1
|
Borho J, Kögel M, Eckert A, Barth H. Repurposing FDA-approved disulfiram for targeted inhibition of diphtheria toxin and the binary protein toxins of Clostridium botulinum and Bacillus anthracis. Front Pharmacol 2024; 15:1455696. [PMID: 39346565 PMCID: PMC11427369 DOI: 10.3389/fphar.2024.1455696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Many bacteria act pathogenic by the release of AB-type protein toxins that efficiently enter human or animal cells and act as enzymes in their cytosol. This leads to disturbed cell functions and the clinical symptoms characteristic for the individual toxin. Therefore, molecules that directly target and neutralize these toxins provide promising novel therapeutic options. Here, we found that the FDA-approved drug disulfiram (DSF), used for decades to treat alcohol abuse, protects cells from intoxication with diphtheria toxin (DT) from Corynebacterium diphtheria, the causative agent of diphtheria, lethal toxin (LT) from Bacillus anthracis, which contributes to anthrax, and C2 enterotoxin from Clostridium botulinum when applied in concentrations lower than those found in plasma of patients receiving standard DSF treatment for alcoholism (up to 20 µM). Moreover, this inhibitory effect is increased by copper, a known enhancer of DSF activity. LT and C2 are binary toxins, consisting of two non-linked proteins, an enzyme (A) and a separate binding/transport (B) subunit. To act cytotoxic, their proteolytically activated B subunits PA63 and C2IIa, respectively, form barrel-shaped heptamers that bind to their cellular receptors and form complexes with their respective A subunits LF and C2I. The toxin complexes are internalized via receptor-mediated endocytosis and in acidified endosomes, PA63 and C2IIa form pores in endosomal membranes, which facilitate translocation of LF and C2I into the cytosol, where they act cytotoxic. In DT, A and B subunits are located within one protein, but DT also forms pores in endosomes that facilitate translocation of the A subunit. If cell binding, membrane translocation, or substrate modification is inhibited, cells are protected from intoxication. Our results implicate that DSF neither affects cellular binding nor the catalytic activity of the investigated toxins to a relevant extend, but interferes with the toxin pore-mediated translocation of the A subunits of DT, LT and C2 toxin, as demonstrated by membrane-translocation assays and toxin pore conductivity experiments in the presence or absence of DSF. Since toxin translocation across intracellular membranes represents a central step during cellular uptake of many bacterial toxins, DSF might neutralize a broad spectrum of medically relevant toxins.
Collapse
Affiliation(s)
| | | | | | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
2
|
Heber S, Borho J, Stadler N, Wondany F, König I, Michaelis J, Papatheodorou P, Barth H, Fellermann M. The Clostridium botulinum C2 Toxin Subunit C2IIa Delivers Enzymes with Positively Charged N-Termini into the Cytosol of Target Cells. Toxins (Basel) 2023; 15:390. [PMID: 37368691 DOI: 10.3390/toxins15060390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The binary Clostridium (C.) botulinum C2 toxin consists of two non-linked proteins. The proteolytically activated binding/transport subunit C2IIa forms barrel-shaped homoheptamers, which bind to cell surface receptors, mediate endocytosis, and translocate the enzyme subunit C2I into the cytosol of target cells. Here, we investigate whether C2IIa can be harnessed as a transporter for proteins/enzymes fused to polycationic tags, as earlier demonstrated for the related anthrax toxin transport subunit PA63. To test C2IIa-mediated transport in cultured cells, reporter enzymes are generated by fusing different polycationic tags to the N- or C-terminus of other bacterial toxins' catalytic A subunits. C2IIa as well as PA63 deliver N-terminally polyhistidine-tagged proteins more efficiently compared to C-terminally tagged ones. However, in contrast to PA63, C2IIa does not efficiently deliver polylysine-tagged proteins into the cytosol of target cells. Moreover, untagged enzymes with a native cationic N-terminus are efficiently transported by both C2IIa and PA63. In conclusion, the C2IIa-transporter serves as a transport system for enzymes that harbor positively charged amino acids at their N-terminus. The charge distribution at the N-terminus of cargo proteins and their ability to unfold in the endosome and subsequently refold in the cytosol determine transport feasibility and efficiency.
Collapse
Affiliation(s)
- Sebastian Heber
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Joscha Borho
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nicole Stadler
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Fanny Wondany
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany
| | - Irina König
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jens Michaelis
- Institute of Biophysics, Ulm University, 89081 Ulm, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| | - Maximilian Fellermann
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
3
|
Beitzinger C, Kronhardt A, Benz R. Chloroquine-analogues block anthrax protective antigen channels in steady-state and kinetic studies. Toxicology 2023; 492:153547. [PMID: 37201861 DOI: 10.1016/j.tox.2023.153547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The tripartite anthrax toxin from Bacillus anthracis represents the prototype of A-B type of toxins, where the effector A (an enzymatic subunit) is transported with the help of a binding component B into a target cell. Anthrax toxin consists of three different molecules, two effectors, lethal factor (LF) and edema factor (EF) and the binding component also known as protective antigen (PA). PA forms heptamers or octamers following binding to host cell's receptors and mediates the translocation of the effectors into the cytosol via the endosomal pathway. The cation-selective PA63-channel is able to reconstitute in lipid membranes and can be blocked by chloroquine and other heterocyclic compounds. This suggests that the PA63-channel contains a binding site for quinolines. In this study, we investigated the structure-function relationship of different quinolines for the block of the PA63-channel. The affinity of the different chloroquine analogues to the PA63-channel as provided by the equilibrium dissociation constant was measured using titrations. Some quinolines had a much higher affinity to the PA63-channel than chloroquine itself. We also performed ligand-induced current noise measurements using fast Fourier transformation to get insight in the kinetics of the binding of some quinolines to the PA63-channel. The on-rate constants of ligand binding were around 108M-1·s-1 at 150mM KCl and were only little dependent on the individual quinoline. The off-rates varied between 4s-1 and 160s-1 and depended much more on the structure of the molecules than the on-rate constants. The possible use of the 4-aminoquinolines as a therapy is discussed.
Collapse
Affiliation(s)
- Christoph Beitzinger
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Angelika Kronhardt
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Roland Benz
- Science Faculty, Constructor University Bremen, Campus-Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
4
|
Eisele J, Schreiner S, Borho J, Fischer S, Heber S, Endres S, Fellermann M, Wohlgemuth L, Huber-Lang M, Fois G, Fauler M, Frick M, Barth H. The Pore-Forming Subunit C2IIa of the Binary Clostridium botulinum C2 Toxin Reduces the Chemotactic Translocation of Human Polymorphonuclear Leukocytes. Front Pharmacol 2022; 13:810611. [PMID: 35222028 PMCID: PMC8881014 DOI: 10.3389/fphar.2022.810611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
The binary C2 toxin of Clostridium (C.) botulinum consists of two non-linked proteins, the enzyme subunit C2I and the separate binding/transport subunit C2II. To exhibit toxic effects on mammalian cells, proteolytically activated C2II (C2IIa) forms barrel-shaped heptamers that bind to carbohydrate receptors which are present on all mammalian cell types. C2I binds to C2IIa and the toxin complexes are internalized via receptor-mediated endocytosis. In acidified endosomal vesicles, C2IIa heptamers change their conformation and insert as pores into endosomal membranes. These pores serve as translocation-channels for the subsequent transport of C2I from the endosomal lumen into the cytosol. There, C2I mono-ADP-ribosylates G-actin, which results in depolymerization of F-actin and cell rounding. Noteworthy, so far morphological changes in cells were only observed after incubation with the complete C2 toxin, i.e., C2IIa plus C2I, but not with the single subunits. Unexpectedly, we observed that the non-catalytic transport subunit C2IIa (but not C2II) alone induced morphological changes and actin alterations in primary human polymorphonuclear leukocytes (PMNs, alias neutrophils) from healthy donors ex vivo, but not macrophages, epithelial and endothelial cells, as detected by phase contrast microscopy and fluorescent microscopy of the actin cytoskeleton. This suggests a PMN selective mode of action for C2IIa. The cytotoxicity of C2IIa on PMNs was prevented by C2IIa pore blockers and treatment with C2IIa (but not C2II) rapidly induced Ca2+ influx in PMNs, suggesting that pore-formation by C2IIa in cell membranes of PMNs is crucial for this effect. In addition, incubation of primary human PMNs with C2IIa decreased their chemotaxis ex vivo through porous culture inserts and in co-culture with human endothelial cells which is closer to the physiological extravasation process. In conclusion, the results suggest that C2IIa is a PMN-selective inhibitor of chemotaxis. This provides new knowledge for a pathophysiological role of C2 toxin as a modulator of innate immune cells and makes C2IIa an attractive candidate for the development of novel pharmacological strategies to selectively down-modulate the excessive and detrimental PMN recruitment into organs after traumatic injuries.
Collapse
Affiliation(s)
- Julia Eisele
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Simone Schreiner
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Joscha Borho
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Heber
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Sascha Endres
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Maximilian Fellermann
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Lisa Wohlgemuth
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Holger Barth,
| |
Collapse
|
5
|
Kulma M, Anderluh G. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins. Cell Mol Life Sci 2021; 78:6229-6249. [PMID: 34387717 PMCID: PMC11073440 DOI: 10.1007/s00018-021-03914-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
Pore-forming proteins (PFPs) are a heterogeneous group of proteins that are expressed and secreted by a wide range of organisms. PFPs are produced as soluble monomers that bind to a receptor molecule in the host cell membrane. They then assemble into oligomers that are incorporated into the lipid membrane to form transmembrane pores. Such pore formation alters the permeability of the plasma membrane and is one of the most common mechanisms used by PFPs to destroy target cells. Interestingly, PFPs can also indirectly manipulate diverse cellular functions. In recent years, increasing evidence indicates that the interaction of PFPs with lipid membranes is not only limited to pore-induced membrane permeabilization but is also strongly associated with extensive plasma membrane reorganization. This includes lateral rearrangement and deformation of the lipid membrane, which can lead to the disruption of target cell function and finally death. Conversely, these modifications also constitute an essential component of the membrane repair system that protects cells from the lethal consequences of pore formation. Here, we provide an overview of the current knowledge on the changes in lipid membrane organization caused by PFPs from different organisms.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| |
Collapse
|
6
|
Cook ME, Varney KM, Godoy-Ruiz R, Weber DJ. 1H N, 13C, and 15N resonance assignments of the Clostridioides difficile receptor binding domain 2 (CDTb, residues 757-876). BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:35-39. [PMID: 33034833 PMCID: PMC7973916 DOI: 10.1007/s12104-020-09979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Clostridioides difficile is a bacterial pathogen responsible for the majority of nosocomial infections in the developed world. C. difficile infection (CDI) is difficult to treat in many cases because hypervirulent strains have evolved that contain a third toxin, termed the C. difficile toxin (CDT), in addition to the two enterotoxins TcdA and TcdB. CDT is a binary toxin comprised of an enzymatic, ADP-ribosyltransferase (ART) toxin component, CDTa, and a pore-forming or delivery subunit, CDTb. In the absence of CDTa, CDTb assembles into two distinct di-heptameric states, a symmetric and an asymmetric form with both states having two surface-accessible host cell receptor-binding domains, termed RBD1 and RBD2. RBD1 has a unique amino acid sequence, when aligned to other well-studied binary toxins (i.e., anthrax), and it contains a novel Ca2+-binding site important for CDTb stability. The other receptor binding domain, RBD2, is critically important for CDT toxicity, and a domain such as this is missing altogether in other binary toxins and shows further that CDT is unique when compared to other binary toxins. In this study, the 1H, 13C, and 15N backbone and sidechain resonances of the 120 amino acid RBD2 domain of CDTb (residues 757-876) were assigned sequence-specifically and provide a framework for future NMR-based drug discovery studies directed towards targeting the most virulent strains of CDI.
Collapse
Affiliation(s)
- Mary E Cook
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD, 21201, USA
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD, 21201, USA
| | - Raquel Godoy-Ruiz
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD, 21201, USA
| | - David J Weber
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics (CBT), University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Xu X, Godoy-Ruiz R, Adipietro KA, Peralta C, Ben-Hail D, Varney KM, Cook ME, Roth BM, Wilder PT, Cleveland T, Grishaev A, Neu HM, Michel SLJ, Yu W, Beckett D, Rustandi RR, Lancaster C, Loughney JW, Kristopeit A, Christanti S, Olson JW, MacKerell AD, Georges AD, Pozharski E, Weber DJ. Structure of the cell-binding component of the Clostridium difficile binary toxin reveals a di-heptamer macromolecular assembly. Proc Natl Acad Sci U S A 2020; 117:1049-1058. [PMID: 31896582 PMCID: PMC6969506 DOI: 10.1073/pnas.1919490117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Targeting Clostridium difficile infection is challenging because treatment options are limited, and high recurrence rates are common. One reason for this is that hypervirulent C. difficile strains often have a binary toxin termed the C. difficile toxin, in addition to the enterotoxins TsdA and TsdB. The C. difficile toxin has an enzymatic component, termed CDTa, and a pore-forming or delivery subunit termed CDTb. CDTb was characterized here using a combination of single-particle cryoelectron microscopy, X-ray crystallography, NMR, and other biophysical methods. In the absence of CDTa, 2 di-heptamer structures for activated CDTb (1.0 MDa) were solved at atomic resolution, including a symmetric (SymCDTb; 3.14 Å) and an asymmetric form (AsymCDTb; 2.84 Å). Roles played by 2 receptor-binding domains of activated CDTb were of particular interest since the receptor-binding domain 1 lacks sequence homology to any other known toxin, and the receptor-binding domain 2 is completely absent in other well-studied heptameric toxins (i.e., anthrax). For AsymCDTb, a Ca2+ binding site was discovered in the first receptor-binding domain that is important for its stability, and the second receptor-binding domain was found to be critical for host cell toxicity and the di-heptamer fold for both forms of activated CDTb. Together, these studies represent a starting point for developing structure-based drug-design strategies to target the most severe strains of C. difficile.
Collapse
Affiliation(s)
- Xingjian Xu
- City University of New York Advanced Science Research Center, City University of New York, New York, NY 10017
- PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10017
| | - Raquel Godoy-Ruiz
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Kaylin A Adipietro
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Christopher Peralta
- City University of New York Advanced Science Research Center, City University of New York, New York, NY 10017
| | - Danya Ben-Hail
- City University of New York Advanced Science Research Center, City University of New York, New York, NY 10017
| | - Kristen M Varney
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Mary E Cook
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Braden M Roth
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Paul T Wilder
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | | | | | - Heather M Neu
- University of Maryland School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Sarah L J Michel
- University of Maryland School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Wenbo Yu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- University of Maryland School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Dorothy Beckett
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742
| | | | | | | | | | | | | | - Alexander D MacKerell
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
- University of Maryland School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Amedee des Georges
- City University of New York Advanced Science Research Center, City University of New York, New York, NY 10017;
- PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10017
- PhD Program in Chemistry, The Graduate Center, City University of New York, New York, NY 10017
- Department of Chemistry & Biochemistry, City College of New York, New York, NY 10031
| | - Edwin Pozharski
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201;
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| | - David J Weber
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201;
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
- The Center for Biomolecular Therapeutics, The University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
8
|
Exploring the Nature of Cationic Blocker Recognition by the Anthrax Toxin Channel. Biophys J 2019; 117:1751-1763. [PMID: 31587826 DOI: 10.1016/j.bpj.2019.08.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 01/20/2023] Open
Abstract
Obstructing conductive pathways of the channel-forming toxins with targeted blockers is a promising drug design approach. Nearly all tested positively charged ligands have been shown to reversibly block the cation-selective channel-forming protective antigen (PA63) component of the binary anthrax toxin. The cationic ligands with more hydrophobic surfaces, particularly those carrying aromatic moieties, inhibited PA63 more effectively. To understand the physical basis of PA63 selectivity for a particular ligand, detailed information is required on how the blocker structural elements (e.g., positively charged and aromatic groups) influence the molecular kinetics of the blocker/channel binding reactions. In this study, we address this problem using the high-resolution single-channel planar lipid bilayer technique. Several structurally distinct cationic blockers, namely per-6-S-(3-amino) propyl-β-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-α-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-β-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-γ-cyclodextrin, methyltriphenylphosphonium ion, and G0 polyamidoamine dendrimer are tested for their ability to inhibit the heptameric and octameric PA63 variants and PA63F427A mutant. The F427 residues form a hydrophobic constriction region inside the channel, known as the "ϕ-clamp." We show that the cationic blockers interact with PA63 through a combination of forces. Analysis of the binding reaction kinetics suggests the involvement of cation-π, Coulomb, and salt-concentration-independent π-π or hydrophobic interactions in the cationic cyclodextrin binding. It is possible that these blockers bind to the ϕ-clamp and are also stabilized by the Coulomb interactions of their terminal amino groups with the water-exposed negatively charged channel residues. In PA63F427A, only the suggested Coulomb component of the cyclodextrin interaction remains. Methyltriphenylphosphonium ion and G0 polyamidoamine dendrimer, despite being positively charged, interact primarily with the ϕ-clamp. We also show that seven- and eightfold symmetric cyclodextrins effectively block the heptameric and octameric forms of PA63 interchangeably, adding flexibility to the earlier formulated blocker/target symmetry match requirement.
Collapse
|
9
|
Prisilla A, Chellapandi P. Cloning and expression of immunogenic Clostridium botulinum C2I mutant proteins designed from their evolutionary imprints. Comp Immunol Microbiol Infect Dis 2019; 65:207-212. [DOI: 10.1016/j.cimid.2019.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/15/2018] [Accepted: 01/14/2019] [Indexed: 01/11/2023]
|
10
|
Yamini G, Nestorovich EM. Multivalent Inhibitors of Channel-Forming Bacterial Toxins. Curr Top Microbiol Immunol 2019; 406:199-227. [PMID: 27469304 PMCID: PMC6814628 DOI: 10.1007/82_2016_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rational design of multivalent molecules represents a remarkable modern tool to transform weak non-covalent interactions into strong binding by creating multiple finely-tuned points of contact between multivalent ligands and their supposed multivalent targets. Here, we describe several prominent examples where the multivalent blockers were investigated for their ability to directly obstruct oligomeric channel-forming bacterial exotoxins, such as the pore-forming bacterial toxins and B component of the binary bacterial toxins. We address problems related to the blocker/target symmetry match and nature of the functional groups, as well as chemistry and length of the linkers connecting the functional groups to their multivalent scaffolds. Using the anthrax toxin and AB5 toxin case studies, we briefly review how the oligomeric toxin components can be successfully disabled by the multivalent non-channel-blocking inhibitors, which are based on a variety of multivalent scaffolds.
Collapse
Affiliation(s)
- Goli Yamini
- Department of Biology, The Catholic University of America, Washington, D.C., 20064, USA
| | | |
Collapse
|
11
|
Molecular Evolutionary Constraints that Determine the Avirulence State of Clostridium botulinum C2 Toxin. J Mol Evol 2017; 84:174-186. [DOI: 10.1007/s00239-017-9791-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
|
12
|
Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines. INFECTION GENETICS AND EVOLUTION 2016; 44:17-27. [PMID: 27320793 DOI: 10.1016/j.meegid.2016.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 12/11/2022]
Abstract
Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 and C3 toxins in addition to botulinum neurotoxins in avian and mammalian cells. C2 and C3 toxins are members of bacterial ADP-ribosyltransferase superfamily, which modify the eukaryotic cell surface proteins by ADP-ribosylation reaction. Herein, the mutant proteins with lack of catalytic and pore forming function derived from C2 (C2I and C2II) and C3 toxins were computationally evaluated to understand their structure-function integrity. We have chosen many structural constraints including local structural environment, folding process, backbone conformation, conformational dynamic sub-space, NAD-binding specificity and antigenic determinants for screening of suitable avirulent toxins. A total of 20 avirulent mutants were identified out of 23 mutants, which were experimentally produced by site-directed mutagenesis. No changes in secondary structural elements in particular to α-helices and β-sheets and also in fold rate of all-β classes. Structural stability was maintained by reordered hydrophobic and hydrogen bonding patterns. Molecular dynamic studies suggested that coupled mutations may restrain the binding affinity to NAD(+) or protein substrate upon structural destabilization. Avirulent toxins of this study have stable energetic backbone conformation with a common blue print of folding process. Molecular docking studies revealed that avirulent mutants formed more favorable hydrogen bonding with the side-chain of amino acids near to conserved NAD-binding core, despite of restraining NAD-binding specificity. Thus, structural constraints in the avirulent toxins would determine their immunogenic nature for the prioritization of protein-based subunit vaccine/immunogens to avian and veterinary animals infected with C. botulinum.
Collapse
|
13
|
Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin. Arch Toxicol 2016; 91:1431-1445. [DOI: 10.1007/s00204-016-1716-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
|
14
|
EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin. Toxins (Basel) 2016; 8:101. [PMID: 27043629 PMCID: PMC4848627 DOI: 10.3390/toxins8040101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.
Collapse
|
15
|
Bezrukov SM, Nestorovich EM. Inhibiting bacterial toxins by channel blockage. Pathog Dis 2016; 74:ftv113. [PMID: 26656888 PMCID: PMC4830228 DOI: 10.1093/femspd/ftv113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/15/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
Emergent rational drug design techniques explore individual properties of target biomolecules, small and macromolecule drug candidates, and the physical forces governing their interactions. In this minireview, we focus on the single-molecule biophysical studies of channel-forming bacterial toxins that suggest new approaches for their inhibition. We discuss several examples of blockage of bacterial pore-forming and AB-type toxins by the tailor-made compounds. In the concluding remarks, the most effective rationally designed pore-blocking antitoxins are compared with the small-molecule inhibitors of ion-selective channels of neurophysiology.
Collapse
Affiliation(s)
- Sergey M Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
16
|
Knapp O, Maier E, Waltenberger E, Mazuet C, Benz R, Popoff MR. Residues involved in the pore-forming activity of theClostridium perfringensiota toxin. Cell Microbiol 2014; 17:288-302. [DOI: 10.1111/cmi.12366] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/09/2014] [Accepted: 09/22/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Oliver Knapp
- Institut Pasteur, Bactéries anaérobies et Toxines; 28 rue du Dr Roux, F-75724 Paris Cedex 15 France
| | - Elke Maier
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine; University of Würzburg; Versbacher Str. 9 D-97078 Würzburg Germany
| | - Eva Waltenberger
- School of Engineering and Science; Jacobs University Bremen; Campusring 1 D-28759 Bremen Germany
| | - Christelle Mazuet
- Institut Pasteur, Bactéries anaérobies et Toxines; 28 rue du Dr Roux, F-75724 Paris Cedex 15 France
| | - Roland Benz
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine; University of Würzburg; Versbacher Str. 9 D-97078 Würzburg Germany
- School of Engineering and Science; Jacobs University Bremen; Campusring 1 D-28759 Bremen Germany
| | - Michel R. Popoff
- Institut Pasteur, Bactéries anaérobies et Toxines; 28 rue du Dr Roux, F-75724 Paris Cedex 15 France
| |
Collapse
|
17
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
18
|
Roeder M, Nestorovich EM, Karginov VA, Schwan C, Aktories K, Barth H. Tailored cyclodextrin pore blocker protects mammalian cells from clostridium difficile binary toxin CDT. Toxins (Basel) 2014; 6:2097-114. [PMID: 25029374 PMCID: PMC4113744 DOI: 10.3390/toxins6072097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/16/2014] [Accepted: 06/27/2014] [Indexed: 12/11/2022] Open
Abstract
Some Clostridium difficile strains produce, in addition to toxins A and B, the binary toxin Clostridium difficile transferase (CDT), which ADP-ribosylates actin and may contribute to the hypervirulence of these strains. The separate binding and translocation component CDTb mediates transport of the enzyme component CDTa into mammalian target cells. CDTb binds to its receptor on the cell surface, CDTa assembles and CDTb/CDTa complexes are internalised. In acidic endosomes, CDTb mediates the delivery of CDTa into the cytosol, most likely by forming a translocation pore in endosomal membranes. We demonstrate that a seven-fold symmetrical positively charged β-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-β-cyclodextrin, which was developed earlier as a potent inhibitor of the translocation pores of related binary toxins of Bacillus anthracis, Clostridium botulinum and Clostridium perfringens, protects cells from intoxication with CDT. The pore blocker did not interfere with the CDTa-catalyzed ADP-ribosylation of actin or toxin binding to Vero cells but inhibited the pH-dependent membrane translocation of CDTa into the cytosol. In conclusion, the cationic β-cyclodextrin could serve as the lead compound in a development of novel pharmacological strategies against the CDT-producing strains of C. difficile.
Collapse
Affiliation(s)
- Maurice Roeder
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | | - Vladimir A Karginov
- Innovative Biologics, Inc., 13455 Sunrise Valley Dr., Suite 200, Herndon, VA 20171, USA.
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany.
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
19
|
Förstner P, Bayer F, Kalu N, Felsen S, Förtsch C, Aloufi A, Ng DYW, Weil T, Nestorovich EM, Barth H. Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors. Biomacromolecules 2014; 15:2461-74. [PMID: 24954629 PMCID: PMC4215879 DOI: 10.1021/bm500328v] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.
Collapse
Affiliation(s)
- Philip Förstner
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center , D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gerding DN, Johnson S, Rupnik M, Aktories K. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes 2014; 5:15-27. [PMID: 24253566 PMCID: PMC4049931 DOI: 10.4161/gmic.26854] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Binary toxin (CDT) is frequently observed in Clostridium difficile strains associated with increased severity of C. difficile infection (CDI). CDT belongs to the family of binary ADP-ribosylating toxins consisting of two separate toxin components: CDTa, the enzymatic ADP-ribosyltransferase which modifies actin, and CDTb which binds to host cells and translocates CDTa into the cytosol. CDTb is activated by serine proteases and binds to lipolysis stimulated lipoprotein receptor. ADP-ribosylation induces depolymerization of the actin cytoskeleton. Toxin-induced actin depolymerization also produces microtubule-based membrane protrusions which form a network on epithelial cells and increase bacterial adherence. Multiple clinical studies indicate an association between binary toxin genes in C. difficile and increased 30-d CDI mortality independent of PCR ribotype. Further studies including measures of binary toxin in stool, analyses of CDI mortality caused by CDT-producing strains, and examination of the relationship of CDT expression to TcdA and TcdB toxin variants and PCR ribotypes are needed.
Collapse
Affiliation(s)
- Dale N Gerding
- Loyola University Chicago Stritch School of Medicine; Hines Veterans Affairs Hospital; Hines, IL USA,Correspondence to: Dale N Gerding,
| | - Stuart Johnson
- Loyola University Chicago Stritch School of Medicine; Hines Veterans Affairs Hospital; Hines, IL USA
| | - Maja Rupnik
- Institute of Public Health Maribor; University of Maribor, Medical Faculty, and Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins; Ljubljana, Slovenia
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology; Albert-Ludwigs-University Freiburg; Freiburg, Germany
| |
Collapse
|
21
|
|
22
|
Bezrukov SM, Liu X, Karginov VA, Wein AN, Leppla SH, Popoff MR, Barth H, Nestorovich EM. Interactions of high-affinity cationic blockers with the translocation pores of B. anthracis, C. botulinum, and C. perfringens binary toxins. Biophys J 2013; 103:1208-17. [PMID: 22995493 DOI: 10.1016/j.bpj.2012.07.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/02/2012] [Accepted: 07/24/2012] [Indexed: 10/27/2022] Open
Abstract
Cationic β-cyclodextrin derivatives were recently introduced as highly effective, potentially universal blockers of three binary bacterial toxins: anthrax toxin of Bacillus anthracis, C2 toxin of Clostridium botulinum, and iota toxin of Clostridium perfringens. The binary toxins are made of two separate components: the enzymatic A component, which acts on certain intracellular targets, and the binding/translocation B component, which forms oligomeric channels in the target cell membrane. Here we studied the voltage and salt dependence of the rate constants of binding and dissociation reactions of two structurally different β-cyclodextrins (AmPrβCD and AMBnTβCD) in the PA(63), C2IIa, and Ib channels (B components of anthrax, C2, and iota toxins, respectively). With all three channels, the blocker carrying extra hydrophobic aromatic groups on the thio-alkyl linkers of positively charged amino groups, AMBnTβCD, demonstrated significantly stronger binding compared with AmPrβCD. This effect is seen as an increased residence time of the blocker in the channels, whereas the time between blockages characterizing the binding reaction on-rate stays practically unchanged. Surprisingly, the voltage sensitivity, expressed as a slope of the logarithm of the blocker residence time as a function of voltage, turned out to be practically the same for all six cases studied, suggesting structural similarities among the three channels. Also, the more-effective AMBnTβCD blocker shows weaker salt dependence of the binding and dissociation rate constants compared with AmPrβCD. By estimating the relative contributions of the applied transmembrane field, long-range Coulomb, and salt-concentration-independent, short-range forces, we found that the latter represent the leading interaction, which accounts for the high efficiency of blockage. In a search for the putative groups in the channel lumen that are responsible for the short-range forces, we performed measurements with the F427A mutant of PA(63), which lacks the functionally important phenylalanine clamp. We found that the on-rates of the blockage were virtually conserved, but the residence times and, correspondingly, the binding constants dropped by more than an order of magnitude, which also reduced the difference between the efficiencies of the two blockers.
Collapse
Affiliation(s)
- Sergey M Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
| | - Sergey M. Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
24
|
Aktories K, Schwan C, Papatheodorou P, Lang AE. Bidirectional attack on the actin cytoskeleton. Bacterial protein toxins causing polymerization or depolymerization of actin. Toxicon 2012; 60:572-81. [DOI: 10.1016/j.toxicon.2012.04.338] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|
25
|
Stiles BG, Wigelsworth DJ, Popoff MR, Barth H. Clostridial binary toxins: iota and C2 family portraits. Front Cell Infect Microbiol 2011; 1:11. [PMID: 22919577 PMCID: PMC3417380 DOI: 10.3389/fcimb.2011.00011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/10/2011] [Indexed: 02/04/2023] Open
Abstract
There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-ribosylation of globular actin by the A component. However, much less is known about B component binding to cell-surface receptors. These toxins share sequence homology amongst themselves and with those produced by another Gram-positive, spore-forming bacterium also commonly associated with soil and disease: Bacillus anthracis. This review focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery; and (4) host–cell responses following toxin-mediated disruption of the cytoskeleton. In summary, these protein toxins aid diverse enteric species within the genus Clostridium.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, Chambersburg, PA, USA; Integrated Toxicology Division, Medical Research Institute of Infectious Diseases, Frederick, MD, USA.
| | | | | | | |
Collapse
|
26
|
Aktories K, Lang AE, Schwan C, Mannherz HG. Actin as target for modification by bacterial protein toxins. FEBS J 2011; 278:4526-43. [PMID: 21466657 DOI: 10.1111/j.1742-4658.2011.08113.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Various bacterial protein toxins and effectors target the actin cytoskeleton. At least three groups of toxins/effectors can be identified, which directly modify actin molecules. One group of toxins/effectors causes ADP-ribosylation of actin at arginine-177, thereby inhibiting actin polymerization. Members of this group are numerous binary actin-ADP-ribosylating exotoxins (e.g. Clostridium botulinum C2 toxin) as well as several bacterial ADP-ribosyltransferases (e.g. Salmonella enterica SpvB) which are not binary in structure. The second group includes toxins that modify actin to promote actin polymerization and the formation of actin aggregates. To this group belongs a toxin from the Photorhabdus luminescens Tc toxin complex that ADP-ribosylates actin at threonine-148. A third group of bacterial toxins/effectors (e.g. Vibrio cholerae multifunctional, autoprocessing RTX toxin) catalyses a chemical crosslinking reaction of actin thereby forming oligomers, while blocking the polymerization of actin to functional filaments. Novel findings about members of these toxin groups are discussed in detail.
Collapse
Affiliation(s)
- Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Germany.
| | | | | | | |
Collapse
|
27
|
Sheets JJ, Hey TD, Fencil KJ, Burton SL, Ni W, Lang AE, Benz R, Aktories K. Insecticidal toxin complex proteins from Xenorhabdus nematophilus: structure and pore formation. J Biol Chem 2011; 286:22742-9. [PMID: 21527640 DOI: 10.1074/jbc.m111.227009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxin complexes from Xenorhabdus and Photorhabdus spp. bacteria represent novel insecticidal proteins. We purified a native toxin complex (toxin complex 1) from Xenorhabdus nematophilus. The toxin complex is composed of three different proteins, XptA2, XptB1, and XptC1, representing products from class A, B, and C toxin complex genes, respectively. We showed that recombinant XptA2 and co-produced recombinant XptB1 and XptC1 bind together with a 4:1:1 stoichiometry. XptA2 forms a tetramer of ∼1,120 kDa that bound to solubilized insect brush border membranes and induced pore formation in black lipid membranes. Co-expressed XptB1 and XptC1 form a tight 1:1 binary complex where XptC1 is C-terminally truncated, resulting in a 77-kDa protein. The ∼30-kDa C-terminally cleaved portion of XptC1 apparently only loosely associates with this binary complex. XptA2 had only modest oral toxicity against lepidopteran insects but as a complex with co-produced XptB1 and XptC1 had high levels of insecticidal activity. Addition of co-expressed class B (TcdB2) and class C (TccC3) proteins from Photorhabdus luminescens to the Xenorhabdus XptA2 protein resulted in formation of a hybrid toxin complex protein with the same 4:1:1 stoichiometry as the native Xenorhabdus toxin complex 1. This hybrid toxin complex, like the native toxin complex, was highly active against insects.
Collapse
Affiliation(s)
- Joel J Sheets
- Department of Biochemistry and Molecular Biology, Dow AgroSciences, Indianapolis, Indiana 46268, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gibert M, Monier MN, Ruez R, Hale ML, Stiles BG, Benmerah A, Johannes L, Lamaze C, Popoff MR. Endocytosis and toxicity of clostridial binary toxins depend on a clathrin-independent pathway regulated by Rho-GDI. Cell Microbiol 2010; 13:154-70. [DOI: 10.1111/j.1462-5822.2010.01527.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Functional characterization of an extended binding component of the actin-ADP-ribosylating C2 toxin detected in Clostridium botulinum strain (C) 2300. Infect Immun 2010; 78:1468-74. [PMID: 20145093 DOI: 10.1128/iai.01351-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium botulinum C2 toxin consists of the binding component C2II and the enzyme component C2I, which ADP-ribosylates G-actin of eukaryotic cells. Trypsin-activated C2II (C2IIa) forms heptamers that mediate cell binding and translocation of C2I from acidic endosomes into the cytosol of target cells. By genome sequencing of C. botulinum strain (C) 2300, we found that C2II from this strain carries a C-terminal extension of 129 amino acids, unlike its homologous counterparts from strains (C) 203U28, (C) 468, and (D) 1873. This extension shows a high similarity to the C-terminal receptor-binding domain of C2II and is presumably the result of a duplication of this domain. The C2II extension facilitates the binding to cell surface receptors, which leads to an increased intoxication efficiency compared to that of C2II proteins from other C. botulinum strains.
Collapse
|
30
|
Abstract
Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens epsilon-toxin and Clostridium septicum alpha-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France.
| | | |
Collapse
|
31
|
Janowiak BE, Finkelstein A, Collier RJ. An approach to characterizing single-subunit mutations in multimeric prepores and pores of anthrax protective antigen. Protein Sci 2009; 18:348-58. [PMID: 19165720 PMCID: PMC2708049 DOI: 10.1002/pro.35] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/03/2008] [Accepted: 11/06/2008] [Indexed: 11/07/2022]
Abstract
Heptameric pores formed by the protective antigen (PA) moiety of anthrax toxin translocate the intracellular effector moieties of the toxin across the endosomal membrane to the cytosol of mammalian cells. We devised a protocol to characterize the effects of individual mutations in a single subunit of heptameric PA prepores (pore precursors) or pores. We prepared monomeric PA containing a test mutation plus an innocuous Cys-replacement mutation at a second residue (Lys563, located on the external surface of the prepore). The introduced Cys was biotinylated, and the protein was allowed to cooligomerize with a 20-fold excess of wild-type PA. Finally, biotinylated prepores were freed from wild-type prepores by avidin affinity chromatography. For the proof of principle, we examined single-subunit mutations of Asp425 and Phe427, two residues where Ala replacements have been shown to cause strong inhibitory effects. The single-subunit D425A mutation inhibited pore formation by >10(4) and abrogated activity of PA almost completely in our standard cytotoxicity assay. The single-subunit F427A mutation caused approximately 100-fold inhibition in the cytotoxicity assay, and this effect was shown to result from a combination of strong inhibition of translocation and smaller effects on pore formation and ligand affinity. Our results show definitively that replacing a single residue in one subunit of the heptameric PA prepore can inhibit the transport activity of the oligomer almost completely-and by different mechanisms, depending on the specific residue mutated.
Collapse
Affiliation(s)
- Blythe E Janowiak
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|