree, to the lack of comprehensive structural information for a large number of homologous proteins and to an incomplete knowledge of the intrinsic factors responsible for their stability and how these might influence function. Here we investigate the thermal stability, secondary structure and folding properties of the DNA-binding domains (DBDs) of a range of proteins from the p53 family using biophysical methods. While the N- and the C-terminal domains of the p53 family show sequence diversity and are normally targets for post-translational modifications and alternative splicing, the central DBD is highly conserved. Together with data obtained from Molecular Dynamics simulations in solution and with structure based homology modelling, our results provide further insights into the molecular properties of evolutionary related p53 proteins. We identify some marked structural differences within the p53 family, which could account for the divergence in biological functions as well as the subtleties manifested in the oligomerization properties of this family.
Collapse
Affiliation(s)
- Bruno Pagano
- King’s College London, School of Biomedical Sciences, Department of Biochemistry & Randall Division of Cell and Molecular Biophysics, New Hunt’s House, London, United Kingdom
- Department of Pharmacy, University of Naples “Federico II”, Napoli, Italy
| | - Abdullah Jama
- Institute for Pharmaceutical Science, London, United Kingdom
| | - Pierre Martinez
- King’s College London, School of Biomedical Sciences, Department of Biochemistry & Randall Division of Cell and Molecular Biophysics, New Hunt’s House, London, United Kingdom
| | - Ester Akanho
- Institute for Pharmaceutical Science, London, United Kingdom
| | - Tam T. T. Bui
- Institute for Pharmaceutical Science, London, United Kingdom
| | - Alex F. Drake
- Institute for Pharmaceutical Science, London, United Kingdom
| | - Franca Fraternali
- King’s College London, School of Biomedical Sciences, Department of Biochemistry & Randall Division of Cell and Molecular Biophysics, New Hunt’s House, London, United Kingdom
- * E-mail: (PN), (FF)
| | - Penka V. Nikolova
- Institute for Pharmaceutical Science, London, United Kingdom
- * E-mail: (PN), (FF)
| |
Collapse
|
9
|
Canning P, von Delft F, Bullock AN. Structural basis for ASPP2 recognition by the tumor suppressor p73. J Mol Biol 2012; 423:515-27. [PMID: 22917970 PMCID: PMC3472557 DOI: 10.1016/j.jmb.2012.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 11/27/2022]
Abstract
Tumor suppressors p53, p63 and p73 comprise a family of stress-responsive transcription factors with distinct functions in development and tumor suppression. Most human cancers lose p53 function, yet all three proteins are capable of inducing apoptosis or cellular senescence. Mechanisms are therefore under investigation to activate p73-dependent apoptosis in p53-deficient cancer cells. Significantly, the DNA-binding domain (DBD) of p73 escapes viral oncoproteins and displays an enhanced thermal stability. To further understand the variant features of p73, we solved the high-resolution crystal structure of the p73 DBD as well as its complex with the ankyrin repeat and SH3 domains of the pro-apoptotic factor ASPP2. The p73 structure exhibits the same conserved architecture as p53 but displays a divergent L2 loop, a known site of protein-protein interaction. The loop in p73 is changed by a two-residue insertion that also induces repacking around the site of the p53 mutational hotspot R175. Importantly, the binding of ASPP2 is preserved by conformational changes in both the ankyrin repeat and SH3 domains. These results further highlight the structural variation that impacts p53 family interactions within the p53 interactome.
Collapse
Affiliation(s)
| | | | - Alex N. Bullock
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
10
|
Abstract
Most proteins have not evolved for maximal thermal stability. Some are only marginally stable, as for example, the DNA-binding domains of p53 and its homologs, whose kinetic and thermodynamic stabilities are strongly correlated. Here, we applied high-throughput methods using a real-time PCR thermocycler to study the stability of several full-length orthologs and paralogs of the p53 family of transcription factors, which have diverse functions, ranging from tumour suppression to control of developmental processes. From isothermal denaturation fluorimetry and differential scanning fluorimetry, we found that full-length proteins showed the same correlation between kinetic and thermodynamic stability as their isolated DNA-binding domains. The stabilities of the full-length p53 orthologs were marginal and correlated with the temperature of their organism, paralleling the stability of the isolated DNA-binding domains. Additionally, the paralogs p63 and p73 were significantly more stable and long-lived than p53. The short half-life of p53 orthologs and the greater persistence of the paralogs may be biologically relevant.
Collapse
Affiliation(s)
- Tobias Brandt
- MRC Centre for Protein Engineering, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Joel L. Kaar
- MRC Centre for Protein Engineering, Cambridge, United Kingdom
| | - Alan R. Fersht
- MRC Centre for Protein Engineering, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Dmitry B. Veprintsev
- MRC Centre for Protein Engineering, Cambridge, United Kingdom
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
11
|
Sancho-Martínez SM, Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ. Subcellular targets of cisplatin cytotoxicity: An integrated view. Pharmacol Ther 2012; 136:35-55. [DOI: 10.1016/j.pharmthera.2012.07.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 12/29/2022]
|
12
|
Liu J, Lin M, Zhang C, Wang D, Feng Z, Hu W. TAp63γ enhances nucleotide excision repair through transcriptional regulation of DNA repair genes. DNA Repair (Amst) 2012; 11:167-76. [PMID: 22056305 PMCID: PMC3348579 DOI: 10.1016/j.dnarep.2011.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
p63 and p73, two p53 family members, play crucial roles in development and tumor suppression. p63 and p73 have multiple isoforms, which have similar or distinct biological functions. Transactivation (TA) isoforms of p63 and p73 have high similarity with p53 and often have biological functions similar to p53. p53 plays an important role in nucleotide excision repair (NER) through transcriptional regulation of target genes involved in NER, including DDB2, XPC and GADD45. To investigate whether TAp63 and TAp73 play a similar role in NER, Saos2 cells with inducible expression of specific isoforms of TAp63 and TAp73, including TAp63α/β/γ and TAp73α/β/γ isoforms, were employed. Overexpression of TAp63γ significantly enhances NER of ultraviolet (UV)-induced DNA damage, including cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts, and enhances cell survival after UV irradiation in Soas2 cells. The enhancement of NER of UV-induced DNA damage by TAp63γ was also confirmed in H1299 cells with overexpression of TAp63γ. Consistently, knockdown of endogenous TAp63 decreases NER of UV-induced DNA damage in H1299 cells. TAp63α/β and TAp73α/β/γ isoforms do not have a clear effect on NER in Saos2 or H1299 cells. TAp63γ overexpression clearly induces the expression of DDB2, XPC and GADD45 at both RNA and protein levels. Furthermore, luciferase reporter assays show that TAp63γ transcriptionally activates DDB2, XPC and GADD45 genes through the regulation of the p53 binding elements in these genes. These results demonstrate that TAp63γ enhances NER to remove UV-induced DNA damage and maintain genomic stability through transcriptional induction of a set of NER proteins, which provides an additional important mechanism that contributes to the function of TAp63 in tumor suppression.
Collapse
Affiliation(s)
- Juan Liu
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | - Meihua Lin
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | - Cen Zhang
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | - Duoduo Wang
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
13
|
Xu Y, Wang JZ, Li JS, Huang XH, Xing ZH, Du LF. Heat treatment-induced functional and structural aspects of Mus musculus TAp63γ. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.03.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Scotcher J, Clarke DJ, Weidt SK, Mackay CL, Hupp TR, Sadler PJ, Langridge-Smith PRR. Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:888-897. [PMID: 21472523 DOI: 10.1007/s13361-011-0088-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 05/30/2023]
Abstract
The tumor suppressor p53 is a redox-regulated transcription factor involved in cell cycle arrest, apoptosis and senescence in response to multiple forms of stress, as well as many other cellular processes such as DNA repair, glycolysis, autophagy, oxidative stress and differentiation. The discovery of cysteine-targeting compounds that cause re-activation of mutant p53 and the death of tumor cells in vivo has emphasized the functional importance of p53 thiols. Using a combination of top-down and middle-down FTICR mass spectrometry, we show that of the 10 Cys residues in the core domain of wild-type p53, Cys182 and Cys277 exhibit a remarkable preference for modification by the alkylating reagent N-ethylmaleimide. The assignment of Cys182 and Cys277 as the two reactive Cys residues was confirmed by site-directed mutagenesis. Further alkylation of p53 beyond Cys182 and Cys277 was found to trigger co-operative modification of the remaining seven Cys residues and protein unfolding. This study highlights the power of top-down FTICR mass spectrometry for analysis of the cysteine reactivity and redox chemistry in multiple cysteine-containing proteins.
Collapse
Affiliation(s)
- Jenna Scotcher
- SIRCAMS, School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Molecular basis of the structural stability of a Top7-based scaffold at extreme pH and temperature conditions. J Mol Graph Model 2010; 28:755-65. [DOI: 10.1016/j.jmgm.2010.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/29/2009] [Accepted: 01/31/2010] [Indexed: 11/22/2022]
|
16
|
Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights. Biochem J 2010; 427:225-36. [DOI: 10.1042/bj20091888] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To assess the potential of mutations from the L1 loop of the tumour suppressor p53 as second-site suppressors, the effect of H115N and S116M on the p53 ‘hot spot’ mutations has been investigated using the double-mutant approach. The effects of these two mutants on the p53 hot spots in terms of thermal stability and DNA binding were evaluated. The results show that: (i) the p53 mutants H115N and S116M are thermally more stable than wild-type p53; (ii) H115N but not S116M is capable of rescuing the DNA binding of one of the most frequent p53 mutants in cancer, R248Q, as shown by binding of R248Q/H115N to gadd45 (the promoter of a gene involved in cell-cycle arrest); (iii) the double mutant R248Q/H115N is more stable than wild-type p53; (iv) the effect of H115N as a second-site suppressor to restore DNA-binding activity is specific to R248Q, but not to R248W; (v) molecular-dynamics simulations indicate that R248Q/H115N has a conformation similar to wild-type p53, which is distinct from that of R248Q. These findings could be exploited in designing strategies for cancer therapy to identify molecules that could mimic the effect of H115N in restoring function to oncogenic p53 mutants.
Collapse
|
17
|
Khoo KH, Mayer S, Fersht AR. Effects of stability on the biological function of p53. J Biol Chem 2009; 284:30974-80. [PMID: 19700401 PMCID: PMC2781498 DOI: 10.1074/jbc.m109.033183] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/20/2009] [Indexed: 11/06/2022] Open
Abstract
The core domain of the tumor suppressor p53 has low thermodynamic stability, and many oncogenic mutations cause it to denature rapidly at body temperature. We made a series of core domain mutants that are significantly less or more stable than wild type to investigate effects of stability on the transcriptional activity and levels of native full-length p53 in H1299 mammalian cells. The levels of transcriptionally inactive native protein with inactivating mutations in the N-terminal transactivation domain correlated strongly with stability. The levels of transcriptionally active proteins, however, depended on both their stability and the transcriptional activity that leads to the feedback loop of proteolytic degradation via transcription of E3 ligases. A very highly stabilized quadruple mutant and an even more stable hexamutant were more active than wild-type p53 in terms of Bax transcription and apoptotic activity, and reached higher levels than wild type in cells. The increased activity did not result from increased overall stability but was due to a single known suppressor mutation, N239Y. It is possible that the low intrinsic stability of p53 is a means of keeping its level low in the cell by spontaneous denaturation, by a route additional to that of proteolytic degradation via E3 ligase pathways. Denatured p53 does accumulate in cells, and there are pathways for the proteolysis of denatured proteins.
Collapse
Affiliation(s)
- Kian Hoe Khoo
- From the Medical Research Council Centre for Protein Engineering, Cambridge CB2 0QH, United Kingdom
| | - Sebastian Mayer
- From the Medical Research Council Centre for Protein Engineering, Cambridge CB2 0QH, United Kingdom
| | - Alan R. Fersht
- From the Medical Research Council Centre for Protein Engineering, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
18
|
Adaptive evolution of p53 thermodynamic stability. J Mol Biol 2009; 393:161-75. [PMID: 19683006 DOI: 10.1016/j.jmb.2009.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/06/2009] [Accepted: 08/06/2009] [Indexed: 11/23/2022]
Abstract
The thermodynamic stability of a protein plays an important role during evolution and adaptation in order to maintain a folded and active conformation. p53 is a tumour suppressor involved in the regulation of numerous genes. Human p53 has an unusually low thermodynamic stability and is frequently inactivated by oncogenic missense mutations. Here, we examined the thermodynamic and kinetic stability of p53 DNA binding domains from selected invertebrate and vertebrate species by differential scanning calorimetry and equilibrium urea denaturation. There is a correlation in the apparent melting temperature of p53 with the body temperature of homeotherm vertebrates. We found that p53 from these organisms has a half-life for spontaneous unfolding at organismal body temperature of 10-20 min. We also found that p53 from invertebrates has higher stability, bearing more resemblance towards p63 and p73 from humans. Using structure-guided mutagenesis on the human p53 scaffold, we demonstrated that the amino acid changes on the protein surface and in the protein interior lead to the elevated stability of p53 orthologs. We propose a model in which the p53 DNA binding domain has been shaped by the complex interplay of different selective pressures and underwent adaptive evolution leading to pronounced effects on its stability. p53 from vertebrates has evolved to have a low thermodynamic stability and similarly short spontaneous half-life at organismal body temperature, which is related to function.
Collapse
|
19
|
Khoo KH, Joerger AC, Freund SM, Fersht AR. Stabilising the DNA-binding domain of p53 by rational design of its hydrophobic core. Protein Eng Des Sel 2009; 22:421-30. [PMID: 19515728 PMCID: PMC2699268 DOI: 10.1093/protein/gzp018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 11/13/2022] Open
Abstract
The core domain of the tumour suppressor p53 is of inherently low thermodynamic stability and also low kinetic stability, which leads to rapid irreversible denaturation. Some oncogenic mutations of p53 act by just making the core domain thermosensitive, and so it is the target of novel anti-cancer drugs that bind to and stabilise the protein. Increasing the stability of the unstable core domain has also been crucial for biophysical and structural studies, in which a stabilised quadruple mutant (QM) is currently used. We generated an even more stabilised hexamutant (HM) by making two additional substitutions, Y236F and T253I, to the QM. The residues are found in the more stable paralogs p63 and p73 and stabilise the wild-type p53 core domain. We solved the structure of the HM core domain by X-ray crystallography at 1.75 A resolution. It has minimal structural changes from QM that affect the packing of hydrophobic core residues of the beta-sandwich. The full-length HM was also fully functional in DNA binding. HM was more stable than QM at 37 degrees C. Anomalies in biophysics and spectroscopy in urea-mediated denaturation curves of HM implied the accumulation of a folding intermediate, which may be related to those detected in kinetic experiments. The two additional mutations over-stabilise an unfolding intermediate. These results should be taken into consideration in drug design strategies for increasing the stability of temperature-sensitive mutants of p53.
Collapse
Affiliation(s)
| | | | | | - Alan R. Fersht
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
20
|
Lee JE, Do ED, Lee UR, Cho MJ, Kim KH, Jin JI, Shin DH, Choi SH, Choi DH. Effect of binding mode on the photoluminescence of CTMA–DNA doped with (E)-2-(2-(4-(diethylamino)styryl)-4H-pyran-4-ylidene)malononitrile. POLYMER 2008. [DOI: 10.1016/j.polymer.2008.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Patel S, George R, Autore F, Fraternali F, Ladbury JE, Nikolova PV. Molecular interactions of ASPP1 and ASPP2 with the p53 protein family and the apoptotic promoters PUMA and Bax. Nucleic Acids Res 2008; 36:5139-51. [PMID: 18676979 PMCID: PMC2532732 DOI: 10.1093/nar/gkn490] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The apoptosis stimulating p53 proteins, ASPP1 and ASPP2, are the first two common activators of the p53 protein family that selectively enable the latter to regulate specific apoptotic target genes, which facilitates yes yet unknown mechanisms for discrimination between cell cycle arrest and apoptosis. To better understand the interplay between ASPP- and p53-family of proteins we investigated the molecular interactions between them using biochemical methods and structure-based homology modelling. The data demonstrate that: (i) the binding of ASPP1 and ASPP2 to p53, p63 and p73 is direct; (ii) the C-termini of ASPP1 and ASPP2 interact with the DNA-binding domains of p53 protein family with dissociation constants, Kd, in the lower micro-molar range; (iii) the stoichiometry of binding is 1:1; (iv) the DNA-binding domains of p53 family members are sufficient for these protein–protein interactions; (v) EMSA titrations revealed that while tri-complex formation between ASPPs, p53 family of proteins and PUMA/Bax is mutually exclusive, ASPP2 (but not ASPP1) formed a complex with PUMA (but not Bax) and displaced p53 and p73. The structure-based homology modelling revealed subtle differences between ASPP2 and ASPP1 and together with the experimental data provide novel mechanistic insights.
Collapse
Affiliation(s)
- Seema Patel
- Department of Biochemistry and Pharmaceutical Science Division, School of Biomedical and Health Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford St., London SE1 9NH, UK
| | | | | | | | | | | |
Collapse
|